Robust, discriminative and comprehensive dictionary learning for face recognition

Guojun Lin, Meng Yang, Jian Yang, Linlin Shen, Weicheng Xie

Research output: Journal PublicationArticlepeer-review

56 Citations (Scopus)


For sparse representation or sparse coding based image classification, the dictionary, which is required to faithfully and robustly represent query images, plays an important role on its success. Learning dictionaries from the training data for sparse coding has shown state-of-the-art results in image classification and face recognition. However, for face recognition, conventional dictionary learning methods cannot well learn a reliable and robust dictionary due to suffering from the small-sample-size problem. The other significant issue is that current dictionary learning do not completely cover the important components of signal representation (e.g., commonality, particularity, and disturbance), which limit their performance. In order to solve the above issues, in this paper, we propose a novel robust, discriminative and comprehensive dictionary learning (RDCDL) method, in which a robust dictionary is learned from comprehensive training sample diversities generated by extracting and generating facial variations. Especially, to completely represent the commonality, particularity and disturbance, class-shared, class-specific and disturbance dictionary atoms are learned to represent the data from different classes. Discriminative regularizations on the dictionary and the representation coefficients are used to exploit discriminative information, which effectively improves the classification capability of the dictionary. The proposed RDCDL method is extensively evaluated on benchmark face image databases, and it shows superior performance to many state-of-the-art dictionary learning methods for face recognition.

Original languageEnglish
Pages (from-to)341-356
Number of pages16
JournalPattern Recognition
Publication statusPublished - Sept 2018
Externally publishedYes


  • Dictionary learning
  • Face recognition
  • Sparse representation

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence


Dive into the research topics of 'Robust, discriminative and comprehensive dictionary learning for face recognition'. Together they form a unique fingerprint.

Cite this