Abstract
Pt nanoparticles (NPs, 0.5 wt.%) encapsulated in a zirconium-based metal-organic framework (UiO-67 MOF) were synthesized via a linker design method. Thermal behavior of Pt in UiO-67 composite materials was compared with UiO-67 using thermogravimetric and differential thermal analysis (TG-DTA). The results showed that Pt insertion can impair the thermal stability of bulk UiO-67, resulting in a ca. 14% drop in the critical temperature of the thermal decomposition. Temperature-programmed oxidation of materials showed that calcination at 450 K was essential to provide a clean framework. Temperature-programmed reduction of materials revealed that the chemisorption of H2 on UiO-67 (at 323 K) was evidently enhanced owing to the incorporation of Pt NPs, thus making PtNP@UiO-67 suitable for hydrogenation reactions and hydrogen storage. PtNP@UiO-67 catalyst was evaluated by the oxidation and hydrogenation of 5-hydroxymethylfurfural in aqueous solutions at 363 K, showing improved activity and selectivity in hydrogenation reactions.
Original language | English |
---|---|
Pages (from-to) | 85-94 |
Number of pages | 10 |
Journal | Journal of Catalysis |
Volume | 340 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Externally published | Yes |
Keywords
- 5-Hydroxymethylfurfural (HMF)
- Metal-organic frameworks (MOFs)
- Platinum nanoparticles (Pt NPs)
- Reactivity
- TPO
- TPR
- Thermal stability
- UiO-67
- Zirconium MOFs
ASJC Scopus subject areas
- Catalysis
- Physical and Theoretical Chemistry