Object-based RGBD image co-segmentation with mutex constraint

Huazhu Fu, Dong Xu, Stephen Lin, Jiang Liu

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

92 Citations (Scopus)

Abstract

We present an object-based co-segmentation method that takes advantage of depth data and is able to correctly handle noisy images in which the common foreground object is missing. With RGBD images, our method utilizes the depth channel to enhance identification of similar foreground objects via a proposed RGBD co-saliency map, as well as to improve detection of object-like regions and provide depth-based local features for region comparison. To accurately deal with noisy images where the common object appears more than or less than once, we formulate co-segmentation in a fully-connected graph structure together with mutual exclusion (mutex) constraints that prevent improper solutions. Experiments show that this object-based RGBD co-segmentation with mutex constraints outperforms related techniques on an RGBD co-segmentation dataset, while effectively processing noisy images. Moreover, we show that this method also provides performance comparable to state-of-the-art RGB co-segmentation techniques on regular RGB images with depth maps estimated from them.

Original languageEnglish
Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PublisherIEEE Computer Society
Pages4428-4436
Number of pages9
ISBN (Electronic)9781467369640
DOIs
Publication statusPublished - 14 Oct 2015
Externally publishedYes
EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
Duration: 7 Jun 201512 Jun 2015

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume07-12-June-2015
ISSN (Print)1063-6919

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Country/TerritoryUnited States
CityBoston
Period7/06/1512/06/15

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Object-based RGBD image co-segmentation with mutex constraint'. Together they form a unique fingerprint.

Cite this