Neuroadaptive quantized PID sliding-mode control for heterogeneous vehicular platoon with unknown actuator deadzone

Xianggui Guo, Jianliang Wang, Fang Liao, Rodney Swee Huat Teo

Research output: Journal PublicationArticlepeer-review

57 Citations (Scopus)

Abstract

This paper focuses on the problem of neuroadaptive quantized control for heterogeneous vehicular platoon when the follower vehicles suffer from external disturbances, mismatch input quantization, and unknown actuator deadzone. The PID-based sliding-mode (PIDSM) control technique is used due to its superior capability to reduce spacing errors and to eliminate the steady-state spacing errors. Then, a neuroadaptive quantized PIDSM control scheme with minimal learning parameters is designed not only to guarantee the string stability of the whole vehicular platoon and ultimate uniform boundedness of all adaptive law signals but also to attenuate the negative effects caused by external disturbance, mismatch input quantization, and unknown actuator deadzone. Furthermore, optimizing the interspacing between consecutive vehicles is very important to reduce traffic congestion on highways, and a new modified constant time headway policy is proposed to not only increase traffic density but also address the negative effect of nonzero initial spacing, velocity, and acceleration errors. Compared with most existing methods, the proposed method does not linearize the system model and neither requires precise knowledge of the system model. Finally, the effectiveness and advantage of the proposed method are demonstrated by comparative simulation studies.

Original languageEnglish
Pages (from-to)188-208
Number of pages21
JournalInternational Journal of Robust and Nonlinear Control
Volume29
Issue number1
DOIs
Publication statusPublished - 10 Jan 2019
Externally publishedYes

Keywords

  • constant time headway (CTH) policy
  • neuroadaptive control
  • PID-based sliding mode (PIDSM)
  • quantized control
  • string stability

ASJC Scopus subject areas

  • Control and Systems Engineering
  • General Chemical Engineering
  • Biomedical Engineering
  • Aerospace Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Neuroadaptive quantized PID sliding-mode control for heterogeneous vehicular platoon with unknown actuator deadzone'. Together they form a unique fingerprint.

Cite this