Microtomography-based numerical simulations of heat transfer and fluid flow through β-SiC open-cell foams for catalysis

Xiaolei Fan, Xiaoxia Ou, Fei Xing, Glen A. Turley, Petr Denissenko, Mark A. Williams, Nelly Batail, Charlotte Pham, Alexei A. Lapkin

Research output: Journal PublicationArticlepeer-review

43 Citations (Scopus)

Abstract

β-SiC open-cell foams are promising materials for catalytic supports with improved heat and mass transfer at moderate pressure drops. In this work, 3-dimensional (3D) models of a 30 ppi (pores per inch) β-SiC open-cell foam were generated using X-ray microtomography data. The resulting foam models were then used for finite element analysis (FEA) and computational fluid dynamics (CFD) simulations of heat transfer and fluid flow on the pore-scale. The FEA results demonstrate that (i) the overall effective thermal conductivity from direct simulations is comparable to the results estimated by experimental measurement, and are in the order of 10−1 W m−1 K−1 and (ii) thermal transport through fluid-saturated β-SiC foams depends on the solid-to-fluid conductivity ratio. By employing realistic foam models, pore-scale CFD simulations of fluid flows revealed the microscopic characteristics of laminar flow through open-cell foams. The anisotropic feature of realistic foam models promotes the axial and radial mixing of fluids in and after the foam element. The diffusion coefficient of laminar flow within foams was estimated at 10−4 m2 s−1, which is much larger than the molecular diffusion coefficient in a typical laminar flow in an open channel.

Original languageEnglish
Pages (from-to)350-360
Number of pages11
JournalCatalysis Today
Volume278
DOIs
Publication statusPublished - 1 Dec 2016
Externally publishedYes

Keywords

  • Computational fluid dynamics (CFD)
  • Effective thermal conductivity
  • Finite element analysis (FEA)
  • Fluid flow
  • Open-cell foam
  • β-SiC

ASJC Scopus subject areas

  • Catalysis
  • Chemistry (all)

Fingerprint

Dive into the research topics of 'Microtomography-based numerical simulations of heat transfer and fluid flow through β-SiC open-cell foams for catalysis'. Together they form a unique fingerprint.

Cite this