MECCA offloading cloud model over wireless interfaces for optimal power reduction and processing time

Rakan Aldmour, Sufian Yousef, Mohammad Yaghi, Georgios Kapogiannis

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

In this paper, the power consumption and the processing time of smartphones are estimated locally and then compared with the power consumption and processing time when the smartphone executes heavy tasks by offloading on WLAN, 3G, and 4G mobile systems. Different scenarios were tested for different file sizes and wireless network interfaces. The main parameter of the quality of service is the time needed to process the file on the cloud versus the time needed to execute the file locally on the smartphone, as tested by the MECCA (Mobile Energy Cloud Computing algorithm) model. The optimal saving in energy consumption of the smartphone has reached around 90% over the 4G system, while maintaining an approximately similar range of time consumption for similar file sizes. The most important issue is to save time while serving the file. However, it is important, especially for the small nodes, to decrease the power consumption during serving big files, which is normally very high. The cost of the power consumption on smartphone, processing time, and file size for the core cloud and local node, are calculated to extract an immediate input to the processing decision. The Wi-Fi results showed very short processing times comparatively but resulted in very high energy consumption.

Original languageEnglish
Title of host publication2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - Conference Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-8
Number of pages8
ISBN (Electronic)9781538604342
DOIs
Publication statusPublished - 26 Jun 2018
Event2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - San Francisco, United States
Duration: 4 Apr 20178 Apr 2017

Publication series

Name2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - Conference Proceedings

Conference

Conference2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017
Country/TerritoryUnited States
CitySan Francisco
Period4/04/178/04/17

Keywords

  • Cloud Computing
  • Energy Consumption
  • Offloading
  • Processing time
  • Smartphones

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Information Systems
  • Information Systems and Management
  • Energy Engineering and Power Technology
  • Safety, Risk, Reliability and Quality
  • Urban Studies

Fingerprint

Dive into the research topics of 'MECCA offloading cloud model over wireless interfaces for optimal power reduction and processing time'. Together they form a unique fingerprint.

Cite this