Investigation on combined effect of humidity–temperature on partial discharge through dielectric performance evaluation

Yatai Ji, Paolo Giangrande, Weiduo Zhao, Vincenzo Madonna, He Zhang, Jing Li, Michael Galea

Research output: Journal PublicationArticlepeer-review

Abstract

The humidity role in the partial discharge (PD) inception mechanism is quite challenging, especially when considering the environmental temperature. Indeed, there is no general rule to explain the humidity effect on the PD phenomenon. In this paper, the PD activity in inter-turn insulation is experimentally investigated for different relative humidity (RH) conditions at three different ambient temperatures, that is, 30°C, 60°C, and 90°C. Partial discharge inception voltage (PDIV) is directly measured through a photomultiplier tube (PMT), whereas the tip-up tests are performed aiming at monitoring both dissipation factor (tanδ) and insulation capacitance (IC). These extra measurements (diagnostic dielectric markers) allow better assessing the insulation status. The adoption of the tip-up test enables the insulation properties measurement. Based on the tip-up tests’ findings, the interfacial polarization process starts at 75% RH under 60°C, while the high conductivity area is already formed at 75% RH when the ambient temperature is 90°C. The water film formation deduced from the tip-up test is then used to explain the trend of PDIV, and the validity is further proved by finite element analysis (FEA).

Original languageEnglish
JournalIET Science, Measurement and Technology
DOIs
Publication statusAccepted/In press - 2022

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Investigation on combined effect of humidity–temperature on partial discharge through dielectric performance evaluation'. Together they form a unique fingerprint.

Cite this