Integrating real-time analysis with the dendritic cell algorithm through segmentation

Feng Gu, Julie Greensmith, Uwe Aickelin

Research output: Contribution to conferencePaper

27 Citations (Scopus)
11 Downloads (Pure)

Abstract

As an immune inspired algorithm, the Dendritic Cell Algorithm (DCA) has been applied to a range of problems, particularly in the area of intrusion detection. Ideally, the intrusion detection should be performed in real-time, to continuously detect misuses as soon as they occur. Consequently, the analysis process performed by an intrusion detection system must operate in real-time or near-to real-time. The analysis process of the DCA is currently performed offline, therefore to improve the algorithm's performance we suggest the development of a real-time analysis component. The initial step of the development is to apply segmentation to the DCA. This involves segmenting the current output of the DCA into slices and performing the analysis in various ways. Two segmentation approaches are introduced and tested in this paper, namely antigen based segmentation (ABS) and time based segmentation (TBS). The results of the corresponding experiments suggest that applying segmentation produces different and significantly better results in some cases, when compared to the standard DCA without segmentation. Therefore, we conclude that the segmentation is applicable to the DCA for the purpose of real-time analysis.
Original languageEnglish
Pages1203-1210
Publication statusPublished - 1 Jan 2009
EventGECCO '09: Proceedings of the 11th Genetic and Evolutionary Computation Conference - Montreal, Canada
Duration: 8 Jul 200912 Jul 2009

Conference

ConferenceGECCO '09: Proceedings of the 11th Genetic and Evolutionary Computation Conference
Period8/07/0912/07/09

Keywords

  • Dendritic Cell Algorithm, Intrusion Detection Systems, Real-Time Analysis, Segmentation

Fingerprint

Dive into the research topics of 'Integrating real-time analysis with the dendritic cell algorithm through segmentation'. Together they form a unique fingerprint.

Cite this