Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation

Heng Li, Haojin Li, Wei Zhao, Huazhu Fu, Xiuyun Su, Yan Hu, Jiang Liu

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)


The annotation scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models. Specifically, models trained on limited data may not generalize well to other unseen data domains, resulting in a domain shift issue. Consequently, domain generalization (DG) is developed to boost the performance of segmentation models on unseen domains. However, the DG setup requires multiple source domains, which impedes the efficient deployment of segmentation algorithms in clinical scenarios. To address this challenge and improve the segmentation model’s generalizability, we propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG). By analyzing the frequency’s effect on domain discrepancy, FreeSDG leverages a mixed frequency spectrum to augment the single-source domain. Additionally, self-supervision is constructed in the domain augmentation to learn robust context-aware representations for the segmentation task. Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm. FreeSDG outperforms state-of-the-art methods and significantly improves the segmentation model’s generalizability. Therefore, FreeSDG provides a promising solution for enhancing the generalization of medical image segmentation models, especially when annotated data is scarce. The code is available at

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages10
ISBN (Print)9783031439865
Publication statusPublished - 2023
Externally publishedYes
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14225 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023


  • domain augmentation
  • frequency spectrum
  • Medical image segmentation
  • single-source domain generalization

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)


Dive into the research topics of 'Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation'. Together they form a unique fingerprint.

Cite this