Focal biologically inspired feature for glaucoma type classification

Jun Cheng, Dacheng Tao, Jiang Liu, Damon Wing Kee Wong, Beng Hai Lee, Mani Baskaran, Tien Yin Wong, Tin Aung

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

16 Citations (Scopus)

Abstract

Glaucoma is an optic nerve disease resulting in loss of vision. There are two common types of glaucoma: open angle glaucoma and angle closure glaucoma. Glaucoma type classification is important in glaucoma diagnosis. Ophthalmologists examine the iridocorneal angle between iris and cornea to determine the glaucoma type. However, manual classification/grading of the iridocorneal angle images is subjective and time consuming. To save workload and facilitate large-scale clinical use, it is essential to determine glaucoma type automatically. In this paper, we propose to use focal biologically inspired feature for the classification. The iris surface is located to determine the focal region. The association between focal biologically inspired feature and angle grades is built. The experimental results show that the proposed method can correctly classify 85.2% images from open angle glaucoma and 84.3% images from angle closure glaucoma. The accuracy could be improved close to 90% with more images included in the training. The results show that the focal biologically inspired feature is effective for automatic glaucoma type classification. It can be used to reduce workload of ophthalmologists and diagnosis cost.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI 2011 - 14th International Conference, Proceedings
Pages91-98
Number of pages8
EditionPART 3
DOIs
Publication statusPublished - 2011
Externally publishedYes
Event14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2011 - Toronto, ON, Canada
Duration: 18 Sep 201122 Sep 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume6893 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2011
Country/TerritoryCanada
CityToronto, ON
Period18/09/1122/09/11

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)

Fingerprint

Dive into the research topics of 'Focal biologically inspired feature for glaucoma type classification'. Together they form a unique fingerprint.

Cite this