Factoring 3D Convolutions for Medical Images by Depth-wise Dependencies-induced Adaptive Attention

Na Zeng, Jiansheng Fang, Xingyue Wang, Xiaoxi Lu, Jingqi Huang, Hanpei Miao, Jiang Liu

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

It turns out that convolutional neural networks (CNNs) have excellent medical image processing capabilities. Hence, effectively and efficiently deploying CNNs on devices with varying computing power to make computer-aided diagnosis puts on the agenda. However, it is a dilemma to balance the limited computing resources and model complexity. Previously, we proposed factorized convolution with spectral normalization (FConvSN) to mitigate the bottleneck of deploying CNNs for 2D medical images. But due to the cube structure of 3D convolutional kernels, it does not work well for 3D medical images. Directly flattening 3D kernels to 2D weights for matrix factorization may undermine the learning ability along depth-wise, resulting in the loss of depth information and the decline of model performance. To this end, we factorize a 3D convolutional kernel to 2D weight matrices with depth-wise dimensions, then assign an attentive score for each 2D weight matrix by a depth-wise dependencies-induced adaptive attention block (AA). AA with a temperature hyper-parameter helps convolution kernel to better capture depth-wise dependencies in 3D medical images, improving its learning ability along the depth direction. We term this novel factorized convolution as FConvAA used for compressing model complexity without impairing the depth-wise expressivity. We also impose spectral normalization (SN) for FConvAA to constrain spectral norm-wise weights. We conduct extensive experiments on the public lung CT dataset LUNA16 and the private retina OCT dataset to demonstrate the effectiveness and feasibility of our FConvAA.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
EditorsDonald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages883-886
Number of pages4
ISBN (Electronic)9781665468190
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, United States
Duration: 6 Dec 20228 Dec 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022

Conference

Conference2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Country/TerritoryUnited States
CityLas Vegas
Period6/12/228/12/22

Keywords

  • 3D Medical Images
  • Attention
  • Factorized Convolution
  • Model Compression
  • Spectral Normalization

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • Information Systems and Management
  • Biomedical Engineering
  • Medicine (miscellaneous)
  • Cardiology and Cardiovascular Medicine
  • Health Informatics

Fingerprint

Dive into the research topics of 'Factoring 3D Convolutions for Medical Images by Depth-wise Dependencies-induced Adaptive Attention'. Together they form a unique fingerprint.

Cite this