Facile Fabrication of Flexible Pressure Sensor with Programmable Lattice Structure

Yiming Yin, Hua Yang Li, Jin Xu, Chen Zhang, Fei Liang, Xin Li, Yang Jiang, Jin Wei Cao, Han Fang Feng, Jia Nan Mao, Ling Qin, Yi Fan Kang, Guang Zhu

Research output: Journal PublicationArticlepeer-review

85 Citations (Scopus)

Abstract

Flexible pressure sensors have attracted intense attention because of their widespread applications in electronic skin, human-machine interfaces, and healthcare monitoring. Conductive porous structures are always utilized as active layers to improve the sensor sensitivities. However, flexible pressure sensors derived from traditional foaming techniques have limited structure designability. Besides, random pore distribution causes difference in structure and signal repeatability between different samples even in one batch, therefore limiting the batch production capabilities. Herein, we introduce a structure designable lattice structure pressure sensor (LPS) produced by bottom-up digital light processing (DLP) 3D printing technique, which is capable of efficiently producing 55 high fidelity lattice structure models in 30 min. The LPS shows high sensitivity (1.02 kPa-1) with superior linearity over a wide pressure range (0.7 Pa to 160 kPa). By adjusting the design parameters such as lattice type and layer thickness, the electrical sensitivities and mechanical properties of LPS can be accurately controlled. In addition, the LPS endures up to 60000 compression cycles (at 10 kPa) without any obvious electrical signal degradation. This benefits from the firm carbon nanotubes (CNTs) coating derived from high-energy ultrasonic probe and the subsequent thermal curing process of UV-heat dual-curing photocurable resin. For practical applications, the LPS is used for real time pulse monitoring, voice recognition and Morse code communication. Furthermore, the LPS is also integrated to make a flexible 4 × 4 sensor arrays for detecting spatial pressure distribution and a flexible insole for foot pressure monitoring.

Original languageEnglish
Pages (from-to)10388-10396
Number of pages9
JournalACS Applied Materials and Interfaces
Volume13
Issue number8
DOIs
Publication statusPublished - 3 Mar 2021

Keywords

  • DLP 3D printing
  • batch production
  • durability
  • healthcare monitoring
  • lattice structure
  • pressure sensor

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Facile Fabrication of Flexible Pressure Sensor with Programmable Lattice Structure'. Together they form a unique fingerprint.

Cite this