Evaluation of extracellular electron transfer in Pseudomonas aeruginosa by co-expression of intermediate genes in NAD synthetase production pathway

Obinna Markraphael Ajunwa, Olubusola Ayoola Odeniyi, Emmanuel Oluwaseun Garuba, Mrinalini Nair, Enrico Marsili, Abiodun Anthony Onilude

Research output: Journal PublicationArticlepeer-review

1 Citation (Scopus)

Abstract

Pseudomonas aeruginosa (PA) is an electrogenic bacterium, in which extracellular electron transfer (EET) is mediated by microbially-produced phenazines, especially pyocyanin. Increasing EET rate in electrogenic bacteria is key for the development of biosensors and bioelectrofermentation processes. In this work, the production of pyocyanin, Nicotinamide Adenine Dinucleotide (NAD) and NAD synthetase by the electrogenic strain PA-A4 is determined using a Microbial Fuel Cell (MFC). Effects of metabolic inhibition and enhancement of pyocyanin and NAD synthetase on NAD/NADH levels and electrogenicity was demonstrated by short chronoamperometry measurements (0–48 h). Combined overexpression of two intermediate NAD synthetase production genes—nicotinic acid mononucleotide adenyltransferase (nadD) and quinolic acid phosphoribosyltransferase (nadC) genes, which are distant on the PA genomic map, enabled co-transcription and increased NAD synthetase activity. The resulting PA-A4 nadD + nadC shows increases in pyocyanin concentration, NAD synthetase activity, NAD/NADH levels, and MFC potential, all significantly higher than its wild type. Extracellular respiratory mechanisms in PA are linked with NAD metabolism, and targeted increased yield of NAD could directly lead to enhanced EET. A previous attempt at enhancing NAD synthetase for electrogenicity by targeting the terminal NAD synthetase gene (nadE) in standard P. aeruginosa PA01 had earlier been reported. Our work however, poses another route to electrogenicity enhancement in PA using; a combination of nadD and nadC. Further experiments are needed to understand specific intracellular mechanisms governing how over-expression of nadD and nadC induced activity of NadE protein. These findings significantly advance the knowledge of the versatility of NAD biosynthetic genes in PA electrogenicity. Graphical abstract: [Figure not available: see fulltext.]

Original languageEnglish
Article number90
JournalWorld Journal of Microbiology and Biotechnology
Volume38
Issue number5
DOIs
Publication statusPublished - May 2022
Externally publishedYes

Keywords

  • Electrogenicity
  • NAD synthetase
  • Pseudomonas aeruginosa
  • Pyocyanin

ASJC Scopus subject areas

  • Biotechnology
  • Physiology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Evaluation of extracellular electron transfer in Pseudomonas aeruginosa by co-expression of intermediate genes in NAD synthetase production pathway'. Together they form a unique fingerprint.

Cite this