Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images

Kang Zhou, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen Liu, Weixin Luo, Zaiwang Gu, Jiang Liu, Shenghua Gao

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

35 Citations (Scopus)


Anomaly detection in retinal image refers to the identification of abnormality caused by various retinal diseases/lesions, by only leveraging normal images in training phase. Normal images from healthy subjects often have regular structures (e.g., the structured blood vessels in the fundus image, or structured anatomy in optical coherence tomography image). On the contrary, the diseases and lesions often destroy these structures. Motivated by this, we propose to leverage the relation between the image texture and structure to design a deep neural network for anomaly detection. Specifically, we first extract the structure of the retinal images, then we combine both the structure features and the last layer features extracted from original health image to reconstruct the original input healthy image. The image feature provides the texture information and guarantees the uniqueness of the image recovered from the structure. In the end, we further utilize the reconstructed image to extract the structure and measure the difference between structure extracted from original and the reconstructed image. On the one hand, minimizing the reconstruction difference behaves like a regularizer to guarantee that the image is corrected reconstructed. On the other hand, such structure difference can also be used as a metric for normality measurement. The whole network is termed as P-Net because it has a “P” shape. Extensive experiments on RESC dataset and iSee dataset validate the effectiveness of our approach for anomaly detection in retinal images. Further, our method also generalizes well to novel class discovery in retinal images and anomaly detection in real-world images.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages18
ISBN (Print)9783030585648
Publication statusPublished - 2020
Externally publishedYes
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12365 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom


  • Anomaly detection
  • Novel class discovery
  • Structure-texture relation

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)


Dive into the research topics of 'Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images'. Together they form a unique fingerprint.

Cite this