Abstract
The cost of manufacturing textile-reinforced composite aerostructures using Resin Infusion under Flexible Tooling (RIFT) can be reduced by computational modelling. This paper outlines the current progress and contributions made towards this goal. A continuum-based material model was incorporated into a finite element package to simulate the draping of a dry carbon fibre fabric. It accurately tracks the changes in the warp and weft fibre orientations and has been experimentally validated. Material characterisation was performed to determine the tensile and shear properties of a plain weave fabric reinforcement material. In support of bias extension shear testing, an accessible Digital Image Correlation (DIC) approach was developed for accurate optical strain measurement. A relationship between permeability and shear angle was also experimentally determined using a novel permeability measurement technique. Future work is planned to combine all these aspects in an infusion model and demonstrate the complete process model.
Original language | English |
---|---|
Pages | 6748-6758 |
Number of pages | 11 |
Publication status | Published - 2013 |
Externally published | Yes |
Event | 19th International Conference on Composite Materials, ICCM 2013 - Montreal, Canada Duration: 28 Jul 2013 → 2 Aug 2013 |
Conference
Conference | 19th International Conference on Composite Materials, ICCM 2013 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 28/07/13 → 2/08/13 |
Keywords
- Composite materials
- Draping
- Permeability
- Process modelling
- RIFT
- Textile reinforcement
ASJC Scopus subject areas
- General Engineering
- Ceramics and Composites