TY - JOUR
T1 - Continuously tunable separation of light-induced Haematococcus pluvialis using an ultrastretchable, sheath-flow-assisted elasto-inertial microchannel
AU - Yan, Sheng
AU - Jia, Zixuan
AU - Zhang, Zhikai
AU - Liu, Yong
AU - Liu, Bin
AU - Ren, Yong
AU - Yang, Xiaogang
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/8/15
Y1 - 2024/8/15
N2 - Background: A proportion of Haematococcus pluvialis under the light stress can effectively conduct astaxanthin biosynthesis, leading to the increase in cell size. Although the size is a critical indicator for identifying the astaxanthin-rich H. pluvialis cells, the cut-off size to be separated varies from sample to sample. Results: Here, we report an ultrastretchable, straight elasto-inertial microchannel with tunable separation threshold to continuously separate the light-induced H. pluvialis cells by size. The symmetrical sheath flows confine the particles to the channel sidewalls, and large particles can cross the interface of viscoelastic fluids to the equilibrium position at the channel centerline. By stretching the microfluidic chip, the medium-sized particles can gradually migrate to the channel centerline in the narrower and longer channel, bringing the tunable separation threshold. Results show that the separation performance of the ultrastretchable microfluidic device is affected by total flow rate, flow rate ratio of sheath to sample, polyethylene oxide (PEO) solution configuration. Lastly, size-tunable separation of light-induced H. pluvialis cells is demonstrated. Significance: To the best of our knowledge, this is the first report on cell migration in co-flow configurations in the ultra-stretchable microfluidics. Separation of H. pluvialis is not only a relevant end application in harvesting the astaxanthin-rich species, but the separated populations of highly productive microalgal cells will open a venue for cellular directed evolution.
AB - Background: A proportion of Haematococcus pluvialis under the light stress can effectively conduct astaxanthin biosynthesis, leading to the increase in cell size. Although the size is a critical indicator for identifying the astaxanthin-rich H. pluvialis cells, the cut-off size to be separated varies from sample to sample. Results: Here, we report an ultrastretchable, straight elasto-inertial microchannel with tunable separation threshold to continuously separate the light-induced H. pluvialis cells by size. The symmetrical sheath flows confine the particles to the channel sidewalls, and large particles can cross the interface of viscoelastic fluids to the equilibrium position at the channel centerline. By stretching the microfluidic chip, the medium-sized particles can gradually migrate to the channel centerline in the narrower and longer channel, bringing the tunable separation threshold. Results show that the separation performance of the ultrastretchable microfluidic device is affected by total flow rate, flow rate ratio of sheath to sample, polyethylene oxide (PEO) solution configuration. Lastly, size-tunable separation of light-induced H. pluvialis cells is demonstrated. Significance: To the best of our knowledge, this is the first report on cell migration in co-flow configurations in the ultra-stretchable microfluidics. Separation of H. pluvialis is not only a relevant end application in harvesting the astaxanthin-rich species, but the separated populations of highly productive microalgal cells will open a venue for cellular directed evolution.
UR - http://www.scopus.com/inward/record.url?scp=85196511840&partnerID=8YFLogxK
U2 - 10.1016/j.aca.2024.342884
DO - 10.1016/j.aca.2024.342884
M3 - Article
C2 - 39030017
AN - SCOPUS:85196511840
SN - 0003-2670
VL - 1317
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
M1 - 342884
ER -