Comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for high torque to inertia applications

A. Al-Timimy, P. Giangrande, M. Degano, M. Galea, C. Gerada

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

29 Citations (Scopus)

Abstract

This paper investigates the capability of both permanent magnet synchronous machine (PMSM) and permanent magnet flux switching (PMFS) machine to provide high torque to inertia ratio for applications with demanding response in terms of acceleration and fast dynamic. The PMSM has higher torque density and efficiency among different electrical machines. However, the presence of the permanent magnets can increase the rotor inertia. Thanks to its passive salient-pole rotor, PMFS machine is a suitable solution for those applications requiring lower inertia. This paper provides a comparative analysis between the PMSM and PMFS machines considering the torque to inertia ratio, the challenges of a flooded air gap and dimensional constraints. The electromagnetic performances of both machines have been evaluated by means of finite element method and a detailed sensitivity analysis is carried out for stator and rotor geometry.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages45-51
Number of pages7
ISBN (Electronic)9781509058532
DOIs
Publication statusPublished - 13 Jun 2017
Event2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2017 - Nottingham, United Kingdom
Duration: 20 Apr 201721 Apr 2017

Publication series

NameProceedings - 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2017

Conference

Conference2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2017
Country/TerritoryUnited Kingdom
CityNottingham
Period20/04/1721/04/17

Keywords

  • Finite element method
  • Flux switching machine
  • High torque to inertia ratio
  • Permanent magnet machine

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Control and Optimization
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for high torque to inertia applications'. Together they form a unique fingerprint.

Cite this