CNT/PVDF Composite Coating Layer on Cu with a Synergy of Uniform Current Distribution and Stress Releasing for Improving Reversible Li Plating/Stripping

Qiang Guo, Yanan Yu, Shengjie Xia, Cai Shen, Di Hu, Wei Deng, Daojie Dong, Xufeng Zhou, George Zheng Chen, Zhaoping Liu

Research output: Journal PublicationArticlepeer-review

Abstract

The uncontrollable formation of polymorphous Li deposits, e.g., whiskers, mosses, or dendrites resulting from nonuniform interfacial current distribution and internal stress release in the upward direction on the conventional current collector (e.g., Cu foil) of Li metal rechargeable batteries with a lithium-metal-free negatrode (LMFRBs), leads to rapid performance degradation or serious safety problems. The 3D carbon nanotubes (CNTs) skeleton has been proven to effectively reduce the current density and eliminate the internal accumulated stress. However, remarkable electrolyte decomposition, inherent Li source consumption due to repeated SEI formation, and Li+ intercalation in CNTs limit the application of 3D CNTs skeleton. Thus, it is necessary to avoid the side effects of the 3D CNTs skeleton and retain uniform interfacial current distribution and stress mitigation. In this work, we integrate the CNTs network with a soft functional polymer polyvinylidene fluoride (PVDF) to form a relatively dense coating layer on Cu foil, which can shield the contact between the internal surface of the 3D CNTs framework and the electrolyte. Simultaneously, the Li–F-rich SEI resulting from the partial reduction of PVDF with deposited Li and the soft nature of the coating layer release the accumulation of internal stress in the horizontal direction, resulting in mosses/whisker-free Li deposition. Thus, improved Li deposition/dissolution and stable cycling performance of the LMFRBs can be achieved.
Original languageEnglish
JournalACS applied materials & interfaces
DOIs
Publication statusPublished - 29 Sep 2022

Keywords

  • carbon nanotubes
  • polyvinylidene fluoride
  • current distribution
  • stress release
  • Li metal rechargeable batteries with a lithium-metal-free negatrode

Fingerprint

Dive into the research topics of 'CNT/PVDF Composite Coating Layer on Cu with a Synergy of Uniform Current Distribution and Stress Releasing for Improving Reversible Li Plating/Stripping'. Together they form a unique fingerprint.

Cite this