Cluster analysis for occupant-behavior based electricity load patterns in buildings: A case study in Shanghai residences

Song Pan, Xinru Wang, Yixuan Wei, Xingxing Zhang, Csilla Gal, Guangying Ren, Da Yan, Yong Shi, Jinshun Wu, Liang Xia, Jingchao Xie, Jiaping Liu

Research output: Journal PublicationArticlepeer-review

35 Citations (Scopus)

Abstract

In building performance simulation, occupant behavior contributes to large uncertainties, which often lead to considerable discrepancies between actual energy consumption and simulation results. This paper aims to extract occupant-behavior related electricity load patterns using classical K-means clustering approach at the initial investigation stage. Smart-metering data from a case study in Shanghai, China, was used for the load pattern analysis. The electricity load patterns of occupants were examined on a daily/weekly/seasonal basis. According to their load patterns, occupants were categorized as (a) white-collar workers, (b) poor or older families and (c) rich or young families. The daily patterns indicated that electricity use was much more random and fluctuated over a wide range. Most households of the monitored communities consumed relatively-low electricity; the characteristic double peak with higher level of consumption in the morning and evening were only apparent in a relatively small subset of residents (mostly white-collar workers). The weekly analysis found that significant load shifting towards weekend days occurred in the poor or old family group. The electricity saving potential was greatest in the white-collar workers and the rich or young family groups. This study concludes with recommendations to stakeholders utilizing our load profiling results. The research provides a rare insight into the electricity-use-related occupant behaviors of Shanghai residents through the case study of two communities. The findings of the study are also presented in a meaningful way so that they can directly aid the decision-making of governments and other stakeholders interested in energy efficiency. The research results are also relevant to the building energy simulation community as they are derived from observations, and thus can have the potential to improve the efficiency and accuracy of numerical simulation results.

Original languageEnglish
Pages (from-to)889-898
Number of pages10
JournalBuilding Simulation
Volume10
Issue number6
DOIs
Publication statusPublished - 1 Dec 2017

Keywords

  • K-means cluster
  • electricity
  • load profile
  • occupancy behavior
  • residential building

ASJC Scopus subject areas

  • Building and Construction
  • Energy (miscellaneous)

Fingerprint

Dive into the research topics of 'Cluster analysis for occupant-behavior based electricity load patterns in buildings: A case study in Shanghai residences'. Together they form a unique fingerprint.

Cite this