Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network

Hao Zhang, Likun Xia, Ran Song, Jianlong Yang, Huaying Hao, Jiang Liu, Yitian Zhao

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

19 Citations (Scopus)


Automated extraction of cerebrovascular is of great importance in understanding the mechanism, diagnosis, and treatment of many cerebrovascular pathologies. However, segmentation of cerebrovascular networks from magnetic resonance angiography (MRA) imagery continues to be challenging because of relatively poor contrast and inhomogeneous backgrounds, and the anatomical variations, complex geometry and topology of the networks themselves. In this paper, we present a novel cerebrovascular segmentation framework that consists of image enhancement and segmentation phases. We aim to remove redundant features, while retaining edge information in shallow features when combining these with deep features. We first employ a Retinex model, which is able to model noise explicitly to aid removal of imaging noise, as well as reducing redundancy within an image and emphasizing the vessel regions, thereby simplifying the subsequent segmentation problem. Subsequently, a reverse edge attention module is employed to discover edge information by paying particular attention to the regions that are not salient in high-level semantic features. The experimental results show that the proposed framework enables the reverse edge attention network to deliver a reliable cerebrovascular segmentation.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages10
ISBN (Print)9783030597245
Publication statusPublished - 2020
Externally publishedYes
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12266 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020


  • 3D segmentation
  • Attention
  • Cerebrovascular
  • Learning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network'. Together they form a unique fingerprint.

Cite this