Cellular FLICE-like inhibitory protein (cFLIP) critically maintains apoptotic resistance in human lens epithelial cells

Jingru Huangfu, Caili Hao, Zongbo Wei, I. Michael Wormstone, Hong Yan, Xingjun Fan

Research output: Journal PublicationArticlepeer-review

2 Citations (Scopus)


The present study aims to understand the mechanism of the lens epithelial cell’s strong anti-apoptotic capacity and survival in the mature human lens that, on the one hand, maintains lens transparency over several decades, while on the other hand, increases the risk of posterior capsule opacification (PCO). Here we compared FHL124 cells and HeLa cells, spontaneously immortalized epithelial cell lines derived from the human lens and cervical cancer cells, respectively, of their resistance to TNFα-mediated cell death. TNFα plus cycloheximide (CHX) triggered almost all of HeLa cell death. FHL124 cells, however, were unaffected and able to block caspase-8 activation as well as prevent caspase-3 and PARP-1 cleavage. Interestingly, despite spontaneous NFκB and AP-1 activation and upregulation of multiple cell survival/anti-apoptotic genes in both cell types, only FHL124 cells were able to survive the TNFα challenge. After screening and comparing the cell survival genes, cFLIP was found to be highly expressed in FHL124 cells and substantially upregulated by TNFα stimulation. FHL124 cells with a mild cFLIP knockdown manifested a profound apoptotic response to TNFα stimulus similar to HeLa cells. Most importantly, we confirmed these findings in an ex vivo lens capsular bag culture system. In conclusion, our results show that cFLIP is a critical gene that is regulating lens epithelial cell survival.

Original languageEnglish
Article number386
JournalCell Death and Disease
Issue number4
Publication statusPublished - Apr 2021

ASJC Scopus subject areas

  • Immunology
  • Cellular and Molecular Neuroscience
  • Cell Biology
  • Cancer Research


Dive into the research topics of 'Cellular FLICE-like inhibitory protein (cFLIP) critically maintains apoptotic resistance in human lens epithelial cells'. Together they form a unique fingerprint.

Cite this