TY - JOUR
T1 - Cellular FLICE-like inhibitory protein (cFLIP) critically maintains apoptotic resistance in human lens epithelial cells
AU - Huangfu, Jingru
AU - Hao, Caili
AU - Wei, Zongbo
AU - Wormstone, I. Michael
AU - Yan, Hong
AU - Fan, Xingjun
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/4
Y1 - 2021/4
N2 - The present study aims to understand the mechanism of the lens epithelial cell’s strong anti-apoptotic capacity and survival in the mature human lens that, on the one hand, maintains lens transparency over several decades, while on the other hand, increases the risk of posterior capsule opacification (PCO). Here we compared FHL124 cells and HeLa cells, spontaneously immortalized epithelial cell lines derived from the human lens and cervical cancer cells, respectively, of their resistance to TNFα-mediated cell death. TNFα plus cycloheximide (CHX) triggered almost all of HeLa cell death. FHL124 cells, however, were unaffected and able to block caspase-8 activation as well as prevent caspase-3 and PARP-1 cleavage. Interestingly, despite spontaneous NFκB and AP-1 activation and upregulation of multiple cell survival/anti-apoptotic genes in both cell types, only FHL124 cells were able to survive the TNFα challenge. After screening and comparing the cell survival genes, cFLIP was found to be highly expressed in FHL124 cells and substantially upregulated by TNFα stimulation. FHL124 cells with a mild cFLIP knockdown manifested a profound apoptotic response to TNFα stimulus similar to HeLa cells. Most importantly, we confirmed these findings in an ex vivo lens capsular bag culture system. In conclusion, our results show that cFLIP is a critical gene that is regulating lens epithelial cell survival.
AB - The present study aims to understand the mechanism of the lens epithelial cell’s strong anti-apoptotic capacity and survival in the mature human lens that, on the one hand, maintains lens transparency over several decades, while on the other hand, increases the risk of posterior capsule opacification (PCO). Here we compared FHL124 cells and HeLa cells, spontaneously immortalized epithelial cell lines derived from the human lens and cervical cancer cells, respectively, of their resistance to TNFα-mediated cell death. TNFα plus cycloheximide (CHX) triggered almost all of HeLa cell death. FHL124 cells, however, were unaffected and able to block caspase-8 activation as well as prevent caspase-3 and PARP-1 cleavage. Interestingly, despite spontaneous NFκB and AP-1 activation and upregulation of multiple cell survival/anti-apoptotic genes in both cell types, only FHL124 cells were able to survive the TNFα challenge. After screening and comparing the cell survival genes, cFLIP was found to be highly expressed in FHL124 cells and substantially upregulated by TNFα stimulation. FHL124 cells with a mild cFLIP knockdown manifested a profound apoptotic response to TNFα stimulus similar to HeLa cells. Most importantly, we confirmed these findings in an ex vivo lens capsular bag culture system. In conclusion, our results show that cFLIP is a critical gene that is regulating lens epithelial cell survival.
UR - http://www.scopus.com/inward/record.url?scp=85104150661&partnerID=8YFLogxK
U2 - 10.1038/s41419-021-03683-y
DO - 10.1038/s41419-021-03683-y
M3 - Article
C2 - 33837174
AN - SCOPUS:85104150661
SN - 2041-4889
VL - 12
JO - Cell Death and Disease
JF - Cell Death and Disease
IS - 4
M1 - 386
ER -