TY - JOUR
T1 - Capturing the value in printed pharmaceuticals – A study of inkjet droplets released from a polymer matrix
AU - Zhang, Qingxin
AU - Willis-Fox, Niamh
AU - Daly, Ronan
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/4/15
Y1 - 2021/4/15
N2 - The future of personalised combination dosages will rely on the programming and delivery of multiple, separate APIs, their carrier fluids and excipients to a stable matrix, where each will remain separate until it is needed to be released. A recent technique has demonstrated how to print, capture and release materials from a polymer matrix using inkjet printing, a low cost and customisable technique. Droplets of a formulation are delivered to a fluid polymer matrix, where they are imbibed and remain pinned just under the upper surface, held in place by a balance of interfacial energies. Once the surrounding matrix cures and solidifies, the coating or matrix has trapped the formulation, but each drop has a small opening or pore to the outside that will allow delivery through diffusion. However, while the trapping mechanism has been explored in detail, to-date the release involved in this delivery has never been studied or quantified to the same level. Here we show a first study to quantify the release of a model system from a polymer matrix. An aqueous fluorescein solution is delivered and trapped, with release demonstrated to an agarose gel and aqueous environments. The work reveals that the balance of interfacial tensions prevents a reliable release until low concentrations of surfactant are included. This provides a route forward to further explore stabilising combinations of drugs within one material using a digitally controlled and affordable technique.
AB - The future of personalised combination dosages will rely on the programming and delivery of multiple, separate APIs, their carrier fluids and excipients to a stable matrix, where each will remain separate until it is needed to be released. A recent technique has demonstrated how to print, capture and release materials from a polymer matrix using inkjet printing, a low cost and customisable technique. Droplets of a formulation are delivered to a fluid polymer matrix, where they are imbibed and remain pinned just under the upper surface, held in place by a balance of interfacial energies. Once the surrounding matrix cures and solidifies, the coating or matrix has trapped the formulation, but each drop has a small opening or pore to the outside that will allow delivery through diffusion. However, while the trapping mechanism has been explored in detail, to-date the release involved in this delivery has never been studied or quantified to the same level. Here we show a first study to quantify the release of a model system from a polymer matrix. An aqueous fluorescein solution is delivered and trapped, with release demonstrated to an agarose gel and aqueous environments. The work reveals that the balance of interfacial tensions prevents a reliable release until low concentrations of surfactant are included. This provides a route forward to further explore stabilising combinations of drugs within one material using a digitally controlled and affordable technique.
KW - Drug delivery
KW - Inkjet printing
KW - Personalized medicine
KW - Pharmaceutical printing
UR - http://www.scopus.com/inward/record.url?scp=85102253852&partnerID=8YFLogxK
U2 - 10.1016/j.ijpharm.2021.120436
DO - 10.1016/j.ijpharm.2021.120436
M3 - Article
C2 - 33662470
AN - SCOPUS:85102253852
SN - 0378-5173
VL - 599
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
M1 - 120436
ER -