Calculation and analysis of electromagnetic in an induction motor based on continuous quantum ant colony optimization

Li Weili, Yin Qiaoyu, Zhang Xiaochen

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

A new kind of quantum ant colony algorithm for continuous space optimization is proposed in this paper, by the introduction of quantum computation into ant colony optimization. Each ant carries a group of quantum bits representing the current location of ant, and quantum bits are updated by quantum rotation gates to make the location of ants changed, some quantum bits are mutated by quantum non-gates to increase the population diversity in this algorithm. The convergence of proposed algorithm is proved theoretically. The numerical simulation results show that the new algorithm has better global search capability and faster convergence rate than classical ant colony optimization. Furthermore, the new algorithm is applied to the optimal design of an induction motor successfully, and optimization results are obtained. An effective design method for induction motor has been suggested based on continuous quantum ant colony optimization.

Original languageEnglish
Title of host publicationDigests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC 2010
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event14th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC2010 - Chicago, IL, United States
Duration: 9 May 201012 May 2010

Publication series

NameDigests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC 2010

Conference

Conference14th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC2010
Country/TerritoryUnited States
CityChicago, IL
Period9/05/1012/05/10

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Calculation and analysis of electromagnetic in an induction motor based on continuous quantum ant colony optimization'. Together they form a unique fingerprint.

Cite this