BuildSenSys: Reusing Building Sensing Data for Traffic Prediction with Cross-Domain Learning

Xiaochen Fan, Chaocan Xiang, Chao Chen, Panlong Yang, Liangyi Gong, Xudong Song, Priyadarsi Nanda, Xiangjian He

Research output: Journal PublicationArticlepeer-review

45 Citations (Scopus)

Abstract

With the rapid development of smart cities, smart buildings are generating a massive amount of building sensing data by the equipped sensors. Indeed, building sensing data provides a promising way to enrich a series of data-demanding and cost-expensive urban mobile applications. In this paper, as a preliminary exploration, we study how to reuse building sensing data to predict traffic volume on nearby roads. Compared with existing studies, reusing building sensing data has considerable merits of cost-efficiency and high-reliability. Nevertheless, it is non-trivial to achieve accurate prediction on such cross-domain data with two major challenges. First, relationships between building sensing data and traffic data are not unknown as prior, and the spatio-temporal complexities impose more difficulties to uncover the underlying reasons behind the above relationships. Second, it is even more daunting to accurately predict traffic volume with dynamic building-traffic correlations, which are cross-domain, non-linear, and time-varying. To address the above challenges, we design and implement BuildSenSys, a first-of-its-kind system for nearby traffic volume prediction by reusing building sensing data. Our work consists of two parts, i.e., Correlation Analysis and Cross-domain Learning. First, we conduct a comprehensive building-traffic analysis based on multi-source datasets, disclosing how and why building sensing data is correlated with nearby traffic volume. Second, we propose a novel recurrent neural network for traffic volume prediction based on cross-domain learning with two attention mechanisms. Specifically, a cross-domain attention mechanism captures the building-traffic correlations and adaptively extracts the most relevant building sensing data at each predicting step. Then, a temporal attention mechanism is employed to model the temporal dependencies of data across historical time intervals. The extensive experimental studies demonstrate that BuildSenSys outperforms all baseline methods with up to 65.3 percent accuracy improvement (e.g., 2.2 percent MAPE) in predicting nearby traffic volume. We believe that this work can open a new gate of reusing building sensing data for urban traffic sensing, thus establishing connections between smart buildings and intelligent transportation.

Original languageEnglish
Article number9018140
Pages (from-to)2154-2171
Number of pages18
JournalIEEE Transactions on Mobile Computing
Volume20
Issue number6
DOIs
Publication statusPublished - 1 Jun 2021
Externally publishedYes

Keywords

  • Internet of Things
  • Traffic prediction
  • building sensing data
  • cross-domain learning
  • machine learning

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'BuildSenSys: Reusing Building Sensing Data for Traffic Prediction with Cross-Domain Learning'. Together they form a unique fingerprint.

Cite this