Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers

Laura Ruiz-Cantu, Gustavo F Trindade, Vincenzo Taresco, Zuoxin Zhou, Yinfeng He, Laurence Burroughs, Elizabeth A. Clark, Felicity R.A.J. Rose, Christopher Tuck, Richard Hague, Clive J. Roberts, Morgan Alexander, Derek J. Irvine, Ricky D. Wildman

Research output: Journal PublicationArticlepeer-review

6 Citations (Scopus)

Abstract

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue engineering, optics, and electronics. The aim of this study was to use phase separation to tailor the spatial location of drugs and thereby generate release profiles of drug payload over periods ranging from 1 week to months by exploiting different mechanisms: polymer degradation, polymer diluent dissolution, and control of microstructure. To achieve this, we used drop-on-demand inkjet three-dimensional (3D) printing. We predicted the microstructure resulting from phase separation using high-throughput screening combined with a model based on the Flory-Huggins interaction parameter and were able to show that drug release from 3D-printed objects can be predicted from observations based on single drops of mixtures. We demonstrated for the first time that inkjet 3D printing yields controllable phase separation using picoliter droplets of blended photoreactive oligomers/monomers. This new understanding gives us hierarchical compositional control, from droplet to device, allowing release to be "dialled up"without manipulation of device geometry. We exemplify this approach by fabricating a biodegradable, long-term, multiactive drug delivery subdermal implant ("polyimplant") for combination therapy and personalized treatment of coronary heart disease. This is an important advance for implants that need to be delivered by cannula, where the shape is highly constrained and thus the usual geometrical freedoms associated with 3D printing cannot be easily exploited, which brings a hitherto unseen level of understanding to emergent material properties of 3D printing.

Original languageEnglish
Pages (from-to)38969-38978
Number of pages10
JournalACS Applied Materials and Interfaces
Volume13
Issue number33
DOIs
Publication statusPublished - 25 Aug 2021
Externally publishedYes

Keywords

  • 3D printing
  • drug release
  • implants
  • inks
  • phase separation

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers'. Together they form a unique fingerprint.

Cite this