Automated anterior chamber angle localization and glaucoma type classification in OCT images

Yanwu Xu, Jiang Liu, Jun Cheng, Beng Hai Lee, Damon Wing Kee Wong, Mani Baskaran, Shamira Perera, Tin Aung

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

34 Citations (Scopus)

Abstract

To identify glaucoma type with OCT (optical coherence tomography) images, we present an image processing and machine learning based framework to localize and classify anterior chamber angle (ACA) accurately and efficiently. In digital OCT photographs, our method automatically localizes the ACA region, which is the primary structural image cue for clinically identifying glaucoma type. Next, visual features are extracted from this region to classify the angle as open angle (OA) or angle-closure (AC). This proposed method has three major contributions that differ from existing methods. First, the ACA localization from OCT images is fully automated and efficient for different ACA configurations. Second, it can directly classify ACA as OA/AC based on only visual features, which is different from previous work for ACA measurement that relies on clinical features. Third, it demonstrates that higher dimensional visual features outperform low dimensional clinical features in terms of angle closure classification accuracy. From tests on a clinical dataset comprising of 2048 images, the proposed method only requires 0.26s per image. The framework achieves a 0.921 ± 0.036 AUC (area under curve) value and 84.0% ± 5.7% balanced accuracy at a 85% specificity, which outperforms existing methods based on clinical features.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages7380-7383
Number of pages4
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: 3 Jul 20137 Jul 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period3/07/137/07/13

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Automated anterior chamber angle localization and glaucoma type classification in OCT images'. Together they form a unique fingerprint.

Cite this