TY - GEN
T1 - An improvement of tree-rule firewall for a large network
T2 - Joint 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
AU - Chomsiri, Thawatchai
AU - He, Xiangjian
AU - Nanda, Priyadarsi
AU - Tan, Zhiyuan
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016
Y1 - 2016
N2 - Firewalls are important network devices which provide first hand defense against network threat. This level of defense is depended on firewall rules. Traditional firewalls, i.e., Cisco ACL, IPTABLES, Check Point and Juniper NetScreen firewall use listed rule to regulate packet flows. However, the listed rules may lead to rule conflictions which make the firewall to be less secure or even slowdown in performance. Based on our previous research works, we proposed the Tree-Rule firewall which does not encounter such rule conflicts within its rule set and operates faster than the traditional firewalls. However, in big or complex networks, the Tree-Rule firewall still may face two main problems. 1. Firewall administrators may face difficulty to write big and complex rule. 2. Difficulty to select appropriate attribute column for the Root node. In this paper, we propose an improved model for the Tree-Rule firewall by extending our previous models. We offer the use of combination between IN and OUT interfaces of the firewall to separate a big rule to many small independent rules. Each separated rule then can be managed in an individual screen. Sequence of verifying attributes, i.e., Source IP, Destination IP and Destination Port numbers, can be ordered independently in each separated rule. We implement the two main schemes on Linux Cent OS 6.3. We found that the improved Tree-Rule firewall can be managed easily with low processing delay.
AB - Firewalls are important network devices which provide first hand defense against network threat. This level of defense is depended on firewall rules. Traditional firewalls, i.e., Cisco ACL, IPTABLES, Check Point and Juniper NetScreen firewall use listed rule to regulate packet flows. However, the listed rules may lead to rule conflictions which make the firewall to be less secure or even slowdown in performance. Based on our previous research works, we proposed the Tree-Rule firewall which does not encounter such rule conflicts within its rule set and operates faster than the traditional firewalls. However, in big or complex networks, the Tree-Rule firewall still may face two main problems. 1. Firewall administrators may face difficulty to write big and complex rule. 2. Difficulty to select appropriate attribute column for the Root node. In this paper, we propose an improved model for the Tree-Rule firewall by extending our previous models. We offer the use of combination between IN and OUT interfaces of the firewall to separate a big rule to many small independent rules. Each separated rule then can be managed in an individual screen. Sequence of verifying attributes, i.e., Source IP, Destination IP and Destination Port numbers, can be ordered independently in each separated rule. We implement the two main schemes on Linux Cent OS 6.3. We found that the improved Tree-Rule firewall can be managed easily with low processing delay.
KW - Firewall
KW - Large rule size
KW - Low delay
KW - Network security
KW - Tree-rule firewall
UR - http://www.scopus.com/inward/record.url?scp=85015218627&partnerID=8YFLogxK
U2 - 10.1109/TrustCom.2016.0061
DO - 10.1109/TrustCom.2016.0061
M3 - Conference contribution
AN - SCOPUS:85015218627
T3 - Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
SP - 178
EP - 184
BT - Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 23 August 2016 through 26 August 2016
ER -