A novel bionic packed bed latent heat storage system filled with encapsulated PCM for thermal energy collection

Xiangzhi Zhang, Yatao Ren, Yong Ren, Yuying Yan

Research output: Journal PublicationArticlepeer-review

7 Citations (Scopus)

Abstract

The main content of this work is to propose a novel bionic solution to overcome the nonuniformity of flow and temperature distribution, which is an inherent problem and restriction for conventional latent heat storage devices. By learning from animal circulatory systems, the inner space and flow channel network are distributed hierarchically as arteries, veins, capillaries and ventricles. A conceptual configuration of the bionic system is presented, and its numerical model is established to demonstrate the flow and heat transfer phenomena. The encapsulated PCM that is used in this study is fabricated and parameters related have been measured by experiments. A numerical model of a 3D continuous PCM bed is established to help research the flow of HTF through the surfaces of PCM particles and the heat transfer between them. Then, a model of a simplified bionic device is developed where the PCM region is set as a porous domain. The results show the flow and temperature fields are distributed uniformly, along with a much smaller global pressure drop. By allocating the thermal load on cascaded layers with stepwise PCMs, a more homogeneous global temperature difference can be achieved.

Original languageEnglish
Article number101449
JournalThermal Science and Engineering Progress
Volume35
DOIs
Publication statusPublished - 1 Oct 2022

Keywords

  • Bionic engineering
  • Latent heat storage
  • Phase change materials

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'A novel bionic packed bed latent heat storage system filled with encapsulated PCM for thermal energy collection'. Together they form a unique fingerprint.

Cite this