Abstract
Type-1 fuzzy logic has frequently been used in control systems. However this method is sometimes shown to be too restrictive and unable to adapt in the presence of uncertainty. In this paper we compare type-1 fuzzy control with several other fuzzy approaches under a range of uncertain conditions. Interval type-2 and non-stationary fuzzy controllers are compared, along with ‘dual surface’ type-2 control, named due to utilising both the lower and upper values produced from standard interval type-2 systems. We tune a type-1 controller, then derive the membership functions and footprints of uncertainty from the type-1 system and evaluate them using a simulated autonomous sailing problem with varying amounts of environmental uncertainty. We show that while these more sophisticated controllers can produce better performance than the type-1 controller, this is not guaranteed and that selection of Footprint of Uncertainty (FOU) size has a large effect on this relative performance.
Original language | English |
---|---|
Pages | 1193 - 1200 |
Publication status | Published - 1 Jan 2011 |
Event | 2011 IEEE International Conference on Fuzzy Systems - Taipei, Taiwan Duration: 27 Jun 2011 → 30 Jun 2011 |
Conference
Conference | 2011 IEEE International Conference on Fuzzy Systems |
---|---|
Period | 27/06/11 → 30/06/11 |
Keywords
- Fuzzy Control
- Interval Type-2 Fuzzy
- Non-stationary
- Robot Boat control