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Abstract—Great effort has been made to restructure the tra-
ditional monopoly power industry, introducing fair competition.
The deregulation of market allows the electricity price to form
based on power plants offers indicating generation willing at
corresponding bidding price. This paper proposes reinforcement
learning(RL) methods to devise optimal bidding strategy maxi-
mizing the profit with consideration of risk preference in spot
electricity market.The problem is formulated in the framework of
Markov decision process (MDP), a discrete stochastic optimiza-
tion method. The cumulative profit over the span is the objective
function to be optimized. The temporal difference technique and
actor-critic learning algorithm are employed. The Smart-Market
market-clearing system and Gaussian distribution is included in
the formulation. Two different environment conditions of the spot
electricity market, static and dynamic, are applied in simulation
for analysis completeness. Only the target plant can adjust
bidding strategy in the static environment while all plants can
adjust bidding strategy in the dynamic environment. Simulation
cases of nine participants are considered and the obtained results
are analyzed.

Index Terms—Bidding strategy, risk preference analysis, Spot
electricity market, inverse reinforcement learning

I. INTRODUCTION

DEREGULATION of the electricity industry has become
an established practice in many parts of the world. In

the day-ahead market, the power-exchange bidding mechanism
requires each participant to submit bids for all 24 h of a day
as a block. However, in the Spot electricity market, the supply
of electricity is matched from power stations with real time
consumption by households and businesses. All electricity in
the spot market is bought and sold at the spot price.

The bid is in the form of points of piecewise linear
curve on the axes, with energy level in megawatt hours and
price in dollars per megawatt hour. Thus, it is necessary
for participants to propose advantageous and rational bidding
strategies, the hourly generation schedule coupled with the
competitive bid price, in a deregulated electricity market. Ad-
vantageous strategy means maximizing ones own profits which
denoting success transaction with great difference between
revenue and cost considering self-generation cost, clear-price
prediction, competitors behavior forecasting. Rational strategy
means satisfying security boundary conditions of generation
and minimizing the risk involved.

A strategy is defined to be optimal for a plant at the moment,
if it can maximize profit with safety guarantee. Study on
finding the optimal bidding strategy is significant in three
aspects. Firstly, it guides participants to bid sensibly, notably
improving transaction efficiency. Secondly, it contributes to
market investigation, identifying the potential for abuse of
market power through loopholes that can be exploited in

market structure and management rules since these results have
important policy implications.Thirdly, ideally the electricity
market structure and management mechanisms will grows
better designed directing the operation of the market towards
maximizing social welfare.

Several optimal bidding strategy models focusing on the
market clearing-price forecast have been proposed, while
others concentrate on the bidding behaviors prediction of
competitors. Meanwhile, some actual market bidding strategies
are well modeled to evaluate the accuracy of market simulation
and load forecasting. A basic price-based auction mechanism
is proposed in [1]. An auctioneer matches the buyers and
sellers bids to find the market clearing price (MCP) [2].
Game theory is used for optimal bidding [3] and [4] for
hourly auction. Dynamic programming is used in [2] for
revenue adequate bidding. A genetic-algorithm based method
is described in [6]. This approach is effective only if the
market is not volatile. Optimization-based bidding strategies
are proposed in [8]. The optimal bidding is divided into
two optimization problemsone each for a participant and the
independent system operator (ISO). The ISO sub problem is
deterministic and the participants sub problem is stochastic. In
[9], the problem of optimal bidding is modeled as a Markov
decision process (MDP) where load on a weekly basis with
peak and off peak loads is considered.

On conclusion, up to now, study on finding optimal bid-
ding strategy are limited in conventional simulation methods,
mainly focusing on the day-ahead market. Reinforcement
Learning, one of the most important machine learning tech-
nology has not been applied as model. Other problems include
market environment analysis deficiency since simulation under
static and dynamic conditions belongs to different agent mod-
els. Meanwhile, sampling process of load is not convincing
with distinction only in weekly peak and off-peak. Whats
more, risk preference analysis is mostly absent from market
simulation, which is a key component in studying the behavior
of power generation company. Risk preference analysis always
indicates the acceptance degree to risks of power plants during
bidding. Not only the market participants and policy-makers
can benefit from risk preference analysis of power plants, but
also the electricity market can become mature since the predic-
tion framework grows complete considering risk preference.
Even though, some models take risk into consideration, the
data collection approach relies on traditional investigation or
data-driven method, which is sometimes inaccurate.

In this paper, we propose reinforcement learning (RL)
methods to devise optimal bidding strategy, maximizing the
profit with consideration of risk preference in spot electricity



market. The problem is formulated in the framework of
Markov decision process (MDP) under two different envi-
ronment conditions of the spot electricity market, static and
dynamic. The temporal difference technique and actor-critic
learning algorithm are employed. The Smart-Market market-
clearing system and Gaussian distribution sampling in loads
forecasting is included in the formulation. Major contributions
of this paper are summarized as follows.

1) Based on RL, optimal strategy considering loads,
competitors offers, historical bidding will be learned
and evaluated from market simulation under static
and dynamic environment respectively. The static
environment, where only target power plant can decide
offers, simplifies the complex transaction process
while the dynamic environment where all power
plants can decide their bidding, being closer to the
reality. In the static environment, single agent Deep
Deterministic Policy Gradient (DDPG) algorithm is
used to produce the optimal bidding strategy. In the
dynamic environment multiple agents DDPG algorithm
is applied and corresponding risk for each competitor
will be calculated. DDPG is a deep reinforcement
learning algorithm based on policy selection action,
which is an improvement of Deep Policy Gradient
(DPG) and the Actor-Critic algorithm.The Actor-Critic
algorithm is a model-free, off-policy method where the
critic acts as a value-function approximator to estimate
the action value, while the actor updates the policy
distribution in the direction suggested by the critic. In
our framework, the actor is our target plants whose
action is to decide its next bidding price with others
strategy fixed. Whenever the actor decides its bidding
price in current state, the clear result will be calculated
by the Smart-Market and the net profit will be regarded
as rewards. The critic is executed to judge the action
based on the rewards correspondingly while updating
the overall evaluation mechanism.

2) Data set of risk preference analysis based on Markov
Decision Processes and Gaussian distribution will be
generated from the market simulation framework to well
improve the original methods. Frequently, great gap
exists between the expected outcomes of these optimal
strategies predicted from conventional model and the
actual transaction results. The deviation indicates that
the deficiency of precise risk preference analysis in the
model will cause prediction inaccuracy. Generally, there
are three aspects in the motivation of risk preference
analysis. Firstly, market participants can check the
consistence between their actual bidding behavior
and their predetermined strategy. Secondly, market
participants can acquire risk preferences information
of their competitors contributing to better bidding
strategy design. Thirdly, the policy-makers can conduct
better policy reforms to improve price stability in
the electricity market utilizing the risk preference

information.

There are mainly two approaches in risk preference in-
formation gathering, traditional investigation and data-driven
method. In traditional questionnaires and experiments investi-
gation, participants are required to make choices in different
well-designed dilemma and the risk preference index will
be evaluated based on the results. However, there are some
inevitable disadvantages of questionnaires and experiments.
Firstly, it is intricate and time-consuming to design and
conduct investigation. Secondly, individuals risk preferences
is influenced by many factors thus, will change time to time.
Even though respondents can be investigated under different
scenarios, it still can not guaranteed the comprehensiveness of
market situation resulting in the inaccuracy. Thirdly, since risk
preference is relatively personalized information, competitors
may not well cooperate with the experiment under such
competitive market environment.

Thus, data-driven method is applied later in information
collecting whose accuracy and reliability have been recognized
generally. However, ground truth information is greatly needed
to evaluate the precision of risk preference analysis in data-
driven approach, which is actually insufficient in reality. The
deficient of benchmark data set limits the utility of the data-
driven method. Thus, the spot electricity market simulation
framework generating data set of risk preference analysis
based on Markov Decision Processes and Gaussian distribution
can well improve it.

The proposed method not only solves the problem of
insufficient ground truth information in the data-driven method
by producing risks preference data under well design market
simulation environment. But also the data set generated can be
utilized to train the RL market simulation model contributing
to learn optimal bidding strategy that is more accurate with
risk preference analysis.

The remaining sections of this paper are organized as
follows In Section II, we briefly present the background
and notation of the established Markov Decision Processes
(MDPs), RL, and OPF algorithm. In Section III, the RL
methods of learning optimal bidding policy under different
environment conditions considering risk preference for the
spot electricity market. In Section IV, we verify the method in
a simulation environment and present the results of bidding.
Conclusion and further discussion are provided in the last
section.

II. BACKGROUND

This section introduce the related work of Markov Decision
Process, reinforcement learning and optimal power flow. .

A. Markov decision process

As a popular and attractive way of modelling the deci-
sion processes with uncertainties, Markov decision process
(MDP) works as a foundation framework in reinforcement
learning. The MDP, also referred to as controlled Markov



chain, describes a multi-state problem in which decision-
making agent, either single or multiple, must choose action
at every node of the chain in order to maximize some reward-
based optimization criterion. In the decision process, the state
transition is stochastic, with the probabilities called transition
probabilities. Every state transition is associated with some
reward.

A standard MDPs model is composed of five factors in a
tuple (S,A, {Psa}, γ,R),where

• S is a finite set of N states.
• A = {a1...ak} is a set of k actions.
• psa are the state transition probabilities upon taking

action a in state s.

• γ ∈ [0, 1) is the discount factor.

• R : S → ℜ is the reinforcement function, bounded in
absolute value by Rmax

A policy is defined as any map π : S → A.The aim is to
find an optimal policy maximizing the accumulated reward in
MDPs, with specific transition function and reward function.
The value function V π(s) for a policy π, evaluated at any state
is given by

V π(s1) = E[R(s1) + γR(S2)] + γ2R(s3) + ...|π] (1)

Where the expectation is over the distribution of the state
sequence passed through during the execution of the policy π.
We also define action-value function, Q-function according to

Qπ(s, a) = Eπ{
∞󰁛

k=0

γkrt+k+1|St = s,At = a} (2)

Where the notation s′ Psa(.) refers to the expectation is
with respect to s’ distributed according to Psa(.).

According to the Bellman equation for Q-function,Qπ(s, a)
satisfies Equation(3) for all s ∈ S and a ∈ A .

Qπ(s, a) = R(s) + γEs′∼Psa(.)[V
π(s′)] (3)

Combine (3) with Bellman optimal, proves that (4) must be
satisfied in a finite state space S = {s1, ..., sn} and a set of
actions A = {a1, ...,an} when the ith element is the reward
at ith state in a N-dimensional vector.

(Pa1
− Pa)(I − γPa1

)−1R ≥ 0 (4)

Where a1 is the optimal action in actions set A and a
refers to other actions in A. Pa is a N by N transition
probability matrix where the element at the (i,j) position gives
the probability of transitioning to state j upon taking action a
in state i. The generalization of (4) with the value function is
:

Es′∼Psa1
[V π(s′)] ≥ Es′∼Psa [V

π(s′)] (5)

Using a linear function to approximate the reward function,
the optimization problem can be formulated as :

max
β

󰁛

s∈S0

min
a∈A/a1

{p(∆E)}

∆E = Es′∼Psa1
[V π(s′)]− Es′∼Psa [V

π(s′)]

(6)

Where S0 is the initial state set, β is the coefficient of the
reward function and p is the penalty weight given by p(X) = x
if x > 0 ; p(x) = 2x otherwise.

The Bellman optimality equation represents a finite set of
equations for a finite MDP. If there are N states, then there
are N equations and N unknowns. If there are dynamics
of the environment, transition probabilities and rewards that
are known, then one can solve this system of equations for
V π(s) using methods such as dynamic programming. But
in circumstances when complete dynamics of the system are
not known, simulation methods like Monte Carlo estimation
or temporal difference learning are used [10]. The following
sections present the reinforcement learning method in general
and the actor-critic learning algorithm in particular.

B. Reinforcement learning and DDPG Learning Algorithm

Reinforcement learning simulates an intelligent agent that
can learn how to make good decisions by observing its own
behavior. It uses built-in mechanisms for improving the ac-
tions through a reinforcement mechanism. It essentially maps
situations to actions in order to maximize a numerical reward
[10].

To realize learning strategy through reinforcement learning,
several approaches such as Temporal Difference Algorithm
[3], Q-Learning [4] and Classifier Systems [5], are commonly
proposed. In this paper, we will mainly solve the problem
according to DDPG algorithm.

Inspired by deterministic policy gradient [8,9], DDPG is
the algorithm that combines DPG and actor-critic framework,
which utilizes the success of Deep Q-learning to the con-
tinuous action spaces, DDPG uses experience replay and
has four neural networks: critic network Q(s, a|θQ), actor
network µ(s, a|θµ), target critic network Q′(s, a|θQ′

), target
actor network µ′(s, a|θµ′

).
DQN shows a great learning effect in many practical prob-

lems, but it is a value-based algorithm, which can only select
actions in discrete space and cannot output continuous actions.
When the dimension of environment state and action is low, a
Q-table is enough to store the value of action under a certain
state. However, when environment states and actions are high-
dimensional and continuous, it is not reality to store Q value
in Q tables. So, a function is used to fit Q value. When similar
states are input into the function, the similar actions should be
output, the function is as follow:

Q(S,A, θ) ≈ Q′(S,A) (7)

In the (7), Q represents the value of action under the state
S with the parameter θ. Q function is approximated to the
optimal Q value by updating parameters. Deep neural network
can automatically extract complex features and is suitable as
a fitting function. It combines the perceptual ability of neural
networks with the decision-making ability of reinforcement
learning. In order to ensure the convergence and stability of
DQN algorithm, the following two mechanisms are added into
DQN:



• Experience Replay: the experience acquired in the
learning process is saved as experience samples, and
then a fixed number of experience samples are randomly
selected for training, which destroys the correlation
between training samples.

• Target Network: there is a network whose architecture is
corresponding to the main network structure, but update
frequency of this network is different with the main
network.

The framework of DQN algorithm is shown in Figure 1.

Fig. 1. Framework of DQN algorithm

Actor-critic method is TD method that has a separate mem-
ory structure to explicitly represent the policy independent of
the value function. The temporal difference (TD) learning is
a novel method in a group of reinforcement learning methods
of solving large-stage MDP [10]. It learns from experience to
solve the prediction problem. The general schematic diagram
of an agent employing reinforcement learning is presented in
Fig. 1. The agent selects some action based on the current state
and obtains a reward from the environment. The environment
makes a transition into a new state due to this action. The agent
updates the state values depending upon the immediate reward
and the next state which results. The actor-critic method
proposes two learning agents that work in two loops. The outer
loop consists of a reinforcement learning agent, which selects
the action in accordance with the current policy and receives
the reinforcement feedback. The policy structure is called the
actor. The inner loop constructs a more informative evaluation
function. The state value function of each state is estimated
from the reinforcement feedback. The estimated value function
of each state is called the critic because it criticizes the action
made by the actor. The actorcritic method can be represented
schematically as shown in Fig. 1.

The actor-critic method works by selecting an action from
the existing policy. The reward obtained from the transition is
used to update estimates of the state value of the current state
and the preference of selection of the action next time. After

selecting each action, the TD error δt is calculated as:

δt = rt+1 + γV (st+1)− V (st) (8)

Where V(s) is the current value function implemented by the
critic. It is called TD error because it estimates the difference
between the current estimated state value and the actual state
value for the present policy. The TD error is used to evaluate
the action just selected (i.e., the action at taken in state st). If
TD error is positive, then the tendency to select action at in the
future should be encouraged. If it is negative, then the tendency
to select action at in the future should be discouraged. This
is implemented by updating the preference p as follows:

p(st, at) ← p(st, at) + βδt (9)

Where β, (0 < β ≤ 1) is a step-size parameter. The policy
is derived from the preferences using the softmax method

π(s, a) =
exp(p(s,a)γ )

󰁓B
b=1 exp(

p(s,b)
γ )

(10)

Where B is the total number of actions available in state.
The parameter γ is called the temperature. It is used to control
the relative probabilities of selection of the states. Selection
of γ should be made judiciously. A large value of γ makes
all actions equally probable and a small value of γ increases
the probability of marginally better actions disproportionately,
leading the agent in the wrong direction. A simple but effective
choice of γ is made by making it the function of the mean of
the preferences.

γ = F (

󰁓B
b=1 p(s, b)

B
) (11)

The state values are updated according to:

V (st) ← V (st) + αδt (12)

Where α, (0 < α ≤ 1) , is a step-size parameter.
On conclusion, the framework of DDPG algorithm is shown

in Figure 2.

Fig. 2. Framework of DDPG algorithm

The policy thus obtained after sufficient iterations is a sub
optimal but vastly improved policy. In the following section,
we present the formulation of the bidding problem as an MDP
and its solution based upon the actor-critic learning method.



C. The Electricity Market Bidding Problem

Since the 1980s much effort has been made to restructure
the traditional monopoly power industry with the objectives
of introducing fair competition and improving economic effi-
ciency. The creation of well designed mechanisms for power
suppliers, and sometimes for large consumers, to openly trade
electricity is at the core of this change. There are mainly two
kinds of transaction mode in the electricity market, the day-
ahead market and the spot market. We focus on the spot market
in this paper.

In the spot electricity market nowadays, the bidding problem
in electricity markets is related to pool trading in which the
sealed auction is widely employed and power suppliers, and
sometimes large consumers also, are required to offer price and
quantity bids to a market operator (ISO) who is responsible
for clearing the whole bidding process.

This approach leads to a centralization of the unit commit-
ment decisions at the market operators level: ISO is required to
send all the relevant information, including market historical
records and power grid information, such as the load forecasts
for the next hour, system operational states, and other net
safety constraints. After receiving the information, market
participants need to build their bidding strategies according
to the published information and predictions of competitors.
All bids must be submitted before the deadline, otherwise,
the ISO will adopt default values. Then, ISO proposes the
spot clearing-price and operation plan through solving the
security-constrained unit commitment (SCUC) and security-
constrained economic dispatch (SCED) problem. The spot
clearing-price and operation plan are finally published to all
participants. The timing diagram of the spot market bidding
process is shown in Fig. 1.

The bidding file for the power plant is pairs of price-volume
value, and is comprehensively determined by the market rules.
The bidding volume represents the additional power output
that the power plant is willing to generate at the corresponding
bidding price. Table I gives a bidding example with five price-
volume pairs. The bidding strategy of each power plant can
only be supported by publicly available market information
and its private information. The bidding price offered by plants
must increase monotonically and be limited by the upper and
lower bounds, called price cap and price floor, which is mainly
determined by safety constraints .

In a perfect electricity market, any power supplier is a
price taker. Microeconomic theory holds the optimal bidding
strategy for a supplier is simply to bid marginal cost. When a
generator bids other than marginal cost, in an effort to exploit
imperfections in the market to increase profits, this behavior
is called strategic bidding. If the generator can successfully
increase its profits by strategic bidding or by any means other
than lowering its costs, it is said to have market power. The
new electricity markets are certainly not perfectly competitive,
and as a result, a supplier can increase profits through strategic
bidding, or in other words, through exercising market power.

D. Optimal power flow algorithm and Smart Market

Since in the electricity transaction, the decision on the win-
ning bidding and a uniform market clearing price (MCP) will
significantly influence the market stability, the OPF, optimal
power flow algorithm plays a critical role in the clearing
process.

The optimal power flow (OPF) problem seeks to optimize
certain objective such as power loss and generation cost
subject to power flow equations and operational constraints.
It is a fundamental problem because it underlies many power
system operations and planning applications such as economic
dispatch, unit commitment, state estimation, stability and
reliability assessment, volt/var control, demand response, etc.

The OPF problem is described as a multi-constrained, non-
convex, non-linear problem having an objective function that is
non-differentiable. The OPF problem solutions can be obtained
using different methods [1-5], they can be categorized into
two main groups. The traditional mathematical approach and
the heuristic/intelligent methods. Examples of the conventional
methods include gradient based methods, newton method
[11], linear programming [12], quadratic programming, in-
terior point methods [13] among many others. Examples of
the intelligent methods include the genetic algorithm [2-5],
particle swarm optimization method [14], teaching-learning
based optimization [1], glow worm-based optimization [8],
Imperialist competitive algorithm [9], opposition based elitist
real genetic algorithm [13], modified cataclysmic genetic
algorithm [14] among other such methods.

The smart market algorithm consists of the following basic
steps:

1) Convert block offers and bids into corresponding
generator capacities and costs.

2) Run an optimal power flow with decommitment option
(uopf) to find generator allocations and nodal prices
(λP ).

3) Convert generator allocations and nodal prices into set
of cleared offers and bids.

4) Print results.

For step 1, the offers and bids are supplied as two structs,
offers and bids, each with fields P for real power and Q
for reactive power (optional). Each of these is also a struct
with matrix fields qty and prc, where the element in the
ith row and jth column of qty and prc are the quantity
and price, respectively of the jth block of capacity being
offered/bid by the ith generator. These block offers/bids are
converted to the equivalent piecewise linear generator costs
and generator capacity.Offer blocks must be in non-decreasing
order of price and the offer must correspond to a generator
with 0 ≤ PMIN < PMAX . A set of price limits can
be specified via the lim struct. Capacity offered above this
price is considered to be withheld from the auction and is not
included in the cost function produced. Bids must be in non
increasing order of price and correspond to a generator with



PMIN < PMAX ≤ 0. The data specified by a Matpower
case file, with the gen and gencost matrices modified according
to step 1, are then used to run an OPF.

The OPF solution is used to determine for each offer/bid
block, how much was cleared and at what price. These values
are returned in co and cb, which have the same structure as
offers and bids. The mkt parameter is a struct used to specify
a number of things about the market, including the type of
auction to use, type of OPF (AC or DC) to use and the price
limits.

III. SPOT ELECTRICITY MARKET SIMULATION
FRAMEWORK

A. Problem Formulation

The ISO conducts an energy auction for the spot market.
The electricity spot market is a wholesale market, and operates
each day of the week from 7:00 A.M. until about 1:00 P.M.
During this window, electricity is traded for delivery that
will start at midnight. The bids are in the form of points of
piecewise linear curves on energy and price coordinates. The
seller bids the amount of the energy that he or she is willing to
sell at a given price or above, and the buyer bids the amount
of the energy he or she is willing to buy for a given price or a
price lower than it. The unconstrained MCP is determined by
the point of intersection of the aggregate demand and supply
bid curves.

It is presumed that the external operation conditions that
participants knows includes the total generation capacity of
each other, the load forecast for the next hour, the past cost
curves of competitors. Specially, the load will be predicted by
sampling from a Gaussian distribution with mean bounded by
the maximum total generation capacity.

The internal operation conditions includes the start-up cost
of each of its units and the cost curve is assumed to be known.
The cost curve is assumed to be quadratic in the form of:

CCi = ai + biU + ciU2 (13)

And the start-up cost for an hour t is suit .
The participant first decides in how many parts it wants to

bid, say parts. It divides its maximum generation capacity into
parts and using the cost curve, finds the marginal generation
cost at the higher end of generation for each part. This forms
its middle element M of bid set. The higher H and lower L
elements of the bid set are obtained from the middle element
as: H1

j = 1.1M1
j and L1

j = 0.9M1
j for j = 1, 2, 3, ..., q

The bid set consists of a Cartesian product of the three
bid elements for each part. For a two-part bid q = 2
and three levels (H,M,L) for each part, the bid set consists
of nine (3q) bid-set= [B1, B2, ..., Bcq ] Where, a bid B =
[0, P1, P2, ..., Pq, b, pr1, pr2, ..., prq]

The corresponding bid sets for all of the other participants
are formed in a similar way. Since target participant cannot
predict in how many parts each one of the other participants
is going to bid, it takes a single part for each participant. The
bid set of every other participant consists of three elements
only.

B. Static and Dynamic Environment

Obviously, if the factors influencing clearing price is viewed
as state and the bid-set of target power plant is defined as
action, the problem can be reformulated as a MDPs.

The state of the system is defined as bids placed by
each participant in a particular hour. The bids placed by
each participant are selected from their respective bid sets:
s = [s(1), s(2)..., s(n)], s(1) ∈ bid − set(1), ..., s(n) ∈ bid −
set(n)] . Where s represents one state and [s(1), s(2)..., s(n)]
are its elements.

The framework will be discussed under two different envi-
ronment conditions, static and dynamic. Only the target plant
can adjust strategy and others will bid with marginal cost in
the static environment while all plants can adjust their strat-
egy in the dynamic environment. Under static condition, the
elements include last round profit, current bid, profit forecast,
price-volume forecast vector of the target participant. Under
dynamic condition, the elements include last round profit,
current bid, profit forecast, price-volume forecast matrix of
the all participants. Particularly, according to the real bidding
rules of the electricity market, the current spot price should be
defined as the key factor the state. The total number of possible
states in each hour is the Cartesian product of all the elements
of bid sets of every participant. The state which is selected
in a particular hour is decided by the bids selected by each
participant. The bids for every hour are stochastically selected
by each participant, with each bid in the bid set having a finite
probability of being selected. The set of probabilities of each
bid for every hour is the policy that is being followed by the
participant.

Bidder will decide their bidding action, their offers, for the
next clearing round in an hour. Approximately, the bidding
action should be transferred from the continuous state space
into discrete state space, since the continuous price value could
be segmented into n classes according to the n bidding volume
shaping as price-volume pair prii and voli , i ∈ 1, ..., n .
Suppose si is the clearing-price between ith bidding price pri
and (i + 1)th bidding price pri+1(i.e., prii ≤ si < prii+1),
the power plant maximum generation output will be the sum
of all bidding volumes (

󰁓i
1 voli) before the clearing-rice . The

action is actually the allocation of the total power generation
capability volsum of each price-volume pair. Bidder needs to
decide every voli,i ∈ 1, ..., n , ensuring = volsum.

The reward function is the summation of two parts, the
net profit NP and the potential risk R with some coefficient
α. NP is the expectation of net profit in all states calculated
by subtracting the generation cost including the fixed and
variable cost from revenue (NP=Revenue-Cost) according to
the clearing result. The revenue is the expectation profit
calculated by the multiplying the clearing price with the actual
generation volume of plant under different loads in 24 hours,
and the cost is calculated by the product between the marginal
cost function and the volume respectively. The risk that a
power plant is willing to take is calculated by taking the
variance of the revenue in 24 hours. The greater the absolute



value of the variance, the higher the risk action that the power
plant is taking. Unlike using statistical tools or formulas in
the risk measure method, the preference generated by our
approach represents the tendency to adopt low profit actions
(this can be regarded as high risk actions). Since the coefficient
represents the risk preference of the power plant, a positive
means the power plant considers the risk of reduced profit as
punishment and the risk preference is risk-aversion; while a
negative means the power plant considers the risk of reduced
profit as stimulation and the risk preference is risk-seeking;
and zero means the risk preference is risk-neutral.

There is always a gap between actual bidding action and
theoretical optimal bidding action.The potential loss PL is used
to evaluate the deviation between the real transaction value af-
ter each generator deciding its strategy with risk consideration
and the ideal optimal result where participants bid by marginal
cost. It is calculated by subtracting the theoretical optimal
profit OP from the actual profit AP(PL=AP-OP). It represents
the risk of loss that the power plant is willing to take. OP
depends on the clearing result when taking the theoretical
optimal action a0 which is learned from solving the maximum
profit problem without considering the risk. For comparison,
the singular profit SP is defined to measure the transaction
result where participants decide bid without considering risk
factor. The risk loss RL calculated by subtracting the actual
profit AP from the singular profit SP (RL=AP-SP) represents
the safety cost that a power plants is willing to take. The
risk preference deviation calculated from the risk difference
between singular profit and the actual profit is defined as RPD
index which is used to evaluate the working power of plants
strategy.

C. Application of the ActorCritic Learning Algorithm

In this section, we consider how the DDPG method can be
applied to produce the optimal bidding strategy, according to
loads, and its corresponding risk, solving the problem that was
formulated as an MDP in the previous section.

Under static conditions, the simulations are carried out by
the agent of target participant. The target participants agent
learns to apply a policy maximizing the profit earned while
satisfying risk preference. It assumes that other agents bid with
marginal cost as fixed policy. The state elements include last
round profit, current bid, profit forecast, price-volume forecast
vector of the target participant.

Under dynamic conditions, the simulations are carried out
by agent of all participants. The agent of participants assumes
that all of the agents are going to bid in such a manner
that applying a policy maximizing the profit earned by self
participant, while minimizing the others profit constrained by
risk preference. The state elements include last round profit,
current bid, profit forecast, price-volume forecast matrix of
the all participants. Specially, the rule of iteration is the same
as under the static conditions except that the result will be a
matrix other than 1-D vector.

• BID: The agent starts biding from its marginal cost
and selects bids incremental magnitude from its range

set according to the probabilities. The load forecast
sampling from Gaussian for next hour, together with the
risk index selected by private information indicating the
risk preference decides the next state for transition.

• MCP: The MCP that would result due to the given
bidding by the participants and the allotted generation
for each participant are calculated by the smart-market.
According to the OPF solution, the clear price-volume
result that how much was cleared and at what price for
each offer/bid block will be decided.

• PROFIT: The profit for target participant is obtained as:

profitit = mcpU it − (ai + biU it + ci(U it)2)− suit (14)

In the first iteration, the agent for participant starts the
process by randomly selecting bids incremental based on
marginal cost from bid sets. The set of selected bids and its
relative MCP results define the next transition state. Equation
(19) can be used to calculate the profit for target participant.
The profit so obtained, is taken as the step profit for target
participant. After finding the final step profit in an episode, the
mean profit will be calculated as episode profit. The reward
will be calculated as the accumulation of the summation of
episode profit and risk part which will be taken as zero firstly.
The variance of the episode profit will be recorded as expected
risk preference for next round learning.

The TD error is calculated by each agent after every
transition using (4). The TD error for specific participant
would be equal to r(t + 1) in the first iteration. The policy
(i.e., the probabilities with which the agent selects a bid) is
updated to reflect the outcome of the first selection. The agents
form preference for the state action pair using the most recent
reward through (5). The preference reflects the cumulative
reward that the agent obtains from a particular state action
pair. The probability of that state action pair being selected
is calculated using (6). This completes the outer loop of Fig.
2. The state value for the initial state is updated to a better
estimate using (8), hence going through the inner loop of
Fig. 2. The procedure mentioned before gets repeated in every
iteration, as the system makes a transition from a state to next
state, each state depicting the bids selected by the participants
in a particular hour. The transition from the 24th h is to the
1st h, so the iterations continue in the form of an infinite
horizon MDP. The process is stopped typically around 10000
iterations. The result yields probabilities of the selection of
each bid during each hour. The expected profit can be found
out from the converged values of the bid.

The proposed DDPG algorithm methods under different
environment is shown in Fig 3.

IV. SPOT ELECTRICITY MARKET IMPLEMENTATION
We apply the method mentioned before to the case file lib/t/t

auction case.m, which is a modified version of the 30-bus
system that has 9 generators, where the last three have negative
PMIN to model the dispatchable loads.



Fig. 3. Framework of DDPG algorithm under different environmentm

A. Sample System I

The sample system used in the manual is considered here.
• Three dispatchable loads, bidding three fixed blocks

each as shown in Table I.
• Six generators with three blocks of capacity each, initial

offering as shown in Table II.
• Load sampling from Gaussian

TABLE I
THREE DISPATCHABLE LOADS

Generator Block1 Block2 Block3
MW*$/MWh MW*$/MWh MW*$/MWh

1 10*$100 10*$100 10*$100
2 10*$100 10*$100 10*$100
3 10*$100 10*$100 10*$100

The six generators are the six participants who submit bids
and are allocated portions of the total demand.

TABLE II
SIX DISPATCHABLE GENERATORS

Generator Block1 Block2 Block3
MW*$/MWh MW*$/MWh MW*$/MWh

1 12*$20 24*$50 24*$60
2 12*$20 24*$40 24*$70
3 12*$20 24*$42 24*$80
4 12*$20 24*$44 24*$90
5 12*$20 24*$46 24*$75
6 12*$20 24*$48 24*$60

The cost curves are as

CC1 = 3.0U + 0.03U2

CC2 = 5.5U + 0.01U2

CC3 = 4.8U + 0.015U2

CC4 = 4.5U + 0.02U2

CC5 = 3.5U + 0.04U2

CC6 = 4.0U + 0.03U2

The startup cost for the six participants for the unit supply-
ing upper 25 MW of the cost curve is

su1 = 50

su2 = 50

su3 = 50

su4 = 50

su5 = 50

su6 = 50

The sampling example of 24-h load curve is shown in Fig
4.

Fig. 4. Framework of DDPG algorithm under different environmentm

The framework will be discussed under two different envi-
ronment conditions, static and dynamic. Only the target plant
can adjust strategy and others will bid with marginal cost in
the static environment while all plants can adjust their strategy
in the dynamic environment. We will firstly show and analyze
the simulation results under static environment where target
participant will be the center and the dynamic environment
later. The comparison and comprehensive discussion will be
given in the end.

B. Static Environment

The market simulation under static environment is carried
over for the above example. The discount factor γ is 0.8. The
parameter of step size α is varied from 5 to 50 according to
risk parameter. The result will come to converge earlier with
greater risk parameter. The step size parameter for preferences
update is 0.02. We have observed that it should be low. Higher
values of show apparent early convergence but the solution
may not be a feasible one which does not satisfy the boundary
conditions. A total of 10 000 iterations were carried out for
each experiment. The experiments will be composed of four
parts, results without risk consideration and results with risk
preference but in three groups different risk index. The ex-
periments results will be shown firstly under different market
conditions respectively. And then the generated situation when
risk factor matters or not will be compared. Finally. The



TABLE III
PROMOTION PERCENTAGE OF PRICE ON 6 GENERATORS

Generator 1 2 3 4 5 6
Percentage 16.6% 15.0% 15.6% 11.3% 29.3% 39.2%

clear results with risk factor but different risk index will be
summarized.

1) Result: The states or bidding strategy having the largest
probabilities to be selected without risk consideration by the
target participants for the 24 h are shown in Fig 5. It can be
seen that target generator prefers to choose a lower price and
larger volume pairs as final strategy when others bidding with
marginal cost. The transaction feasibility and net revenue is
more likely to grow.

Fig. 5. Framework of DDPG algorithm under different environmentm

The self clear price in 24 hours for the spot market where
target generator is 1 to 6 respectively is shown in Fig 6. The
original trading price where all generators bid by marginal
cost is also shown in Fig with points. From the results, it is
obvious that self clear price will increase substantially when
target generator take strategy during bidding.

Table III shows the average increasing percentage for each
target generator over 24 hours trading. The strategy effect
works differently for generators. The promotion is most signif-
icant for generator 1, 5, 6 and is weaker for the others. It could
be guessed that the strategy effect depends on the generators
private attribute including generator physical conditions and
risk preference decision.

The Fig 7 shows the self clear volume in 24 hours for the
spot market where target generator is 1 to 6 respectively. Fig

Fig. 6. Framework of DDPG algorithm under different environmentm

together with Fig forms the bid clear pair of trading. The
original trading volume where all generators bid by marginal
cost is also shown in Fig in points. From the results, it is seen
that self clear volume will not absolutely increase when target
generator take strategy during bidding. The strategy considers
the incremental of overall revenue instead of single factor.

Fig. 7. Framework of DDPG algorithm under different environmentm

Fig 8 summarize the trading revenue (exclude the cost
function) in 24 hours for the spot market where target genera-
tor is 1 to 6 respectively. The original bidding profit where
all generators bid by marginal cost is also shown in Fig
in points. From the results, it is obvious that self profit
will increase substantially when target generator take strategy
during bidding.

Table IV shows the average increasing percentage for each
target generator over 24 hours trading. Compared with the pro-
motion percentage of price, direct proportion can be observed.



Fig. 8. Framework of DDPG algorithm under different environmentm

TABLE IV
PROMOTION PERCENTAGE OF PROFIT ON 6 GENERATORS

Generator 1 2 3 4 5 6
Percentage 25.0% 3.0% 1.0% 1.5% 50.0% 62.0%

The average rewards for target generators achieved in 24
hours has been shown Table V. Columns of Table presents
the averaged values of the immediate rewards taken over all
iterations. Maximizing profit is the same as maximizing the
state values of the most probable states.

TABLE V
REWARD VALUE OF 6 GENERATORS IN 24 HOURS

Hour 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 24
G1 30 29 28 29 32 27 26 31 28 27 27
28 29 30 32 34 25 56 26 27 29 29
G2 26 25 24 21 23 24 25 25 25 24 24
23 26 27 29 21 22 22 23 21 25 24
G3 27 28 29 27 28 28 27 26 25 24 23
24 24 23 21 28 26 26 27 24 23 23
G4 23 22 21 20 19 18 24 23 22 21 20
20 18 20 21 22 24 25 25 25 26 24
G5 31 32 33 33 31 34 35 35 34 36 31
30 35 36 38 37 36 34 32 32 31 35
G6 38 40 45 46 42 46 47 42 40 39 42
44 43 43 45 42 41 40 36 39 39 45

The risk preference value learned from the target generators
is shown in Fig 9. Fig 8 and 9 show the relationship between
the state values and the risk preference being determined.
Generally, generators 2 and 3 assign higher risk preference
to their bidding strategy.The immediate profit due to state
transition also affects the probabilities.Hence, the agent of
participant learns to allot higher probabilities to lower rewards
when its bidding strategy is risk adventure. The immediate
profit due to state transition is also affected by the private risk
decision.

Fig. 9. Framework of DDPG algorithm under different environmentm

2) Results with 0.5 0.8 risk index: Here we take the same
system with six generators, the cost curves, and the maximum
generation capacities of each generator which are the same to
sample system but taken risk preference into consideration.
The results with different risk index decision will also be
compared. The daily load curve is taken as earlier, with a
total generating capacity of six generators that is just enough
to meet the peak system demand. The shape of the load curve
is the same as in the earlier system

TABLE VI
STRATEGY EXAMPLE IN RANDOM HOUR

Generator Block1 Block2 Block3
Houes MW*$/MWh MW*$/MWh MW*$/MWh

1 12*$20 24*$45 24*$70
2 12*$20 24*$36 24*$60
3 12*$20 24*$47 24*$50
4 12*$20 24*$51 24*$80
5 12*$20 24*$48 24*$65
6 12*$20 24*$32 24*$60
7 12*$20 24*$45 24*$70
8 12*$20 24*$37 24*$60
9 12*$20 24*$39 24*$50
10 12*$20 24*$48 24*$80
11 12*$20 24*$52 24*$65
12 12*$20 24*$31 24*$71
13 12*$20 24*$55 24*$69
14 12*$20 24*$65 24*$85
15 12*$20 24*$43 24*$73
16 12*$20 24*$51 24*$90
17 12*$20 24*$48 24*$68
18 12*$20 24*$32 24*$69
19 12*$20 24*$45 24*$86
20 12*$20 24*$36 24*$75
21 12*$20 24*$49 24*$88
22 12*$20 24*$42 24*$67
23 12*$20 24*$41 24*$62
24 12*$20 24*$36 24*$49

Taken one of the generators as target example the bidding
blocks in 24 hours after risk consideration is shown in Table.

The self clear price,volume pairs in 24 hours for the



spot market where target generator is 1 to 6 respectively is
shown in Fig when all generators are under low risk index
transaction. Generally, the trading price and volume increase
more during bidding for those risk adventurers. But they will
also have higher chance of broken bidding where the bidding
should restart. It can be indicated clearly from the data of
rewards since broken bidding will cause penalty in state value.
Meanwhile greater fluctuation of the states will be observed for
them in 24 hours since they are aggressive to take action even
though accompanying with possibility of failing. In contrast,
the trading price and volume increase less during bidding for
those risk averse. But they will also have less chance of broken
bidding and weaker fluctuation of states. For those risk neutral
generators, their trading results almost keep the same as the
static environment without risk preference.

Fig. 10. The self clear results value in 24 hours for the spot market with
0.5 0.8 risk index

Table VII shows the average increasing percentage of profit
for each target generator over 24 hours trading. It could be
seen that the percentage increase caused by strategy bidding
is declined thoroughly comparing with the static environment
without risk preference, no matter its risk adventure or averse.
But the extent of decline varies depending on its risk prefer-
ence.

TABLE VII
PROMOTION PERCENTAGE OF PRICE ON 6 GENERATORS WITH

RISK

Generator 1 2 3 4 5 6
Percentage 15.0% 0.5% 0.8% 1.2% 42.0% 57.0%

The risk preference value re-learned from the target gen-
erators is shown in Fig. It is obvious that for all kinds of
risk preference, the result of considering risk is enlarging the
variance of profits. Same as above, the extent of enlarging
still depends on the attitude to risk. Risk adventure such as
generator 2 and 3 is more likely to have a substantial variation
while risk averter have less.

The risk preference value re-learned from the target gen-
erators is shown in Fig. It is obvious that for all kinds of
risk preference, the result of considering risk is enlarging the
variance of profits. Same as above, the extent of enlarging
still depends on the attitude to risk. Risk adventure such as
generator 2 and 3 is more likely to have a substantial variation
while risk averter have less.

Fig. 11. The risk preference value in 24 hours for the spot market with
0.5 0.8 risk index

3) Results with 0.8 1.2 risk index: The self clear
price,volume pairs in 24 hours for the spot market where
target generator is 1 to 6 respectively is shown in Fig 12
when all generators are under neural risk index transaction.
Similar curve characteristic can be observed compared with
generators under high risk index. The main difference focuses
on the risk effect plays a more important role during bidding.
However since the index is close to 1, the comprehensive
market clear results will close to the static conditions without
risk preference.

The risk preference value re-learned from the target genera-
tors with neural risk index is shown in Fig 13. Obviously, the
profit variation grows accompanying with high proportion of
risk factor.

4) Results with 1.2 1.5 risk index: Self clear price,volume
pairs in 24 hours for the spot market is shown in Fig when
all generators are under high risk index transaction. And the
roiiiiilmmmmjisk preference value re-learned from the target
generators is shown in Fig 14.

V. DYNAMIC ENVIRONMENT

The same sample system is applied in the market simulation
under dynamic conditions. Experiment without risk preference
will be firstly carried out and then risk factor is taken into
consideration. The discount factor here is 0.8. The step size is
20 and the step size parameter for preferences update is 0.02.
A total of 10 000 iterations were carried out for the above
problem. In data analysis, the clear results of experiments
without risk and risk will be compared. And then, taking



Fig. 12. The self clear results value in 24 hours for the spot market with
0.8 1.2 risk index

Fig. 13. The risk preference value in 24 hours for the spot market with
0.8 1.2 risk index

arbitary case in 24 hours as example, the strategy decision
will be shown under static and dynamic environment, both
without risk, is given. Finally, the states value generated from
experiments above will be compared and concluded.

1) Results without risk preference: The self clear price and
volume pairs in 24 hours in the dynamic spot market bidding
without risk for generator 1 to 6 respectively is shown in Fig
15. The transaction profit after cost subtraction is given in
Fig. Obviously, the predict clear price in 24 hours for each
generator has almost the same variation trend indicating the
dynamic bidding gambling will cause same effect for each
participant. But the final transaction situation depends on
private characteristic including physical conditions of plants.
It can be seen that generator 1, 5 and 6 apparently achieve
higher price and larger volume leading to higher net profit.
Apart from they have better machine set supporting power
generation, their risk tolerance is actually higher which is

Fig. 14. The self clear results and risk preference value value in 24 hours
for the spot market with 1.2 1.5 risk index

Fig. 15. The self clear results value in 24 hours for the spot market under
dynamic conditions

shown in Fig.16.
2) Results with risk preference: The self clear price and

volume pairs in 24 hours in the dynamic spot market bidding
with risk for generator 1 to 6 respectively is shown in Fig. Gen-
erally the transaction results almost keeps in same proportion
among generators as situation without risk. But the numerical
value of either clear price or volume decreases respectively for
all generators. It is reasonable to achieve such market clear
results since every participant will bidding vigilantly trying
not to against self risk tolerance.

The re-learned actual risk preference for each generator is
shown in Fig 18. It is obvious that the profit variation for
participants grows resulting in higher risk comparing with
original situation.

3) Strategy comparison example of static and dynamic
environment: Table VIII is the original strategy bidding in



Fig. 16. The risk preference value in 24 hours for the spot market under
dynamic conditions

Fig. 17. The self clear results value in 24 hours for the spot market under
dynamic conditions with risk

marginal cost. Table IX is the strategy under static environment
where only generator 1 is the target participant selected
randomly in 24 hours. Table X is the strategy under dynamic
environment selected the same hour as in static conditions.

TABLE VIII
STRATEGY BIDDING IN MARGINAL COST

Generator Block1 Block2 Block3
MW*$/MWh MW*$/MWh MW*$/MWh

1 12*$20 24*$45 24*$70
2 12*$20 24*$40 24*$70
3 12*$20 24*$42 24*$80
4 12*$20 24*$44 24*$90
5 12*$20 24*$46 24*$75
6 12*$20 24*$48 24*$60

4) States value comparison example of static and dynamic
environment: The original market clear result of bidding by

Fig. 18. The risk preference value in 24 hours for the spot market under
dynamic conditions with risk

TABLE IX
STRATEGY UNDER STATIC ENVIRONMENT

Generator Block1 Block2 Block3
MW*$/MWh MW*$/MWh MW*$/MWh

1 12*$20 24*$42 24*$59
2 12*$20 24*$50 24*$68
3 12*$20 24*$36 24*$51
4 12*$20 24*$54 24*$66
5 12*$20 24*$45 24*$62
6 12*$20 24*$40 24*$55

TABLE X
STRATEGY UNDER DYNAMIC ENVIRONMENT

Generator Block1 Block2 Block3
MW*$/MWh MW*$/MWh MW*$/MWh

1 12*$20 24*$50 24*$60
2 12*$20 24*$40 24*$70
3 12*$20 24*$42 24*$80
4 12*$20 24*$44 24*$90
5 12*$20 24*$46 24*$75
6 12*$20 24*$48 24*$60

marginal cost is shown in Fig 19. First two table in Fig 19
is the clear value in an hour for 6 generators under static
environment where generator 1 and 2 is the target participant
respectively. Last two table in Fig 19 is the clear result under
dynamic environment of all generators in the same hour as the
static situation.

Through comparison, it can be figured out that whether it is
under static conditions or dynamic conditions, the profit will
increase for all generators using bidding strategy. Under static
conditions, the target generator will be the main increasing
point, for generator 1 and 2, 32% and 71% respectively.
Meanwhile the other generators bidding in marginal cost have
25% increase in average taking case 1 as example. Under dy-
namic conditions, generally, there is greater increasing in profit
even for the target participant in static situation. Specially,
there is less deviation in profit growth among generators.



Fig. 19. The self clear results value in 24 hours for the spot market under
dynamic conditions with risk

Concrete increasing percentage of profit under both conditions
is concluded in Table XI

TABLE XI
PROMOTION PERCENTAGE OF GENERATOR UNDER

DIFFERENT CONDITIONS

Generator Static1: Static2: Dynamic:
1 32% 16% 47.9%
2 25.6% 71% 37.9%
3 25.3% 34.6% 37.6%
4 24.5% 33% 36.3%
5 23.8% 32.5% 35.3%
6 30.5% 41.5% 89.2%

VI. CONCLUSIONS

During implementation the market simulation under static
environment is illustrated firstly. Under static conditions, the
simulations are carried out by the agent of target participant.
The target participants agent learns to apply a policy maxi-
mizing the profit earned while satisfying risk preference. It
assumes that other agents bid with marginal cost as fixed
policy. The experiments results shows that: 1) Self clear profit
will increase substantially when target generator take strategy
during bidding. 2) The promotion from strategy effect depends
on the generators private attribute including generator physical
conditions and risk preference decision. 3) Risk preference will
limit the profit promotion and enlarge the variance of profits.
4)Larger risk index will have larger effects.

The market simulation under dynamic environment is shown
later. Under dynamic conditions, the simulations are carried
out by agent of all participants. The agent of participants
assumes that all of the agents are going to bid in such a manner
that applying a policy maximizing the profit earned by self
participant, while minimizing the others profit constrained by
risk preference. The experiments results shows that: 1) For all
generators, self profit will increase and the results are better
than under static conditions mostly. 2) The promotion has less

deviation comparing to static conditions. 3) Risk preference
will also limit the profit promotion and enlarge the variance
of profits whose effect is larger than risk consideration under
static situation.

Up to now, study on finding optimal bidding strategy are
limited in conventional simulation methods, mainly focusing
on the day-ahead market. Other problems include market
environment analysis deficiency and sampling process of load
is not convincing limits the process of introducing fair com-
petition into power industry.

This paper try to solve the problems by modelling the
spot market bidding problem as an MDP. The Smart-Market
market-clearing system and Gaussian distribution is included
in the formulation. Reinforcement learning (RL) methods,
the temporal difference technique and actor-critic learning
algorithm, are employed. The implementation results shows
that under both conditions, the algorithm proposed in paper
can devise optimal bidding strategy maximizing the profit with
consideration of risk preference.
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