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Abstract—Recently, vision-based detection techonology has
been developed fast and general pupose object detection algo-
rithm has been applied in various scene. VD can be categorized
into two major categories, single-modal, single RGB or single
thermal, and bimodal, according to the modal type used. Gen-
erally, the first stage of image processing in VD is denoising,
removing the redundancy information and promising the post
processing task. Thus, this paper will give a review on RGB-
thermal deep learning based image denoising methods, inves-
tigating the RGB-thermal based denoising procedure, methods,
benchmark and performance. After the introduction of denoising
models, main results on public RGB and thermal datasets are
presented and analyzed, and conclusion of objective comparison
in practical effect will be proposed. This review can serve as
a reference for researchers in RGB-infrared denoising, image
restoration, and related fields.

Index Terms—Image denoising, RGB-thermal based, Single
modal, Bi-modal, Deep learning based methods.

I. INTRODUCTION

ISION-BASED, Detection (VD) is a relative new tech-
Vnology that supporting task such as rescue in fire scene
through intelligent analysis of video and image using advanced
analytical algorithms [1].

The primary motivation of VD is to realize early detection
which is initially RGB based. However, when solving general
purpose object detection problem, due to the limitation of the
imaging mechanism of visible images, detection algorithms
based on visible images may fail as they maybe unreliable
in certain circumstances [1]. For example, considering the
firefighting situation with heavy smoke, RGB based detection
is not powerful enough since the camera is not able to get
clear image [2]. On the contrary, the infrared images detecting
thermal information of objects are insensitive to these fac-
tors. They can provide complementary information to visible
images. Thus, in recent years, researchers begin exploring
performing object detection with infrared images. However,
the infrared images typically have low resolutions and poor
textures, and are also unreliable in certain conditions such as
environment with little temperature difference [2]. Therefore,
more researchers begin to investigate object detection method
based on the fusion of visible and infrared images to overcome
the inherent shortcomings of the methods based on single-
modal images.
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VD can be categorized into two major categories, single-
modal, single RGB or single thermal, and bimodal, according
to the modal type used [3]. And there are two sub categories
in bimodal detection including infrared-assisted RGB detec-
tion and RGB-assisted infrared detection which depends on
primary modality utilized during detection [3].

Generally, the first stage of VD is data pre-processing.
Since the images are easily corrupted due to various noises
which occur in nature and poor performance of electronic
devices, denoising is unavoidable before practical processing
[3]. Considering the development trend of VD, this paper will
focus on deep learning based denoising technology in RGB-
thermal image processing and its application.

Although other important research has been conducted in
the field of image denoising in recent years, none of them
is comprehensive enough for summary. Firstly, most of them
either only concerns traditional denoising methods in some
specific aspects or they only select some representative algo-
rithms for conclusion. For example, “Survey of Image De-
noising Techniques” [2] only covers the traditional denoising
techniques, while “Deep learning on image denoising: An
overview” [3] only refers to some deep learning denoising
algorithms. Secondly, the summary content for each method is
not complete enough that many significant details are ignored.
For example, they will only briefly introduce concepts or
formula of methods but the merits or drawbacks, experiment
results, relative research papers will not always be covered.
Thirdly, the relationship of methods are not clearly summa-
rized. They either do not pay attention to the historical timeline
development of different methods or focus on the comparison
of idea or performance among methods. Fourthly, none of
the summary reviews the techniques from the perspective of
application, the real effect in dealing with practical problems.
Finally, most of denoising review only focus on RGB de-
noising and few of them concerns about thermal denoising
which is also very roughly. There is no review covers both
of the single modals or multiple modals source denoising.
This overview covers more than 700 papers for deep learning
based image denoising in recent years. Specially, this overview
covers almost all of papers related to deep learning based
image denoising methods and application in rencent 5 years.
The main contributions in this paper can be summarized as
follows:

« To the best of our knowledge, this is the first review on

deep learning based denoising methods in RGB-thermal
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modal. There are only review for RGB based denoising,
this paper tries to fulfill this gap.

o This review divide these deep learning based approaches
into five categories: MLP, CNN, ResNet, GAN, GNN.
Section 3 starts by the brief discussion of the history
development of the RGB and thermal deep learning based
image denoising methods and followed by introduction of
concrete state-of-the-art deep learning-based algorithm.
Each category is introduced and summarized according
to core idea and representative methods. For each method,
concepts and theories, pros and cons, performance eval-
uation and corresponding practical applications are in-
troduced. Specially, the performance evaluation of each
method in section 3 is cited from other papers and
demonstrated on public (RGB) data set.

o This overview pay special attention to the performance
of different denoising methods on thermal image. Since
most of the denoising methods are tested based on the
RGB datasets, this overview also evaluates these denois-
ing methods with the thermal datasets for comparison
and supplementation. In the last experiment section, main
results on thermal datasets are presented and analyzed
providing an objective comparison in practical effect.

Section 2 gives background information on RGB-thermal
based image pre-processing technology including its history
and development, and general procedure. Section 3 demon-
strates deep learning based denoising methods in details. A
comparison among methods will be made for reference and
suggestion on models selection under different processing
situation will be given. Section 4 specially illustrates the
experiment performance of different models on both RGB and
thermal benchmark datasets respectively. Sections 5 concludes
the paper.

II. BACKGROUND OF IMAGE DENOISING

Image noise is random variation of information such as
brightness or color in images, and is usually produced dur-
ing the signal generation and transportation process, by the
interference from equipment and transmission channel [2].

For general digital images, in addition to the noise caused
by external environmental such as lighting conditions, the
noise will also be produced in the collection and transmission
process because of the digital equipment [2]. On the one
hand, during the process of signal generation, various noise
will be introduced due to the sensor material, electronic
components and circuit structure. On the other hand, during
the process of signal transmission, the digital image will also
be contaminated by multiple noises due to the imperfection of
the transmission medium and the recording equipment [2].

According to the principle of infrared photography, the
external environmental noise of the special infrared image
is different from the digital image, which is mainly derived
from the thermal radiation of the scenery, the atmosphere and
other backgrounds [2]. Compared to the visible light images,
apart from the external conditions as detection environment,
the quality of infrared images is also more easily affected
by various equipment factors such as the detector component

and the photoelectric conversion circuit during the acquisition
and transmission process. Moreover, the cause of electrical
elements based noise during the collection and transmission of
infrared images is more diverse and complex than the visible
light images, which includes the inherent pattern noise caused
by the inconsistent response of the detector, the thermal noise
caused by the electronic thermal vibration in the device, and
the scattering noise caused by the uneven electron emission
[2].

Whether in digital or infrared images. additional noise will
seriously affect the quality of collected image. The presence
of mixed random noise fills the image with a wide variety of
noise points, reducing the clarity and covering the details of
the image, which seriously affects the extraction of effective
information. The existence of noise reduces the effective value
of image signal and brings serious effects not only on the direct
extraction of the image information, but also the subsequent
processing such as image enhancement and target detection
and tracking.

Therefore, execution of denoising is very necessary for
image improvement. Mostly denoising is implemented for
acquisition of high quality image. The essence of denoising
is separating the noise from the observed image, removing
the mixed useless noise information from the real signal,
while retaining useful features and keeping the integrity of
the original image information as far as possible.

As the basis and premise of image processing, suppressing
the noise can significantly weaken the spotted point on the
image, effectively improving the subjective visual perception
of image and extraction of useful information in image.
Meanwhile, image denoising will promise completeness of
original signal and remove redundancy contributing to success
in post processing. Denoising can provide a guarantee for
subsequent works such as image enhancement and target
detection. Since inhibition of noise in images is an inevitable
technical problem in image processing, denoising has already
become an important research direction in the field of image
processing.

A. Basic Principle of Noise Model
A noisy image can be modeled as follows:

g(x,y) = f(z,y) + n(z,y) (1)

Where f(x,y) is the original image pixel, n(x,y) is the
noise term and g(x,y) is the resulting noisy pixel.

The image noise can be divided into different types accord-
ing to relationship between noise and signal, the causes of the
noise, statistical characteristics of noise and the probability
distribution of noise respectively [3].

1) -Relationship:: According to the relationship between
noise and signal, noise can be divided into two categories: ad-
ditive noise and multiplicative noise. Additive noise indicates
that its relationship with an image signal is additive. Additive
noise is inherent whether the image signal is in presence or
absence.

Multiplicative noise indicates the multiplication relationship
with the image signal. In contrast to the case of additive noise,
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it is dependent on the image signal. The multiplicative noise
will disappear when the multiplicative signal disappears.

2) -Cause:: According to the causes of the noise, the
image noise can be divided into external noise and internal
noise. External noise refers to the noise caused by external
environment interference, and internal noise refers to the noise
caused by the internal equipment interference.

3) -Statistic:: According to the statistical characteristics of
the noise, the image noise can be divided into stationary noise
and non-stationary noise. Stationary noise refers to noise with
time-invariant statistic property while non-stationary noise is
time-variant.

4) -Distribution:: According to the probability distribution
of the noise, common noise mainly includes Gaussian noise,
Rayleigh noise, exponent noise, gamma noise, uniform noise,
and pretzel noise.

B. Types of Noise

1) -Gaussian noise:: Gaussian noise is a class of random
noise that obeys the Gaussian distribution, which is a common
continuous probability distribution.

Generally, Gaussian noise is additive, independent at each
pixel and independent of the signal intensity, reducing the
clarity of image edges and blur texture detail [3]. For digital
images, the standard model of amplifier noise is primarily
caused by Johnson Nyquist noise which is often taken as a
major part of the “read noise” of an image sensor. The main
reasons of producing Gaussian noise in digital imaging can be:
incorrect collection of the image sensor because of the dark
or uneven light, over high temperature in image sensor caused
by long time working, the mutual interference in the circuit
or the superposition among existed electric noise. For the
infrared images, the noise caused by the photon fluctuations
of the infrared background radiation, the infrared detector
photoelectric conversion, and the signal readout and processing
circuit are randomly distributed both in time and space. The
produced random noise distributes independently from each
other, and can be simply modeled as Gaussian noise. Grayscale
value data obeying normal distribution with same size as image
matrix can be directly superimposed to the original image to
generate a thermal image contaminated with Gaussian noise
[3].

2) -Salt-and-pepper noise:: Pretzel noise, also called as
pulse noise, is a more common noise in daily life. It is
characterized by a discrete distribution, mainly consisting of
irregular burr noise with large amplitude and short duration
[3].

The pretzel noise in the digital images is mainly due to
the analog-to-digital converter failure caused by strong and
transient interference during the image acquisition process or
bit errors in transmission. It is specifically manifested as the
randomly distributed white spots or black spots on the image.
The containing of pretzel noise can be indicated by black
pixels in brighter areas, or bright pixels in dark areas, mostly
presenting in smooth areas. For infrared image, when the gaze
imaging device producing infrared image, the device directly
causes the photoelectric reaction on sensors of the focal plane.

Blind elements will appear at some pixels, and the distribution
of bright-dark point noise on the image is similar to pretzel
noise [3].

3) -Rayleigh noise:: The Rayleigh noise is noise that
obeys the Rayleigh distribution, characterized by independent
components with roughly the same Gaussian distribution [3].

In contrast to the Gaussian distribution, the probability
density curve of the Rayleigh distribution shifts globally to the
right, approximated by the crooked histogram. The Rayleigh
distribution is often used to describe the time-varying proper-
ties of flat fading signal and its independent sub-components.

4) -Gamma noise:: Gamma noise, also known as Irish
noise, follows the distribution of the gamma curve [3].

5) -Exponential noise:: Exponential noise refers to noise
whose probability density function follows an exponential
distribution [3].

6) -Uniform noise:: Uniform noise refers to noise whose
probability density function follows uniform distribution [3].

7) -Anisotropic noise:: Some noise sources show up with a
significant orientation in images such as row noise or column
noise. Anisotropic noise textures are interesting for many vi-
sualization and graphics applications. The spot samples can be
used as input for texture generation especially suitable for the
visualization of tensor fields that can be used to define a metric
for the anisotropic density field [3]. In infrared imaging, stripe
noise is another common noise, which is mostly presented
in the infrared images produced by scanning devices. The
focal plane of the scanning imaging device presents a one-
dimensional linear distribution. When imaging, only one row
of data can be collected simultaneously, and then the focal
plane is moved according to some certain frequency to produce
multiple sets of data for creation of the complete image. If
some blind elements are presented in the scanning imaging
device, a bright dark line along the sweep surface will be
generated in the image, which is the stripe noise.

III. CLASSIFICATION OF DEEP LEARNING BASED
DENOISING ALGORITHMS

Although most of the traditional methods have achieved
relatively good performance in image denoising, they suffered
from several unavoidable drawbacks including undesirable
effect in the case of multiple noise, wrecking of details image,
image clarity and quality reduction. Therefore, seeking a better
denoising scheme has become the center of research for many
technological researchers.

The original deep learning technologies were first used in
image processing in [4]. After applied to image processing
from the very beginning, deep learning was quickly extended
to the image denoising direction. Authors in [5] and [6]
firstly used the neural network with both the known shift-
invariant blur function and additive noise to recover the latent
clean image. After that, the neural network with weight-
ing factors was used to remove more complex noise [5],
rather than Gaussian. In 1989, Tamura propose a feedforward
network to make a tradeoff between denoising efficiency
and performance reducing the high computational costs. The
feedforward network can smooth the given corrupted image
by Kuwahara filters, which were similar to convolutions. In
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addition, this research proved that the mean squared error
(MSE) acted as a loss function which was not unique to
neural networks [7], [8]. Subsequently, for the purpose of
acceleration of the convergence of the trained network and
promotion of the denoising performance, more optimization
algorithms were used in [3], [9], [10]. The combination of
maximum entropy and primal-dual Lagrangian multipliers to
enhance the expressive ability of neural networks proved to be
a good tool for image denoising in [11]. Greedy algorithms
and asynchronous algorithms were applied in neural networks
in [12], to further make a trade off between fast execution
and denoising performance. Cellular neural networks (CENN )
mainly used nodes with templates to obtain the averaging
function and effectively suppress the noise in [13], [14].
Alternatively, as for eliminating the noise, designing a novel
network architecture either increasing the depth or changing
activation function proved to be very competitive in [14].
Although good denoising results can be obtained through these
methods, parameters of the templates are always required to
be set manually. The gradient descent was developed in [15],
[16] to resolve this problem.

These deep techniques indeed can improve denoising per-
formance to some extent. However, the addition of new plug-
in units were not possible in these networks, which limited
their applications in the real world in [4]. Considering the
limitation in flexibility, convolutional neural networks (CNNs)
were proposed in [17], [18]. Deep networks were first applied
in image denoising in 2015 in [19], [20]. The proposed
network need not manually set parameters for removing the
noise. After then, deep networks were widely applied in speech
[21], video [22], and image restoration [23], [24]. Authors
in [25] used multiple convolutions and deconvolutions to
suppress the noise and recover the high-resolution image. For
addressing multiple low-level tasks via a model, a denoising
CNN (DnCNN) [26], batch normalization (BN) [27], rectified
linear unit (ReLLU) [28] and residual learning (RL) [29] was
proposed to deal with image denoising, super-resolution, and
JPEG image deblocking. Taking into account the trade off
between denoising performance and speed, a color non-local
network (CNLNet) [30], combined non-local self-similarity
(NLSS) and CNN to efficiently remove color-image noise.
In terms of blind denoising, a fast and flexible denoising
CNN (FFDNet) [31], presented different noise levels and
the noisy image patch as the input of a denoising network
to improve denoising speed and process blind denoising.
For handling unpaired noisy images, a generative adversarial
network (GAN) CNN blind denoiser (GCBD) [32], resolved
this problem by first generating the ground truth, then inputting
the obtained ground truth into the GAN to train the denoiser.
Alternatively, a convolutional blind denoising network (CBD-
Net) [33], removed the noise from the given real noisy image
by two sub-networks, one in charge of estimating the noise
of the real noisy image, and the other for obtaining the latent
clean image. For more complex corrupted images, a deep plug-
and-play super-resolution (DPSR) method [34], was developed
to estimate blur kernel and noise, and recover a high-resolution
image.

A. Structure of Deep Learning Networks

Neural networks are the basis of machine learning methods,
which in turn are the basis of deep learning techniques [35]. A
neural network is essentially a nonlinear function that maps the
vectorized inputs through several hidden layers to a vectortized
output. Most neural networks consist of neurons, input X,
activation function f , weights W = [Wy, Wy, ..., W,,_1] and
biases b = [bg, b1, -..,b,]. And activation functions such as
sigmoid [36], [37], and tanh [38], [39], can convert the linear
input into non-linearity through W and b.

The part in the middle of the MP neuron model is the
activation function, which can be understood as a perceptron.
Since the output follows the step function curve, the output
value jumps between 0 and 1 when the weighted input changes
around the threshold, and small changes in the input will not
be reflected in the output. Therefore, the activation function
is introduced to modify the perceptron model. The activation
function converts the linear input into non-linear factors which
will be activated in the following layers contributing to strong
flexibility for non-linear cases.

Note that if the neural network has multiple layers, it is
regarded as multilayer perceptron (MLP) [40]. In addition, the
middle layers are treated as hidden layers besides the input and
output layers. This process can be expressed as:

FX;Wib) = fWn f(wn—t
FOVOX +0%)..0n ) +b7)

where n is the final layer of the neural network.

In the multilayer perceptron, how to correct the weights of
the middle layer is a problem and the Back Propagation (BP)
reverse network, a feed-forward network is always used to
correct the weight values.

The main principle of the BP network is the backward
propagation algorithm which is also known as error back
propagation. The input information of the neural network
model spreads forward from left to right. The final weighted
output is produced with backward propagation layer by layer
of the neuronal activation function. For individual neurons,
forward propagation refers to the process of the input = to
the output, hmb(x). But after multiple layers of transmission,
there must exist gap between the h,, ;(x) and the ideal output
y. The cost function is as following:

2

1
J(0) = j(@,bi2,9) = 5llhup(@) =yl 3)

A fixed sample set, {(z(1), y(M)), .., (™), y(™))} contain-
ing m samples. The gradient descent can be used to train the
weight values. The cost function of the entire sample is:

1 m . )\nlfl s; si+1 (D2
Jw,b) =[—> GO +5 > > > () @
i =1 i=1 j=1

According to the formula, the first term is the mean vari-

ance, and the second term is the regularization term, which

is mainly used to prevent overfitting in the training of the

neural network model, also called as the weight attenuation

term. Overfitting is prevented by reducing the magnitude of
the weights.
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Fig. 1. Framework of the deep learning based denoising methods.

B. Framework of Deep Learning Methods

According to the model structure used in the training,
the categories of deep learning-based denoising methods are
shown in the following Fig.1. And a summary of deep learning
based denoising methods is shown in Table I as following.

C. Multi-layer perceptron network: MLP

MLP is an early image denoising method, which was
designed to train the dennoising model for image processing
task by constructing a perceptron network with four hidden
layers. The mapping relationship between noisy image and
clean image was learned through MLP, and finally a nonlinear
function was generated to achieve image denoising purpose.
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Fig. 2. Improving average PSNR on the images “Barbara” and “Lena” while
training with o = 25.

As shown in the experiments, in the Fig.2 and Fig.3 the
performance of the MLP network has reached the standard of
BM3D algorithm in denoising, surpassing the GSM and K-
SVD algorithms, which officially declared the transcendence
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Fig. 3. Performance profile of MLP on two datasets of 500 test images
compared to BM3D.

of the neural network denoising algorithm to the traditional
algorithm. Neural networks can achieve higher denoising
performance with corresponding deeper training network and
training set with sufficient high-quality net-noise image pairs.

ANN based image restoration approach was presented in
[41] to provide a new approach for image identification
using multilayer perceptron. By investigating the distribution
invariance of the natural image patches with respect to linear
transforms, authors showed in [42] how to make a single
existing MLP well across all levels of Gaussian noise. Au-
thors concentrated on comparing and combining two of main
neural network, models MLPs and CNNs for image denoising
in [43]. MLP was implemented in [44] to recover higher-
dimensional signals from lower dimensional, noisy, and blurry
measurements. MLP were used in [45] to map the features
from noisy images into FR-IQA scores, which showed that
the use of a priori known noise variance significantly im-
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TABLE I
SUMMARY OF DEEP LEARNING BASED DENOISING METHODS

Basic Network Methods Advantages Limitations Noise Situation
DnCNN Low usage efficiency Real Noise Normal Light
DnCNN-S Supervised learning in shallow features Synthesis Noise Normal Light
DnCNN-B Easy to extract features Easy to lose texture Synthesis Noise Normal Light
CNN FFDNet Better expression ability Hard for dense noise Real Noise Low Light
CBDNet Optimizable Structure Hard to balance Real Noise Low Light
GCBDNet Expandable Stucture noise-target balance Real Noise Normal Light
PRIDNet Unclear denoising/oversmooth Synthesis Noise Normal Light
N2N Self-supervised learning Easily to be influenced Real N91se - Normal L¥ght
N2v .. . . Synthesis Noise Normal Light
No need of training set by neighbor pixel - - -
N2S . . Synthesis Noise Normal Light
Simple structure Exist gap between real : -
CNN S2S . . Real Noise Low Light
Stable training process and prediction value - -
NAC o Real Noise Low Light
Few parameters Weak ability to - -
VDN Little storage demand express complex feature Real Noise Normal Light
" FOCNet & pres: p Synthesis Noise Normal Light
Solve gradient disappear . .
FC-AIDE Solve gradient explosion Hard to design network structure Real Noise Normal Light
CycleISP Fast convergence rate Hard to optimize target function Real Noise Normal Light
ResNet Maximum info. flow Dense connection leads
PADNet Long dlstgnce correla_tlon to over‘ﬁttmg phenomenoq _ Real Noise Normal Light
relationship computation Inconsistency between objective
GRDN Increase hl.gh index and subjective feeling Real Noise Normal Light
frequency info. usage
GCBD Lo Unstable of training network Real Noise Normal Light
Help to generate noise image
Expand the noise dataset Slow convergence speed
GAN ADGAN Uncontroable model Real Noise Normal Light
Solve the problem of .
ground truth insufficient Unable to display
MPIDACNN distribution of generative model Real Noise Normal Light
GCDN Uncontrollable graph size Real Noise Normal Light
Help to deal with unstructured data Complex graph topology
GNN DeepGLR Help with noise regression Non-fixed node for reference Real Noise Normal Light
with graph topology Daynamic graph topology decrease
OverNet the feature expression ability Real Noise Normal Light

proved prediction accuracy. The author showed in [46] how a
complex-valued neural network, the multilayer neural network
with multi-valued neurons (MLMVN), could be efficiently
used for impulse noise filtering. MLP was used in [47] with
multi-valued neurons (MLMVN) as an intelligent tool for
speckle noise filtering. A novel reconstruction algorithm was
presented in [48] to address the noise artifacts of path tracing,
where Stein’s unbiased risk estimator (SURE) was adopted to
estimate the noise level per pixel that guides adaptive sampling
process and modified MLPs network was used to predict the
optimal reconstruction parameters. The problem of prediction
of denoising efficiency of images in a blind manner under
additive white Gaussian noise condition was considered in
[49]. The denoising efficiency prediction employed MLP to
create a regression model. The proposed technique did not
require a priori knowledge of a noise variance and used a
moderate amount of image data for analysis.

MLP has also been used for multi-modal image denoising
application. Compared to conventional denoising algorithms,
MLP applied in [50] could restore images without blurring
them, making it attractive for use in medical imaging where the
preservation of anatomical details was critical. It was showed
that denoising could be efficiently done using a nonlinear
filter, which operated along patch neighborhoods and multiple

copies of the original image. The use of patches enabled the
algorithm to account for spatial correlations in the random
field whereas the multiple copies were used to recognize the
noise statistics. The non-linear filter, which was implemented
by a hierarchical multistage system of MLP, outperformed
state-of-the-art denoising algorithms such as those based on
collaborative filtering and total variation.

Although MLP had excellent denoising performance and
could learn the nonlinear model well, limitations still existed.
A series of hyperparameters are required to be adjusted to fit
the noise function, resulting in unadaptive function. On the
other hand, since MLP needs to learn the noise map of a
specific noise level when training, the denoising effect will be
greatly reduced if the training set contains images without the
noise level.

D. Convolutional Neural Network: CNN

In addition to multilayer perceptron, image denoising can
also be implemented based on the CNN. Currently, CNN-
based image denoising methods mainly include unsupervised
learning, self-supervised learning, and supervised learning.

Unsupervised learning methods use given training samples
to find patterns rather than label matching and finish specific
tasks, such as unpairing real low-resolution images. Supervised
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learning methods use the given label to put the obtained fea-
tures closer to the target for learning parameters and training
the denoising model. Semi-supervised learning methods apply
a model from a given data distribution to build a learner for
labeling unlabeled samples.

1) Unsupervised:: At present, the denoising performance
of the unsupervised learning autoencoder is also outstanding.
This is done by first corrupting the initial input x into &
by means of a stochastic mapping & ~ ¢p(&|z). Corrupted
input & is then mapped, as with the basic autoencoder, to a
hidden representation y = fp(&) = s(W& + b) from which
we reconstruct a z = gy(y). Parameters 6 and 6’ are trained
to minimize the average reconstruction error over a training
set, that is, to have z as close as possible to the uncorrupted
input x.

The key difference is that z is now a deterministic function
of & rather than x. As previously, the considered recon-
struction error is either the cross-entropy loss Ly (x,z) =
ITH(B(x))||B(z)), with an affine+sigmoid decoder, or the
squared error loss Lo(z, 2) = ||z —z||?, with an affine decoder.
Parameters are initialized at random and then optimized by
stochastic gradient descent. Note that each time a training
example x is presented, a different corrupted version & of it
is generated according to ¢p (Z|x).

I
L]

,
N
LT
. Sl
BN

Fig. 4. Regular autoencoder trained on natural image patches. Left: some
of the 12 x 12 image patches used for training. Middle: filters learnt by
a regular under-complete autoencoder (50 hidden units) using tied weights
and Lo reconstruction error. Right: filters learnt by a regular over-complete
autoencoder (200 hidden units).
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Fig. 5. Weight decay vs. Gaussian noise. Typical filters learnt from natural
image patches in the over-complete case (200 hidden units). Left: regular
autoencoder with weight decay.

200 hidden units over-complete noiseless autoencoders was
trained regularized with Lo weight decay, as well as 200
hidden units denoising autoencoders with isotropic Gaussian
noise (but no weight decay). Resulting filters are shown in
Fig.4 and Fig.5. Note that a denoising autoencoder with a
noise level of zero is identical to a regular autoencoder.
So, naturally, filters learnt by a denoising autoencoder at
small noise levels look like those obtained with a regular
autoencoder. With a sufficiently large noise level however
(o = 0.5), the denoising autoencoder learns Gabor-like local

oriented edge detectors. The Lo regularized autoencoder on the
other hand learnt nothing interesting beyond restoring some
of the local blob detectors found in the under-complete case.
From this experiment, it is clear that training with sufficiently
large noise yields a qualitatively very different outcome than
training with a weight decay regularization.

There have been many researchers explored the denoising
auto-encoder, enriching its structure. An unsupervised im-
age feature extraction method was presented in [51], which
was a stacked multi-granularity convolution denoising auto-
encoder (SMGCDAE) based on CNN with a multi-granularity
kernel. A convolutional self-encoding network (DeCS-Net)
was designed in [52], which integrated the superiority of
CNN and AE to learn multi-scale features. Image super-
resolution architecture, coupled deep convolutional auto-
encoder (CDCA), was proposed in [53], which simultaneously
calculated the convolutional features of low-resolution (LR)
and high-resolution (HR) image patches and learns the non-
linear function that maps these convolutional features of
LR image patches to their corresponding HR image patches
convolutional features. An elastic stacked denoising auto-
encoder model, was propsed in [54], which was an upgraded
model of a stacked autoencoder algorithm based on the
principle of annealing (ElasticSDAE), a novel method of
adaptively obtaining the noise level. Statistical features of
restored image residuals produced by DAE was studied in [55]
and an improved training loss function was proposed based
on method noise and entropy maximization principle, with
residual statistics as constraint conditions. Skip connections
from initial layers of encoder to the final layers of decoder
was used in [56] to improve the performance of AE. A GAN
based auto-encoder network was introduced in [57] to denoise
the CT images. The network first maped CT images to low
dimensional manifolds and then restored the images from
its corresponding manifold representations. The reconstruction
algorithm separately calculated perceptual similarity, learned
the latent feature maps, and achieved more accurate and
visually pleasing reconstructions. Inspired by the idea of deep
learning, the autoencoder was combined with, deconvolution
network, and shortcut connections in [58] into the residual
encoder—decoder convolutional neural network (RED-CNN)
for low-dose CT imaging. Recurrent residual U-net (R2U-
Net) based autoencoder model was applied in [59] for dig-
ital pathology, dermoscopy, MRI and CT images denoising.
The stacked non-local auto-encoder was developed in [60],
which exploited self-similar information in natural images
for stability. A robust auto-encoder called correntropy-based
contractive auto-encoder (CCAE) was investigated in [61] to
learn robust features from data with non-Gaussian noises and
outliers. Since remnant radial streaking noise remained under
physiologic imaging Conditions, a spatio-temporal denoising
auto-encoder (ST-DAE) was employed in [62] to further
remove these streaking noise.

These auto-encoders also have been applied to different
scenario in image denoising. Authors focused on the design
of auto-encoder (AE) and stacked auto-encoder (SAE) based
approaches for denoising of certain military aircrafts in [63].
Framework proposed in [64] was combination of AE and CNN
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for denoising the fibrous dysplasia image. DAE technique was
applied in [65] on 2-DGE images motivated by its ability
to learn a robust representation to partially corrupted input.
A lightweight convolutional AE was implemented in [66]
to mimic a recent state-of-the-art method in OCT image
denoising. A novel old film speckle noise removal AE was
proposed in [67], which included speckle noise detection
and an inpainting based speckle noise reduction procedures.
A preprocessing AE for the enhancement of ancient and
degraded document images was presented in [68]. AE was
used in [69] to reduce the speckle noise in SAR image. A
ton of sonar images were trained in AE for denoising, and the
results were achievedby injecting the original sonar images
[70]. DAE module was applied in [71] for denoising in brain
tumors detection. A new EIT image reconstruction algorithm
was proposed in [72] based on the CDAE deep learning
algorithm. An averagely deep encoder-decoder neural network
was used in [73] to minimize the typical motion blurring
noise introduced in the input image captured by the camera
setup on the production lines. DAE module was investigated
for noise detection and removal in [74] in the task of robust
facial alignment. The framework proposed in [75] rigorously
denoised a face with dynamic expressions in a progressive
way, which termed as stacked face denoising auto-encoders
(SFDAE).

Some other kinds of unsupervised CNN for denoising was
also proposed in some paper. For example, an HSI denois-
ing method called Stein’s unbiased risk estimateconvolutional
neural network (SURE-CNN) was presented in [76], which
was based on an unsupervised CNN and SURE. Since SURE
was an unbiased estimate of the mean squared error (MSE)
of an estimator, training a CNN using the SURE loss could
yield similar results as using the MSE with ground truth
in supervised learning. Also, a subspace version of SURE-
CNN was proposed to reduce the running time. A novel un-
supervised randomnoise-suppression method that could train
a network directly on noisy target data without noise-free
labels was proposed in [77], which was inspired by the simple
denoising idea of averaging multiple noisy observations. An
end-to-end CNN was constructed in [78] to solve the denoising
task. Adjacent traces of seismic data, which contained similar
seismic phases and interface features, were used as the inputs
and labels of the training set. A novel approach was presented
in [79] to attenuate seismic random noise based on deep CNN
in an unsupervised learning manner. Experimental tests on
synthetic and real data demonstrated the effectiveness and
superiority of the proposed method compared with state-of-
the-art denoising methods.

Representing features of images through learning hidden
layer units, the input and output of autoencoder can be easily
obtained. In this case, picture size changes does not require
too much consideration, and good data features can be learned.
However, dropout is always necessary in this model leading
to incompleteness of learning information. And because un-
supervised learning features are mainly used in this algorithm
and the model is pretrained layer by layer, rather than directly
for denoising, the improvement of denoising effect is limited.

2) Self-supervised:: Unlike the unsupervised autode-
coder, self-supervised models such as Noise2Noise (N2N),
Noise2Void (N2V), Noise2Self (N2S), Self2Self (S2S) takes
advantage of the independence between the pixels to find the
mapping relationship between the target pixels.

Noise2Noise: N2N

Authors figured out in [80] that it was possible to learn
to restore images by only looking at corrupted examples, at
performance at and sometimes exceeding training using clean
data, without explicit image priors or likelihood models of the
corruption. The denoising effect of corrupted targets was firstly
studied using synthetic additive Gaussian noise. As the noise
has zero mean, the Lo loss was used for training to recover the
mean. Other types of synthetic noise were then experimented.

There have been many research in N2N model. For example,
an analysis of the N2N learning strategy was done in [81]
using real noise and synthetic datasets. Demonstration using
diverse network architectures and loss functions, that the
duplicity of information in the noisy pairs was exploited
to reach increased denoising performance of N2N. And the
N2N method presented in [82] requiring only a single noisy
realization of each training example and a statistical model of
the noise distribution, and is applicable to a wide variety of
noise models, including spatially structured noise. The work
was built most directly upon the approaches of N2N, N2V
and N2S. Like N2V and N2S, the requirement of paired
noisy training data was removed which was needed in N2N.
The improved N2N allowed spatially correlated noise models,
which were problematic for N2V and N2S. On the other hand,
the ability to sample from the noise distribution was also
required, which the three aforementioned methods did not.

N2N has also found success in denoising application. An
iterative DECT reconstruction algorithm with a N2N prior was
proposed in [83]. The algorithm directly estimated material
images from projection data and thus significantly reduced
possible bias. A collaborative technique was introduced in [84]
to train multiple N2N generators simultaneously and learned
the image representation from LDCT images. Inspired by the
previous work of N2N training, a similar neural network was
trained in [85] by pairing one noise realization to an ensemble
of noise realizations. A block random sampler was proposed
in [86] that could generate training pairs using raw seismic
data, which satisfied the training assumption of N2N that the
training pair had a similar signal. N2N paradigm was explored
in [87] to reconstruct the SMLLM images, which was applied to
synthetic data and to real 2-D SMLM data of actin filaments.
A novel end-to-end self-supervised SAR denoising model,
enhanced N2N (EN2N), which could be trained without a
noise-free image was proposed in [88].

Noise2Void: N2V

Inspired by the idea in N2N that independent pairs of noisy
images could be used, a training scheme N2V was introduced
in [89]. Despite advantages of N2N training, there were at least
two shortcomings to this approach: (i).N2N training required
the availability of pairs of noisy images, and (ii).the acquisition
of such pairs with (quasi) constant s was only possible for
(quasi) static scenes. Thus, N2V, a novel training scheme was
presented to overcome both limitations.
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Two simple statistical assumptions were made: (i).the signal
s is not pixel-wise independent, (ii).the noise n is conditionally
pixel-wise independent given the signals. On the one hand,
a blind-spot network was trained using only individual noisy
training images, which allowed N2V to extract the input patch
and target value from the same noisy training image. It could
be trained by minimizing the empirical risk. On the other
hand, a masking scheme was used to avoid this problem: the
value in the center of each input patch was replaced with
a randomly selected value form the surrounding area. This
effectively erased the pixel’s information and prevented the
network from learning the identity.

Some paper developed the N2V structure. Probabilistic
Noise2Void (PN2V), which trained CNNs for prediction of
per-pixel intensity distributions was presented in [90]. After
that, PN2V improved by introducing parametric noise models
based on Gaussian mixture models (GMM) was introduced
in [91] requiring an additional noise model for which cali-
bration data needed to be acquired. Improved N2V was also
proposed in [92], where a flow-based generative model was
firstly used to learn a prior from clean images and then a
denoising network without the need for any clean targets was
trained. To overcome the limitation of pixel-wise independent
noise assumption, structured Noise2Void (STRUCTN2V) was
introduced in [93], which was a generalization of blind spot
networks that enabled removal of structured noise without
requiring an explicit noise model or ground truth data. Specif-
ically, an extended blind mask rather than a single pixel/blind
spot was used, whose shape was adapted to the structure of
the noise.

N2V has also found success in denoising tasks. For exam-
ple, a denoising technique for PET based on the Noise2Void
paradigm was presented in [94], which required only a single
noisy image for training thus ensuring wider applicability
and adoptability. N2V network was used in [95] to improve
cell/nuclei segmentation in microscopy data, when only lim-
ited training data for noisy micro-graphs were available.

Other Models

The self-supervision image denoising framework have be-
come a popular topic. A Noise2Self (N2S) structure was
proposed in [96] generalizing recent work on training neural
nets from noisy images and on cross-validation for matrix
factorization. A Self2Self (S2S) network was presented in [97],
which was trained with dropout on the pairs of Bernoulli-
sampled instances of the input image, and the result was
estimated by averaging the predictions generated from multiple
instances of the trained model with dropout. A novel image
denoising scheme, interdependent self-cooperative learning
(ISCL), that leveraged unpaired learning by combining cyclic
adversarial learning with self-supervised residual learning was
proposed in [98]. A very simple yet effective method was
presented in [99], named Neighbor2Neighbor to train an
effective image denoising model with only noisy images.
Noise2Inverse (N2I), a deep CNN based denoising method
was applied in [100] for linear image reconstruction algorithms
that did not require any additional clean or noisy data. Since
the networks learned from external images inherently suffered
from a domain gap problem that the image priors and noise

statistics were very different between the training and test
images, a novel NoisyasClean (NAC) strategy was proposed
in [101]. Since the ratio of visual signal to noise on small
objects was very low, making it difficult to extract rich features
for detection, a self-supervised feature enhancement network
(FEN) was trained in [102]. To free image prior learning from
the image collection burden, a novel self-supervised learning
method for Gaussian mixture model (SS-GMM) was proposed
in [103]. The blindspot model for self-supervised denoising
was extended in [104] to handle Poisson-Gaussian noise. And
an improved training scheme that avoided hyperparameters and
adapted the denoiser to the test data was introduced. Inspired
by recent works on blind-spot denoising networks, a self-
supervised Bayesian despeckling method Speckle2Void was
trained in [105]. A class of self-supervised structured denoisers
that could be decomposed as the sum of a non-linear image-
dependent mapping, a linear noise-dependent term and a small
residual term was presented in [106].

Application

Additionally, different types of CNN based self-supervised
networks have found success in various applications. As for
medical image, in order to alleviate the performance limitation
brought by the lack of pixel-level annotation in COVID-
19 pneumonia lesion segmentation task, a denoising self-
supervised framework was constructed in [107], where the
semantic features from massive unlabelled data were learned.
A self-supervised deep learning neural network for low lose
CT reconstruction in the sense of penalized weighted least-
squares (PWLS) was applied in [108]. As for seismic noise,
a self-supervised two step approach to attenuate ground-roll
noise in seismic prestack images was implemented in [109].
Similarly, a novel self-supervised learning framework was
used in [110] to reconstruct and perform blind denoising of
seismic data images. As for depth maps, a fully self-supervised
convolutional deep auto-encoder that learned to denoise depth
maps was used in [111], surpassing the lack of ground truth
data. Similarly a deep neural network was learned in [112]
to denoise the lower-quality depth using the matched higher-
quality data as a source of supervision signal. As for video, self
supervised model was utilized in [113] to reconstruct videos
and the auto-encoder was learned both spatial and temporal
relations of video frames to process the downstream task
easily. Similarly, a self-supervised approach for training multi-
frame video denoising networks that predicted each frame
from a stack of frames around it was realized in [114].

However, the self-supervision methods ignore the depen-
dency between the spatial information, and the ability of ex-
tracted features for noise expression is insufficient. Meanwhile,
the adjustment mode of the network training parameters lacks
flexibility, which cannot well represent the complex mapping
relationship between the noise-containing images and the clear
images.

3) Supervised:: Supervised learning-based image denois-
ing methods such as denoising convolutional neural network
(DnCNN), a fast and flexible denoising network (FFDNet) and
GAN-basedconvolutional blind denoising network (GCBD-
Net) use Gaussian hybrid models to train on multiple sample
images of different noise levels and verify the denoising effect



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

of the above methods on real noise images.

Denoising Convolutional Neural Network: DnCNN

In 2017, one of the best current deep learning-based denois-
ing algorithms, DnCNN was proposed [26]. DnCNN borrows
the residual learning methods, but DnCNN does not add
connection and activation at every two layers of convolution.
It changes the output of the network to a clean image and a
residual image of the reconstructed image. According to the
ResNet theory, when the residue is 0, the stacking layers are
equivalent to the constant map, which is very easy to train and
optimize. Thus, the residual image as the output of the network
is suitable for image reconstruction. Batch normalization is
also used in DnCNN, which is added to mitigate the shift of
internal covariates before the activation function, promising
faster training, better performance, and lessing the network
impact on the initialization variables.

Noisy Image Residual Image
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Fig. 6. The architecture of the proposed DnCNN network.

The input of DnCNN is a noisy observation y = x + v.
Discriminative denoising models such as MLP [40] and CSF
[115] aims to learn a mapping function F'(y) = « to predict the
latent clean image. For DnCNN, we adopt the residual learning
formulation to train a residual mapping R(y) = v, and then
we have = y — R(y). Formally, the averaged mean squared
error between the desired residual images and estimated ones
from noisy input

L X
1(0) = N Z 1R(yi;0) — (yi — @)% &)
i=1

can be adopted as the loss function to learn the trainable
parameters 6 in DnCNN. Here (y;, l‘i)fil represents N noisy-
clean training image (patch) pairs. Fig.6 illustrates the archi-
tecture of the proposed DnCNN for learning.

Investigating the construction of feed-forward DnCNNs,
DnCNN embraces the progress in very deep architecture,
learning algorithm, and regularization method into image de-
noising. Specifically, residual learning and batch normalization
are utilized to speed up the training process as well as boost
the denoising performance. Different from the other existing
discriminative denoising models which usually train a specific
model for additive white Gaussian noise at a certain noise
level, the DnCNN model is able to handle Gaussian denoising
with unknown noise level (i.e., blind Gaussian denoising).
With the residual learning strategy, DnCNN implicitly removes
the latent clean image in the hidden layers. This property
motivates training of the single DnCNN model to tackle
with several general image denoising tasks, such as Gaussian
denoising, single image super-resolution, and JPEG image
deblocking.

Comparing the proposed DnCNN method with several state-
of-the-art denoising methods, two non-local similarity based

methods are included (i.e.,BM3D [116] and WNNM [117)),
one generative method (i.e.,EPLL [118]), three discrimina-tive
training based methods (i.e., MLP [40], CSF [115] and TNRD
[119]). Note that CSF and TNRD are highly efficient by GPU
implementation while offering good image quality.

The average PSNR results of different methods on the
BSD68 dataset are shown in Table II. Both DnCNN-S and
DnCNN-B can achieve the best PSNR results than the compet-
ing methods. Compared to the benchmark BM3D, the methods
MLP and TNRD have anotable PSNR gain of about 0.35dB.
There are few methods can outperform BM3D by more than
0.3dB on average. In contrast, DnCNN-S model outperforms
BM3D by 0.6dB on all the three noise levels. Particularly, even
with a single model without known noise level, DnCNN-B can
still outperform the competing methods which is trained for
the known specific noise level. It should be noted that both
DnCNN-S and DnCNN-B outperform BM3D by about 0.6dB
when ¢ = 50, which is very close to the estimated PSNR
bound over BM3D (0.7dB).

Fig.7 and Fig.8 illustrate the visual results of different
methods. It can be seen that BM3D, WNNM, EPLL and
MLP tend to produce over-smooth edges and textures. While
preserving sharp edges and fine details, TNRD is likely to
generate artifacts in the smooth region. In contrast, DnCNN-
S and DnCNN-B can not only recover sharp edges and fine
details but also yield visually pleasant results in the smooth
region.

The DnCNN has been developed further in many papers.
A blind DnCNN model for random-valued impulse noise
(RVIN) denoising was invented in [120] with a flexible noise
ratio predictor (NRP) as an indicator. A combining deep
convolutional generative adversarial networks (DCGAN) and
denoising convolutional neural network ring strucutred light
(DnCNN-RSL) was adopted in [121] to denoise. A fast and
flexible convolutional neural network (FFCNN) based on
DnCNN was used in [122] for denoising. DnCNN was aop-
timized in [123] for additive white Gaussian noise (AWGN)
to obtain the hardware-friendly Light-DnCNN and an energy-
efficient denoising accelerator was designed based on Light-
DnCNN. A discriminative denoised algorithm DnCNN whose
loss function was changed was used for denoising in [124]
with additive image quality assessment (IQA) part. Residual
learning and batch normalization were utilized in [26] to
speed up the training process of DnCNN as well as boost
the denoising performance. In order to further process non-
differentiated high-dimensional data including documents, im-
ages, the noise reduction model based on DnCNN and adaptive
Butterworth filtering was proposed in [125]. Incorporating
recent advances in architectural building blocks and network
architecture search and building upon the success of the
DnCNN architectures, an efficient convolutional blind image
denoising network was introduced in [126]. DnCNN that
grasped the advancement in profound engineering, learning
calculation and regularization technique was used in [127] for
denoising. The Nadam optimization algorithm that was dif-
ferent from the common gradient descent algorithm was used
in DnCNN-N model in [128] to solve the Gaussian denoising
task. Two techniques, were incorporated in [129] for denoising
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TABLE II
THE AVERAGE PSNR(DB) RESULTS OF DIFFERENT METHODS ON THE BSD68 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Mehotds BM3D WNNM EPLL MLP CSF TNRD DnCNN-S DnCNN-B  FFDNet
oc=15 31.07 31.37 31.21 - 3124  31.42 31.73 31.61 31.63
o=25 28.57 28.83 28.68 2896 28.74  28.92 29.23 29.16 29.19
o =50 25.62 25.87 25.67  26.03 - 25.97 26.23 26.23 26.29
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(e) e (h h

Fig. 7. Denoising results of one image from BSD68 with noise level 50. (a) Noisy/14.76dB. (b) BM3D/26.21dB. (c) WNNM/26.51dB. (d) EPLL/26.36dB.
(e) MLP/26.54dB. (f) TNRD/26.59dB. (g) DnCNN-S/26.90dB. (h) DnCNN-B/26.92dB.
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Fig. 8. Denoising results of the image “parrot” with noise level 50. (a) Noisy/15.00dB. (b) BM3D/25.90dB. (c) WNNM/26.14dB. (d) EPLL/25.95dB. (e)
MLP/26.12dB. (f) TNRD/26.16dB. (g) DnCNN-S/26.48dB. (h) DnCNN-B/26.48dB.

namely, the grey wolf optimizer (GWO) and DnCNN, within a
framework developed based on the quaternion discrete cosine
transform (QDCT). Based on DnCNN an improved denoising
algorithm was proposed in [130], where leakly ReLU function
was used instead of ReL.U activation function for training to
extract and learn the features of the input image.

DnCNN has also been utilized in different denoising sce-
nario. For example, denoising method that combined the total
variation (TV) regularization method with a DnCNN was
implemented in [131] for surveillance camera images. To
solve the problem of underwater sonar images such as gray
distortion, blurred edge, various shapes, and missing dataset,
DnCNN for image denoising was proposed in [132], which
integrated the receptive field block and attention search func-
tion. A training DnCNN was used in [133] for laser speckle
contrast imaging LSCI denoising in a log-transformed domain.
As for SAR imaging, the interferometric phase denoising
convolutional neural network (IPDnCNN) was introduced in
[134] to estimate the phase noise in radar image. DnCNN
was modified in [135] to estimate the phase noise in normal
pixels and remove it from the interferogram. An adaptive
processing flow that combines noise reduction and image
contrast enhancement, was developed in [136], which could
effectively improve the interpretability and applicability of
images with strong coherent speckle noise in SAR images.
The single channel SAR images was used in [137] to train
the DnCNN model. As for medical imaging, A network

combining bidirectional convolutional long short-term memory
(ConvLSTM) with 3D DnCNN to generate clearer images was
applied in [138] to denoise CEUS Image. A medical image
denoising pipeline based on the content-noise complementary
learning (CNCL) strategy was presented in [139], and was
implemented as a generative adversarial network, where var-
ious representative network DnCNN was investigated as the
predictors. In order to obtain reconstructed inverse problem
of electrical impedance tomography (EIT) images with good
edge preservation, a DnCNN was proposed in [140]. An
iterative positron emission tomography (PET) reconstruction
using a CNN prior was presented in [141]. DnCNN was
utilized in [142] and was trained by using full-dose images as
the ground truth where low dose images were reconstructed
from downsampled data by Poisson thinning as input. As
for seismic imaging, a novel method alternating direction
method of multipliers-based denoising convolutional neural
network (ADMM-CNN) by combining low-rank decomposi-
tion with feed-forward DnCNN was presented in [143]. A
novel multiscale DnCNN (MSDCNN) was developed in [144]
as an attempt for random seismic noise suppression. Unlike
conventional DnCNN, MSDCNN had a hierarchical structure
capable of extracting features at different scales and capturing
informative and discriminatory features through effective in-
formation integration. A deep convolutional neural network
denoising model based on noise estimation (MCD-DCNN)
was presented in [145], which was primarily composed of
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two modules, the noise estimation module and the denoising
module. An improved feed-forward DnCNN was proposed in
[146] to suppress random noise in desert seismic data. An end
to end 3-D-DnCNN was designed in [147] that took raw 3-D
cubes as input in order to better extract the features of the 3-D
spatial structure of poststack seismic data. Also, there is some
other special application. A novel denoising convolutional
neural networks based dust accumulation status evaluation
of photovoltaic panel was proposed in [148]. For example,
according to the comparison among the different combinations
of DnCNN and VGG-16, AlexNet, ResNet models, the serial
connection of DnCNN and ResNet-50 model could achieve
real-time monitoring and quantitative evaluation tasks of dust
accumulation status with a higher accuracy and better time-
consuming performance.

Fast and Flexible Denoising Convolutional Neural Network:
FFDNet

The second year after DnCNN was published, Zhang et al.,
proposed FFDnet, providing a fast denoising solution [31].
The proposal of FFDNet is to achieve the following three
objectives:

o Fast speed: The denoiser is expected to be highly efficient
without sacrificing denoising performance.

o Flexibility: The denoiser is able to handle images with
different noise levels and even spatially variant noise.

« Robustness: The denoiser should introduce no visual arti-
facts in controlling the trade-off between noise reduction
and detail preservation.

To overcome the drawbacks of existing CNN based denois-
ing methods, FFDNet was introduced. Specifically, FFDNet
is formulated as « = F(y, M;60), where M is a noise level
map. In the DnCNN model z = F(y;6,), the parameters o
vary with the change of noise level o, while in the FFDNet
model, the noise level map is modeled as an input and the
model parameters are invariant to noise level. Thus, FFDNet
provides a flexible way to handle different noise levels with a
single network.

Fig. 9. The architecture of the proposed FFDNet for image denoising. The
input image is reshaped to four sub-images, which are then input to the CNN
together with a noise level map. The final output is reconstructed by the four
denoised sub-images.

Fig.9 illustrates the architecture of FFDNet. The first layer
is a reversible downsampling operator which reshapes a noisy
image y into four downsampled sub-images. A tunable noise
level map M is furthere concatednated with the downsampled
sub-images to form a tensor y of size % X % x (4C + 1)
as the inputs to CNN. For spatially invariant AWGN with
noise level o, M is a uniform map with all elements being o.
With the tensor y as input, the following CNN consists of a
series of 3 x 3 convolution layers. Each layer is composed of a
specific combination of three types of operations: convolution

(Conv), rectified linear units (ReLU), and batch normalization

(BN). More specifically, Conv + ReLU is adopted for the
first convolution layer, Conv + BN + ReLU for the middle
layers, and C'onwv for the last convolution layer. Zero-padding
is employed to keep the size of feature maps unchanged
after each convolution. After the last convolution layer, an
upscaling operation is applied as the reverse operator of the
downsampling operator applied in the input stage to produce
the estimated clean image = of size W x H x C.

It can be concluded from the experiment that FFDNet
surpasses BM3D by a large margin and outperforms WNNM,
MLP and TNRD by about 0.2dB for a wide range of noise
levels on BSD68. And, FFDNet is slightly inferior to DnCNN
when the noise level is low (e.g., ¢ < 25), but gradually
outperforms DnCNN with the increase of noise level (e.g.,
o > 25). This phenomenon maybe resulted from the trade-off
between receptive field size and modeling capacity. FFDNet
has a larger receptive field than DnCNN, thus favoring for
removing strong noise, while DnCNN has better modeling
capacity which is beneficial for denoising images with lower
noise level.

There was plenty of effort for development of FFDnet.
An improved combination of nonlocally centralized sparse
representation (NCSR) with a FFDNet using a spatial local
fusion strategy (ICID) was shown in [149]. FFDNet with a
tunable noise level map was implemented as the input in [31]
for denoising. The proposed FFDNet worked on downsampled
sub-images, achieving a good trade-off between inference
speed and denoising performance. In contrast to the existing
discriminative denoisers, the implemented FFDNet enjoyed
several desirable properties, including: 1).the ability to handle
a wide range of noise levels effectively with a single network;
2).the ability to remove spatially variant noise by specifying
a non-uniform noise level map; and 3).faster speed than
benchmark BM3D even on CPU without sacrificing denoising
performance.

FFDnet was also applied in many different denoising sce-
nario. A FFDNet-based deep learning image change detection
framework was presented in [150], which achieved a good
trade off between inference speed and denoising performance.
A hybrid regularization model from deep prior and low-rank
prior was used in [151]. The local deep prior was explored by a
FFDNet. The final model, combined by the local deep and low-
rank priors, was solved by the alternating directional method
of multipliers under the plug-and-play framework. A different
approach for LAPAN-A3 satellite imagery denoising, namely
BM3D, FastNLM, and FFDNet was applied in [152]. This
method tried to compare in terms of denoising performance,
with three different cases of AWGN, model, and mixed
noise. A method that incorporated a weighted FFDNet and
a 2-DTV or 3-DTV denoiser together into the plug-andplay
framework for snapshot compressive imaging (SCI) denoising
was realized in [153].

GAN-based Convolutional Blind Denoising Neural Net-
work: GCBDNet

These approaches mentioned above needs to train a deep
denoising network with paired training datasets and learn
the underlying noise model implicitly, which obtains remark-
able results. For the denoising problem of known noise like
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Gaussian noise, it is possible to form paired training data
and leverage these methods to achieve state-of-the-art per-
formance. Particularly, CNNs based approaches don’t have to
depend on human knowledge of image priors. They could fully
exploit the great capability of the network architecture to learn
from data, which breaks through the limitations of prior based
methods and further improves the performance. In general, on
the premise that the paired training dataset is available, this
kind of approaches outperforms the previous methods.

However, such a paired training dataset would be unavail-
able or hard to derive in reality. Generally, only noisy images
with the noise information unknown can be collected. In
addition, real noises are more complex so that using the
existing models, which were trained for denoising known
noises (e.g. Gaussian noise), to address realistic problems
couldn’t achieve good results. As such, lacking paired training
datasets, these approaches might not be exploited to deal with
the blind denoising problems directly.

Unpaired Data
—_——

| Noisy Images | I Clean Images

Noise Block Extraction
Noise Blocks

Generative Adversarial
Network

X, v}

Convolutional Neural ‘
Network [

Fig. 10. An overview of the proposed GCBD framework. Given unpaired data,
approximate noise blocks extracted from noisy images are exploited to train a
Generative Adversarial Network (GAN)for noise modeling and sampling. A
large number of noise blocks are sampled from the trained GAN model. Then,
both extracted and generated noise blocks are combined with clean images to
obtain paired training data which is used to train a deep Convolutional Neural
Network (CNN) for denoising the input noisy images.

Thus, a GAN-CNN based framework was proposed to
address the problem of image blind denoising, which achieves
impressive results. An overview of the proposed CBDNet
frame work is illustrated in Fig.10. Given unpaired data,
approximate noise blocks extracted from noisy images are
exploited to train a GAN for noise modeling and sampling.
A large number of noise blocks are sampled from the trained
GAN model. Then, both extracted and generated noise blocks
are combined with clean images to obtain paired training data
which is used to train a deep CNN for denoising the input
noisy images.

TABLE III
THE PSNR (DB) RESULTS OF ALL THE COMPARED METHODS ON BSD68
IN SYNTHETIC NOISE DENOISING TASKS

Guassian Noise
Mode Non-Blind Blind
Method | BM3D | EPLL | NCSR | WNNM | DnCNN-B | GCBD
o=15 31.07 31.21 31.19 31.37 31.61 31.59
o=25 28.57 28.68 28.62 28.83 29.16 29.15
Mixture Noise
Mode Non-Blind Blind
Method | BM3D | EPLL | NCSR | WNNM | DnCNN-B | GCBD
s=15 41.08 41.06 41.06 41.04 40.75 42.00
s=25 37.85 37.76 37.98 37.63 37.54 39.87

The competing approaches include BM3D [116], EPLL
[118], NCSR [154], WNNM [117], DnCNN [26] and the
proposed GCBD. Firstly different types of zero-mean synthetic
noise data are generated and added to BSD68 to evaluate all
the competing methods. It’s essential to conduct experiments
of blind Gaussian denoising since Gaussian noise is one of the
widely-studied noises. Table III above shows different results
of all the compared methods. Though no noise information is
provided, GCBD still outperforms BM3D, EPLL, WNNM and
Multiscale. Particularly, GCBD achieves comparable results
with DnCNN-B.

Besides Gaussian noise, the performance of several methods
are further evaluated in complex noise denoising tasks. The
mixture noise [155] adopted in the experiments consists of
10 percent uniform noise [—s, s], 20 percent Gaussian noise
N(0,1) and 70 percent Gaussian noise N(0,0.01). Table
above also shows the quantitative results. In this task, GCBD
also performs much better than BM3D, EPLL, and WNNM,
which further shows the superiority of GCBD in blind denois-
ing problems.

It can be concluded that CNN has achieved a great success
in image recognition, mainly because the structure of CNN is
very suitable for learning image features. Because CNN has
the structure of local receptive field, which is very conducive
to sensory images like the human eye. Moreover, it has much
reduced parameters than multi-layer perceptron network, and
it is not easy to fall into overfitting. It is more suitable for
training deep network, and has achieved very good results
in image denoising. In particular, DnCNN, an image denois-
ing technology based on deep convolution residual learning
method, is one of the best in image denoising algorithms.

However, CNN-based image denoising method mainly fo-
cuses on extracting feature information and optimizing net-
work structure. CNN has certain limitations, which are mainly
reflected in the following two aspects. On the one hand, single
convolutional neural network has no memory function, and
shallow pixel-level information will be greatly lost during
pooling, resulting in residual noise. On the other hand, increas-
ing number of convolutional layers also leads to increasing
number of parameters and calculation consumption.

E. Residual Network: ResNet

The development of basic networks in deep learning ranges
from ALexNet (5 convolutional layers), VGG (19 convolu-
tional layers) to GoogLeNet (22 convolutional layers), and
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the network structure is getting deeper. This is because deeper
networks can extract more complex feature patterns, so that
theoretically deeper networks can yield better results. But as
the network depth constantly increases, the following two
problems often arise:

Firstly, the network convergence becomes very difficult or
even not converging accompanying with long time training.
Problem of gradient disappearance/gradient explosion will
appear.

o Gradient disappearance means that when the gradient
(less than 1.0) is backpropagated to the front layer, the
repeated multiplication may make the gradient infinitely
small.

o Gradient explosion means that when the gradient (greater
than 1.0) is backpropagated to the front layer, repeated
multiplication may make the gradient become very large
or even infinite, leading to overflow.

Secondly, with the network depth increasing, accuracy gets
saturated (which might be unsurprising) and then degrades
rapidly. Unexpectedly, such degradation is not caused by
overfitting, and adding more layers to a suitably deep model
leads to higher training error.

Therefore, on the one hand, the ResNet deep residual net-
work is proposed to solve the defects caused by the increasing
network depth promising good performance and efficiency
even in the case of deep layers (even at 1000 layers).

The ResNet based denoising approach on the other hand
can better compensate the limitations of CNN. In CNN,
light networks can acquire pixel-level features, and deep net-
works acquire more semantic features. Semantic information
is important in tasks such as identification, classification, but
shallow pixel-level features are more critical for tasks such as
denoising, super-resolution. Therefore, many residual network
based denoising methods are designed to make full use of the
shallow features.

A residual framework can be constructed from a plain
network by introducing a deep residual learning framework.
Instead of hoping each few stacked layers directly fit a desired
underlying mapping, these laryers explicitly fit a residual
mapping. Formally, denoting the desired underlying mapping
as H(x), let the stacked nonlinear layers fit another mapping
of F(z) := H(xz) — x. The original mapping is recast into
F(z) + . Tt is hypothesized that it is easier to optimize the
residual mapping than to optimize the original, unreferenced
mapping. To the extreme, if an identity mapping were optimal,
it would be easier to push the residual to zero than to fit an
identity mapping by a stack of nonlinear layers. Specially, the
formulation of F'(x)+x can be realized by feedforward neural
networks with “shortcut connections”. Shortcut connections
are those skipping one or more layers.

The residual network has become a popular topic in im-
age denoising field. Over 150 papers in recent years related
to residual network and deep learning technology in image
denoising are discussed in details in the following.

Some papers focused on developed the residual network
for general purpose denoise, including denoising, dehazing,
derain, light revising, resolution enhancement and image
restoration.

1) Denoising: Most of the denoising framework was based
on the combination of CNN and residual network [156]-
[174]. For example, One step forward was took in [156]
by investigating the construction of feed-forward DnCNNs
to embrace the progress in very deep architecture, learning
algorithm, and regularization method into image denoising.
Specifically, residual learning and batch normalization were
utilized to speed up the training process as well as boost the
denoising performance. Similarly, enhanced deep convolution
neural network (EDCNN), for image denoising was presented
in [160], which adopted the residual learning in both global
and local manners. Some other module would be added
into the network such as the dual path network (DPN) that
combined the advantages of residual and densely connected
networks used in [159], the non-local algorithm applied with
a lightweight residual CNN in [160], the chain of identity
mapping modules utilized in [161], the multi-wavelet residual
dense convolutional neural network presented in [166], and the
robust median filter (MF) forensic method using CNN based
multiple residuals learning realized in [171].

Some of the learning structure was developed further uti-
lizing the technique of dilate convolution [175]-[179]. The
proposed method in [175] combined dilated convolution with
skip connection of residual learning, which is trained by our
proposed mixed loss function during back propagation. Dilated
convolutions were used in the proposed model in [176] to
extract more features by enlarging the receptive field and
residual learning was adopted to overcome exploding gradient
and vanishing gradient problems. The dilated residual CNN
for Gaussian image denoising in [177] the DC-ResBlock, a
ResBlock with an extra dilated convolution in [178] and the
multi-scale trainable deep residual convolutional neural net-
work (DCMSNet) based on dilated convolution was proposed
in [179].

Some of the learning structure was developed with atten-
tion blocks [180]-[183] such as the deep boosting denoising
net (DBDnet) in [180], the attention residual convolutional
neural network (ARCNN) and its extension to blind denois-
ing, flexible attention residual convolutional neural network
(FARCNN) in [181], the PID controller guide attention neural
network (PAN-Net), taking advantage of both the proportional-
integralderivative (PID) controller and attention neural net-
work in [182] and the residual dilated attention Nnetwork
(RDAN). composed of a series of tailored residual dilated
attention blocks (RDAB) and residual convolution attention
blocks (RCAB) in [183].

The residual blocks could also been applied into other
networks structure. Taking U-net for example, in [184] a
residual dense neural network (RDUNet) was presented for
image denoising based on the densely connected hierarchical
network. The encoding and decoding layers of the RDUNet
consisted of densely connected convolutional layers to reuse
the feature maps and local residual learning to avoid the
vanishing gradient problem and speed up the learning process.
Multi-scale residual dense network (MRDN) and multi-scale
residual dense cascaded U-Net with block-connection (MCU-
Net) were built upon a newly designed multi-scale residual
dense block (MRDB) in [185], and MCU-Net used MRDB to
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connect the encoder and decoder of the U-Net.

As for GAN, a grouped residual dense network (GRDN)
combined with GAN was presented in [186]. Also another
novel algorithm was shown in [187] to obtain more image
features by adding multi-level convolution of the generative
network, and adds multiple residual blocks and global residu-
als to extract and learn the features of the input noisy image
to avoid the loss of features. Apart from the U-net and GAN,
a Monte Carlo denoising network was combined with residual
aggregation module and dense connections in [188].

2) Dehazing: The residual networks for general denoising
could also be applied for dehazing [189]-[206]. The end-to-
end dual attention fusion network (DAF-Net) in [189] for
dehazing consisted of three residual groups, and each group
comprises three residual dual attention fusion modules. En-
coder recurrent decoder network (ERDN) in [190] consisted of
two key components an encoder and a decoder. The proposed
encoder was constructed by a residual efficient spatial pyramid
(rESP) module such that it could effectively process hazy
images at any resolution to extract relevant features at multiple
contextual levels.

3) Derain: Some residual networks for general denoising
were be explore to derain [?], [?], [207]-[210]. For example,
a robust rain removal method was proposed in [207] with
single images using an attentive composite residual network.
A single-to-dual encoder-decoder structure was constructed,
which consisted of an attentive net that identififies regions
containing rain components during encoding, followed by a
dual-channel architecture which recovered the background and
detail components of the identified regions during decoding.

4) Light Revising: The residual networks for general de-
noising were also useful in light revising [211]-[215]. On the
one hand, the network was required for light enhancement.
The deep lowlight residual convolutional network (LRCNN)
in [211] was proposed , which utilized the sparse coding
feature to get the true signal and adaptively adjusted the image
exposure in the low-light state. The residual connections in
LRCNN helped to preserve more potential detail information
in the original picture and accelerate the training speed of the
network. On the other hand, the network was required for burst
condition. Inspired by the extension of the gradient descent
method that could handle non-smooth functions, namely the
proximal gradient descent, and modern deep learning tech-
niques, a residual based convolutional iterative network with
a transparent architecture was investigated in [213].

5) Resolution: The ResNet for denoising was also popular
in image resolution enhancement [216]-[224]. For example.
The edge profile super-resolution (EPSR) method for structural
information preservation and texture restoration was presented
in [217]. EPSR was achieved by stacking modified fractal
residual network (mFRN) structures hierarchically and repeat-
edly. Each mFRN was composed of many residual edge profile
blocks (REPBs) that extract features and preserve the edge,
structure, and texture information of the image.

6) Restoration: The ResNet for denoising was also useful
in image restoration [225]-[231]. For example, to advance the
practicability of restoration algorithms, a novel single-stage
blind real image restoration network (R2Net) was realized

in [227] by employing a modular architecture. A residual
on the residual structure was utilized to ease low-frequency
information flow and feature attention was applied to exploit
the channel dependencies.

The ResNet has also been widely applied in different image
denoising scenario, including the medical image, synthetic
aperture radar (SAR) image [232]-[240], hyperspectral image
[241]-[243], seismic image [244]-[254], and video [255]-
[259]. Specially, as for medical image, the ResNet could be
used for computed tomography (CT) [260]-[268], magnetic
resonance imaging (MRI) [269], [270], [270]-[272], X ray
[273], optical coherence tomography (OCT) [274], [275],
positron emission computed tomography (PET) [276]-[279],
laser [280], and 3D image denosing [281]-[283]. Meanwhile,
the ResNet has also been utilized in some other special
practical application [?], [284]-[303].

The ResNet-based image denoising method has relatively
good characteristic expression ability for long-distance spatial
correlation by maximizing information flow. However, a main
problem in such methods is that multiple use of residual
connections can easily lead to overfitting of the network.

F. Generative Adversarial Networks: GAN

Most CNN and ResNet-based denoising methods require
noise-free clear image and noisy images pairs for supervised
learning training samples. But in practice, the acquisition of
paired training samples is difficult. Due to the strong learning
ability of GAN, realistic noise maps can be obtained through
adversarial learning training strategies, which can alleviate the
problem of insufficient paired training samples to some extent.

GAN was developed by Ian Goodfellow et al. [304] in
the year 2014. GANs consist of two neural networks: one
is the Generator and the other is the Discriminator. The
goal of the Generator is to learn to generate fake sample
distribution to deceive the Discriminator whereas the goal of
the Discriminator is to learn to distinguish between real and
fake distribution generated by the Generator.

Rea
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Fig. 11. Basic GAN architecture.

The general architecture of GAN which is comprised of the
Generator and the Discriminator is shown in Figure 11. The
Generator (G) takes in as input some random noise vector Z
and then tries to generate an image using this noise vector
indicated as G(z). The generated image is then passed to the
Discriminator and based on the output of the Discriminator the
parameters of the Generator are updated. The Discriminator
(D) is a binary classifier which simultaneously takes a look
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at both real and fake samples generated by the Generator
and tries to decide which ones are real and which ones are
fake. Given a sample image X, the Discriminator models the
probability of the image being fake or real. The probabilities
are then passed back to the Generator as feedback.

Over time each of the Generator and the Discriminator
model tries to one up each other by competing against each
other this is where the term “adversarial”’ of Generative
Adversarial Networks comes from, and the optimization is
based on the minimax game problem. During training both
the Generator’s and Discriminator’s parameters are updated
using back propagation with the ultimate goal of the Generator
is to be able to generate realistic looking images and the
Discriminator to get progressively better at detecting generated
fake images from real ones.

The generative adversarial network requires calculating the
loss of the generator (G) and the discriminator (D) during
training, and the objective function is shown in Equation:

mé'n max V(D,G) = Ez pyyy00 [l0gaD(2)]
D(G(2)))]

The GAN has already become a popular topic in image
denoising field. Over 170 papers in recent years related to
GAN in image denoising are discussed in details in the
following.

Some papers focused on developed the GAN for general
purpose denoise, including denoising, dehazing, derain, deblur,
detarget, light revising, image enhancement, image super-
resolution and image restoration.

1) Denoising: Different kinds of GAN were designed for
denoising [32], [305]-[326]. Some focused more on the out-
side noise. For example, the proposed GAN in [305] had a new
generator network to produce denoised images with noisy im-
ages as input, and the entire network was trained using a new
loss to represent the distance between the data distribution of
clean images and denoised images. Asynchronous interactive
generative adversarial network (AI-GAN) for denoising was
proposed in [308], which decomposed the degraded signal into
original and interfering parts progressively through a double
branch structure. A novel boosting generative adversarial net-
work (BoostNet) that not only combined all advantages of a
generative adversarial sub-network and a deep convolutional
neural network was shown in [310], which also successfully
avoided the serious problems caused by the corruption and
instability of training. Some focused more on the noise attack
from the adversarial network. For example, a detector network
was constructed in [306], which served as the dual network
for the target classifier to be defended, being able to detect
patterns of attack noise. The generative cleaning network and
detector network were jointly trained using adversarial learn-
ing, fighting against each other to minimize both perceptual
loss and adversarial loss.

2) Dehazing: Various kinds of GAN were also designed for
dehazing [327]-[345]. Most of them focused on single image
dehazing. For example, conditional adversarial networks based
dehazing of hazy images (CANDY) was used in [327], which
was a fully end-to-end model which directly generated a clean
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haze-free image from a hazy input image. Some focused on
hyperspectral scenario. For example, the SkyGAN proposed
in [328] was used for haze removal in aerial images, which
consisted of a domain-aware hazy-to-hyperspectral (H2H)
module, and a conditional GAN (cGAN) based multi-cue
image-to-image translation module for dehazing.

3) Derain: There were also GAN applied for derain [580-
584]. Author in [346]-[349] proposed to remove raindrops
and improve image quality in the spatio-temporal domain
by leveraging the inherent robustness of adopting motion
cues and the restorative capabilities of conditional generative
adversarial networks. A competitive single-image baseline that
was capable of estimating the raindrop locations in a self-
supervised manner, which was used later to bootstrap the novel
spatio-temporal architecture.

4) Deblur: The GAN was also investigated in the deblur
task [350]-[352]. A deep pyramid generative adversarial net-
work with local and non-local similarity features, called LNL-
PGAN, for natural motion image deblurring in [350] was
proved to have superior performance against state-of-the-art
methods on natural motion image deblurring in terms of visual
quality and objective index.

5) Detarget: Some papers used the GAN for removal of
specific target [353]-[355]. A composition GAN for removing
snowflakes from a single image in [353], which comprised
clean background module and a snow mask estimate module.
The new background edge estimation algorithm based on
the wasserstein generative adversarial network (WGAN) was
proposed in [354] to distinguish the edges of the back-
ground image from the reflection. The proposed GAN in
[355] eliminated hair from dermoscopic images by inducing
a reconstructed distribution of images with hair to resemble a
hairless distribution.

6) Light Revising: GAN was also used for denosing the
image captured in the low-light environments [356], [357],
[357]-[359]. For example, an mixed-attention guided genera-
tive adversarial network (MAGAN) was presented in [358] for
low-light image enhancement in a fully unsupervised fashion.
A mixed-attention module layer was introduced, which could
model the relationship between each pixel and feature of the
image.

7) Image Enhancement: GAN could be used for image
enhancement. An unpaired two-way GAN learning method
for image enhancement was applied in [360]. Given a set
of photographs with the desired characteristics, the proposed
method learned a photo enhancer which transforms an input
image into an enhanced image with those characteristics.

8) Image Restoration: As for image restoration [361]-
[367], GAN was also useful, which focused more on recov-
ering the low-quality image to original high-quality image.
Inspired by the recent success of image-to-image translation,
the unsupervised Cycle-consistent based framework presented
in [361] consisted of improved GAN. Since GAN-based meth-
ods tended to produce various artifacts with different models,
model average could realize a smoother control of balancing
artifacts and fidelity.

9) Image Super-resolution: GAN could be used for image
super-resolution [368]-[379]. For example, a denoised high
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resolution generative adversarial network (DHRGAN) was
presented in [368], which was capable of handling noise
removal from given sample images while trying to super-
resolve it to the desired magnification. As per knowledge, this
was the first GAN framework equipped to remove noise while
simultaneously trying to magnify images.

Considering from the denoising object, the GAN has also
been widely applied in different image denoising scenario,
including the medical image, synthetic aperture radar (SAR)
image [239], [380]-[384], seismic image [253], [385]-[390],
stellar image [391], [392], microscopy image [393]-[396],
underwater image [397]-[402] and some others [121], [403]-
[405]. Specially, as for medical image, the GAN could be used
for CT [406]-[434], MRI [435], OCT [436]-[445], PET [446]-
[451], X-ray [452], [453], ultrasound [454]-[457]. Some spe-
cific medical image processing problems could be well solved
by GAN . For example, the novel joint framework proposed in
[452] was for accurate COVID-19 identification by integrating
an enhanced super-resolution GAN with a noise reduction
filter bank of wavelet transform CNN on both Chest X-ray
and chest tomography images for COVID-19 identification.

Considering from the denoising application, the GAN has
also been utilized in some other special practical application.
For example, the GAN was useful in investigation on factory
production [458]-[465]. A method for detecting defects in rub-
ber gloves based on normal samples (no defects) was proposed
in [461], where a noise-reducing convolutional autoencoder
was built in the network model as a generation network,
and the least square loss is introduced for the model of
confrontation training. Also, the GAN was useful in recovering
the damaged documents [466]-[468]. And it also was utilized
in facial image propblems [469]-[471] such as emotion en-
hancement, face recovering, face recognition. The GAN has
also been used for dealing with dynamic video image [472],
[473], such as automatic license plate recognition (ALPR) of
moving vehicle and anomaly detection in surveillance systems.

The GAN-based image denoising method fits the data
distribution through an adversarial learning strategy between
the generator and the discriminator. The generative adversarial
network has four advantages compared with other generative
models:

1). Based on the actual results, GAN is able to produce
better samples with sharper and clearer images than other
models.

2). A generative adversarial network framework can be used
to train any kinds of generator networks. Different from most
of other generation frameworks requiring to have specific
functional forms, such as Gaussian output layer, GAN has
fewer limitations. It is also important that all other generator
frameworks require non-zero mass while for GAN, points can
be generated only on the thin manifold which is close to the
data.

3). GAN does not need to design models following any
kind of factorization. It can be functioned with any generator
network or discriminator.

4). GAN does not need to repeatedly sample using Markov
chains or inference during learning, avoiding the problem of
approximating the intractable probability.

Comparing with PixelRNN, GAN can create a sample with
less runtime. GAN produces one sample at a time, while Pixel-
RNN needs to produce one pixel at a time. As for VAE, GAN
has no lower limit of change. If the discriminator network fits
perfectly, then it can recover the training distribution perfectly.
Various adversarial generation networks will gradually agree
towards asymptotically consistent, while the VAE turning bias.
Comparing with Boltzmann and GSN, there is neither a lower
bound nor a tricky partition function for GAN. The samples
can be generated at one time, rather than repeated utilizing the
Markov Chain operator. Referring to NICE and Real NVE,
there is no limitation on the size of the latent code for GAN.

Currently the main problems of GAN can be summarized
as following:

1). The distribution of the generated model has no dominant
expression and shows poor interpretability.

2). Generators and discriminators need to update the param-
eters synchronously, while it is difficult to generate discrete
data.

3). The non-convergence problem is hard to solve for GAN.

4). The Nash equilibrium is impossible to realize. All
theories suggest that the GAN should perform well on a Nash
equilibrium, but the equilibrium can only be guaranteed with
gradient descent in the case of a convex function. Thus, the
solution of Nash equilibrium has not been found. When both
sides of the game are represented by neural networks, the
strategy will never reach stable without an equilibrium.

5). The collapse problem will always exist. The GAN model
is defined as a min-max problem without loss function, and
it is difficult to distinguish progress during training. In the
learning process, GAN may encounter the crash problem
(collapse problem), where the generator begins to degenerate
and always generates the same sample points. When the
generative model collapses, the discriminant model will also
point in similar directions to similar sample points, and the
training cannot continue.

6). GAN does not require prior modeling leading to over
freedom problem that is uncontrollable. In contrast to other
generative models, GAN no longer requires a hypothetical
data distribution and sampling on the distribution directly ap-
proximating ground truth data. However, this unpremodelling
method will stuck in over freedom situation. For large image
with more pixels, the GAN based approach is sometimes
uncontrollable for training.

G. Graph Neural Network: GNN

GNNs are neural models that capture the dependence of
graphs via message passing between the nodes of graphs. In
recent years, variants of GNNs such as graph convolutional
network (GCN), graph attention network (GAT), graph re-
current network (GRN) have demonstrated ground-breaking
performances on many deep learning tasks.

CNNs can only operate on regular Euclidean data like
images (2-D grids) and texts (1-D sequences) while these data
structures can be regarded as instances of graphs. Therefore,
it is straightforward to generalize CNNs on graphs. Based on
CNNs and graph embedding, variants of GNNs are proposed to
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collectively aggregate information from graph structure. Thus
they can model input and/or output consisting of elements and
their dependency.

The general design pipeline of a GNN model for a specific
task depends on a specific graph type. Generally, the pipeline
contains four steps.

1). Find graph structure: At first, the graph structure needs
to be figured out in the application. There are usually two
scenarios: structural scenarios and non-structural scenarios.
In structural scenarios, the graph structure is explicit in the
applications. In non-structural scenarios, graphs are implicit
so that graph is required to be built from the task. The later
design process attempts to find an optimal GNN model on this
specific graph.

2). Specify graph type and scale: After finding graph
structure, the graph type and its scale needs to be decided.
Graphs with complex types could provide more information
on nodes and their connections. Graphs are usually categorized
as:

o Directed/Undirected Graphs: Edges in directed graphs are
all directed from one node to another, which provide
more information than undirected graphs. Each edge in
undirected graphs can also be regarded as two directed
edges.

« Homogeneous/Heterogeneous Graphs: Nodes and edges
in homogeneous graphs have same types, while nodes and
edges have different types in heterogeneous graphs. Types
for nodes and edges play important roles in heterogeneous
graphs and should be further considered.

« Static/Dynamic Graphs: When input features or the topol-
ogy of the graph vary with time, the graph is regarded as a
dynamic graph. The time information should be carefully
considered in dynamic graphs.

3). Design loss function: In this step, the loss function
should be designed based on task type and the training setting.
For graph learning tasks, there are usually three kinds of tasks:

e Node-level: Tasks focus on nodes, which include node
classification, node regression, node clustering, etc. Node
classification tries to categorize nodes into several classes,
and node regression predicts a continuous value for each
node. Node clustering aims to partition the nodes into
several disjoint groups, where similar nodes should be in
the same group.

o Edge-level: Tasks are edge classification and link predic-
tion, which require the model to classify edge types or
predict whether there is an edge existing between two
given nodes.

e Graph-level: Tasks include graph classification, graph
regression, and graph matching, all of which need the
model to learn graph representations. From the perspec-
tive of supervision, the graph learning tasks can be cat-
egorized into three different training settings: supervised
setting, semi-supervised setting, transductive setting, un-
supervised setting.

4). Build model using computational modules: Finally,

the model can be built using the computational modules.
Some commonly used computational modules are: propaga-

tion module, sampling module, pooling module. With these
computation modules, a typical GNN model is usually built
by combining them.

Since GNN has become a popular topic in image denois-
ing, some papers developed the GNN structure. Cross-Patch
Net (CPNet), which was the first deep- learning-based real
image denoising method for high resolution (HR) input was
presented in [474]. The graph convolutional network (GCN)
was used to capture the crosspatch contextual dependency
and optimize the training loss to exploit the properties of
the noise level map. The robustness merit of model-based
approaches and the learning power of data-driven approaches
for real image denoising were combined in [475]. Specifically,
by integrating graph Laplacian regularization as a trainable
module into a deep learning frame work, the framework
was less susceptible to overfitting than pure CNN based
approaches, achieving higher robustness to small datasets and
cross-domain denoising. A novel end-to-end trainable neural
network architecture was proposed in [476]. The employing
layers was based on graph convolution operations, thereby
creating neurons with non-local receptive fields. The graph
convolution operation generalized the classic convolution to
arbitrary graphs. A dual-mode iterative denoiser was used
in [477] to tackle the weak label challenge for anomaly
detection. The graph convolution neural network (GCN) was
applied to explore the temporal correlation and the feature
similarity between video clips within different rough labels,
where the classifier could be constantly updated in the label
denoising process. GNN using GraphBio was constructed in
[478] as graph filter. Unlike convolutional filters in previous
GNNs, the employed GraphBio was analytically defined and
required no training, and optimized the end-to-end system
only via learning of appropriate graph topology at each layer.
GNN that employed grap convolutional layers in order to
exploit both local and non-local similarities was presented in
[479]. The graph convolutional layers dynamically constructed
neighborhoods in the feature space to detect latent correlations
in the feature maps produced by the hidden layers. A new
image denoising method using multiple-minimum cuts based
on the maximum-flow neural network (MF-NN) was used in
[480]. The classical graph signal filtering was combined with
deep feature learning in [481] into a competitive hybrid design,
that utilized interpretable analytical low-pass graph filters.

GNN has also been widely applied in different image
denoising scenario. Two graphs were specially designed in
[482] to extract representations from new dimensions. The first
graph models the global spatial relationship between pixels
in the feature, while the second graph models the interrela-
tionship across the channels. Motivated by the property of
GCN, in [483], an encoder-decoder-based graph convolutional
network (ED-GCN) was invented for CT image denoising.
Using two cascaded graph convolutional networks, FaceGraph
performsed global-to-local discrimination in [484] to select
useful data in a noisy environment. A deep learning method
that could simultaneously denoise a point cloud and remove
outliers in a single Model was applied in [485], whose core
was a GCN that was able to efficiently deal with the irregular
domain and the permutation invariance problem.
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As for denoising using GNN networked topology methods,
limitations are reflected in the fact that the unstable dynamic
topology reducing the expression ability of features which
will negatively affect the denoising performance. The graph
network cannot not extract local and global features as CNN,
and the utilization of local information in the neighborhood
will be directly affected by the topological instability.

H. Deep Learning Conclusion

In recent years, a series of improved approaches combining
multi-scale feature fusion, transfer learning, and dual tasks
based on the CNN, Res Net, and GAN networks continuously
emerge.

1) Denoising approach combined with multi-scale features
fusion: The model trained by a single network structure is
only able to extract limited features, and the feature fu-
sion between different scales is conducive to improving the
expression power of the noise. In the feature fusion, the
prior information can be considered contributing to accurately
grasp the target objects. There are various ways for realizing
multis-cale fusion. Jia et al. [486] enhances the long-term
memory of the network during forward propagation and back
propagation by solving the fractional optimal control problem
(FOC) and performing an explicit discrete construction of
fractional Differential equations (FODE). Liu et al. [487]
designs densely connected encoders to connect features of
different scales, making full use of context information. And
the dense connection deepens the network and reduces the
problem of gradient vanishing. Wang et al. [488] introduced
the self-attention module (Self-Attention) to obtain the spatial
and interchannel dependencies without increasing the number
of parameters nor reducing the channel dimension, enhancing
the adaptation of feature fusion to each channel. In addition,
the pyramidal mode denoising network [489] can realize the
information fusion of different scales through downsampling
operations.

2) Duel-task image denoising method: Image denoising
requires the balancing of two mutually exclusive targets,
namely noise removal and preserving true details. Wang et al.
[490] proposed dual-task denoising network combining GAN
with CNN, where GAN was used to remove the noise, and
CNN was used to recover the original image details. Two
subnets were trained alternately to retain more details and
remove noise through adaptive regulatory parameters. Unlike
the above method, Tian et al. [491] adopted the reconstruction
idea to design a Dude Net consisting of 4 modules, including
feature extraction, enhancement, compression, and reconstruc-
tion. Data enhancement improves feature expression power,
and data compression is conducive to reducing redundant
information, reducing computational cost and memory con-
sumption. The significant advantage of such dual-task image
denoising is its ability to find equilibrium points between
mutually exclusive targets, providing great help in solving
problems such as smoothing, blurring, and artifacts.

3) Migration learning of the image denoising method:
For the image denoising problem, on the one hand, due to
the small number and single type of real image datasets,

it is insufficient to train CNN which is prone to overfitting
problem. On the other hand, the CNN trained by Gaussian
noise cannot apply well for the real Gaussian-containing im-
ages ,because of overfitting. On the contrary, transfer learning
denoising methods not only converge faster and achieve well
denoising performance. It can also save a lot of memory
by adaptive adjusting parameters. As described in Kim et
al [492], AINDNet learns general invariant information from
synthetic noise images and domain-specific information about
real images from the continuous wavelet domain. AINDNet
thus transfers the denoising task from synthetic noise to real
noise, promoting the performance of denoising.

These improved image denoising methods achieve great
performance on synthetic noise and real noise, but still
have some limitations, such as insufficient accuracy when
fitting real noise, difficulty in realizing dense distributed
noise remove, uncontrollable relationship between denoising
and details keeping in the process of convolutional feature
extraction, misidentified noise resulting in noise residue and
poor denoising effect.

In conclusion, image denoising algorithms designed based
on different network architectures have different priorities
in dealing with denoising problems. Those image denoising
methods based on CNN and ResNet focuses on the calculation
of long-distance correlations by maximizing information flow,
improving the utilization of high and low frequency informa-
tion and the expression ability of noise. The GAN-based image
denoising methods focus on expanding the image dataset and
improving the network denoising performance by increasing
the number of training samples. GNN is mainly used to
process unstructured data. Due to the complex real noise
distribution, diverse types and difficult to parameterize, the
traditional convolutional feature extraction method is difficult
to meet the needs of practical applications, promoting the
development of GNN. However, the training effect of graph
network is unstable due to the complex topology and size are
unstable. Therefore, when studying the image denoising task,
it is necessary to select the basic network according to the
problems existing in the current image denoising field and the
problems to be solved.

IV. THERMAL IMAGE DATASET BASED DENOISING
EXPERIMENT

Since most of the deep learning based denoising methods
are tested based on the RGB datasets, this overview also
performs these denoising methods on the thermal datasets for
comparison. Two kinds of experiment, simulation test and real
test, have been implemented to exam the denoising perfor-
mance of these deep learning based methods on thermal image.
Simulation test uses the simulated thermal image transferred
from the RGB image. Real test uses the thermal image directly
from the infrared data set.

A. Brief Introduction of Deep Learning Based Denoising on
Thermal Image

In section 3, we have discussed different kinds of deep
learning based denoising algorithms and corresponding ap-
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plication. Specially, papers related to thermal image denois-
ing have been included. As one of the typical multi-modal
denoising task, deep learning based thermal image denoising
has been demonstrated in detail. To further introduce deep
learning based thermal image denoising, we will give a brief
and pertinent review on the topic again before we display our
experiment results.

There are many paper considering how to remove noise
from infrared image using deep CNN. For example, a infrared
image denoising network was investigated in [493], whose
structure composed of convolutional subnet and deconvoluted
subnet. The convolution subnet extracted the features of the
image, and the deconvolution subnet reconstructed the original
image through the feature map. In [494], a deep CNN was
used for single infrared image stripe noise removal. Similarly,
a new deep network architecture for removing a stripe noise
from a single meteorological satellite infrared cloud image
was presented in [495]. In the proposed framework, a residual
learning was utilized to directly reduce the mapping range
from input to output, which speeded up the training process
as well as boosts the destriping performance. Apart from
focusing on the strip noise removal, non-uniformity correction
problems such as loss of image details and blurred edge of
image in infrared image was also investigated. An improved
non-uniformity correction method of infrared images based
on convolution neural network using long-short connections
(LSC-CNN) was proposed in [496].

Some other papers focused on the super-resolution of
thermal image. A modified architecture inspired by SRGAN
was used for thermal image super-resolution in [497]. In
order to make the model faster to train while having less
training parameters, the number of residual blocks was reduced
to 5. The batch normalization layers were excluded from
the residual blocks of both the generator and discriminator
networks to remove the redundancy. Before each convolution
layer, reflective padding is utilized at the edges to preserve
the size of the feature maps. Similarly, a channel splitting-
based convolutional neural network (ChasNet) was introduced
in [498] for thermal image SR eliminating the redundant
features in the network. The use of channel splitting extracted
the versatile features from low-resolution (LR) thermal image,
helping to preserve high-frequency details in the SR images.
A deep learning-based thermal image restoration method that
simultaneously performed super-resolution reconstruction and
deblurring was investigated in [499]. A deblur-SRRGAN
was proposed for thermal image reconstruction and a light-
weighted Mask R-CNN was used for object detection in the
reconstructed thermal image.

Some papers were more interested in the super-resolution
of thermal video. For example, a new method was introduced
in [500] to achieve high dynamic range infrared image com-
pression. In the proposed framework, the Laplace differential
and Histogram projection were respectively used to sharpen
and compress the raw image. Another paper presented a
comparative analysis of super resolution (SR) techniques based
on deep neural networks (DNN) that were applied on thermal
video dataset in [501]. SRCNN, EDSR, auto-encoder, and
SRGAN were also discussed and investigated. Further the
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results on benchmark thermal datasets including FLIR, OSU
thermal pedestrian database and OSU color thermal database
were evaluated and analyzed.

B. Deep Learning Based Simulation Test

Training Data Set:

The transformation training datasets are divided into two
categories: gray-noisy and color-noisy images. The gray RGB
image will be transfer to simulated thermal in gray scale
and the color RGB image will be transferred to simulated
thermal with color channel. And the relative noisy image will
be formed by adding additive Gaussian noise on the original
image. The gray-noise group includes the BSD400 dataset and
Waterloo Exploration Database. Specially, the BSD400 dataset
is composed of 400 images in .png format, and is cropped
into a size of 180 x 180 for training a denoising model.
The Waterloo Exploration Database consisted of 4744 nature
images with a .png format. Color-noisy images in cludes
the BSD432, Waterloo Exploration Database and polyU-Real-
World-Noisy-Images datasets. Specifically, the polyUReal-
World-Noisy-Images consisted of 100 real noisy images with
sizes of 2784 x 1856 obtained by five cameras: a Nikon D800,
Canon 5D Mark II, Sony A7 II, Canon 80D and Canon 600D.
Testing Data Set:

The test datasets includes gray-noisy and color-noisy image
datasets. The gray-noisy image dataset was composed of Set12
and BSD68. The Setl2 contained 12 scenes. The BSD68
contained 68 nature images. The color-noisy image dataset
included CBSD68, Kodak24, McMaster, cc, DND, NC1, SIDD
and Nam. The Kodak24 and McMaster contained 24 and 18
color noisy images, respectively. The cc contained 15 real
noisy images of different ISO, i.e., 1600, 3200 and 6400. The
DND contained 50 real noisy images and the clean images
were captured by low-ISO images. The NC12 contained 12
noisy images and did not have ground-truth clean images.
The SIDD contained real noisy images from smart phones,
and consisted of 320 image pairs of noisy and ground-truth
images. The Nam included 11 scenes, which were saved in
JPGE format.

Experiment Results:

To verify the denoising performance of methods mentioned
in the above Section, some experiments are conducted on
the BSD68, CBSD68, Kodak24, McMaster datasets in terms
of quantitative and qualitative evaluations. The quantitative
evaluation is shown in the table, which mainly used peak-
signalto-noise-ratio (PSNR) values of different denoisers to
test the denoising effects. The qualitative evaluation used
visual figures to show the recovered clean images in Fig. 12.

Table IV and Table V show the comparison of PSNR values
of the simulation results of the gray-noisy and color-noisy
group set. It can be seen from the experimental data that each
network effectively improves the PSNR of the images under
different noise levels indicating the denoising effectiveness.
Specifically, the denoising performance of these methods are
similar with similar PSNR values at the same noise level.
Moreover, at the same noise level, the difference of PSNR
between the traditional comparison method BM3D and deep
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(a) Original  (b) Noisy  (c) BM3D (d) Auto

learning is relatively high, indicating improvement in infrared
image denoising. Comparing under the same method, the
results of PSNR at different noise levels tends to decrease
with the increasing of noise level, which shows that the effect
of denoising begins to weaken with rising noise level.

TABLE IV
AVERAGE PSNR VALUES ON THE GRAY-NOISE GROUP UNDER ADDITIVE
WHITE NOISY WITH VARIOUS NOISE LEVELS.

Dataset Methods o =15 o=25 o =50
BM3D 3191 29.45 26.13
AutoEncoder 32.17 29.64 26.45
BSD6S DDRN 32.19 29.48 27.07
DnCNN 32.04 30.11 27.10
FFDNet 32.55 30.28 27.21
SRGAN 32.80 30.34 27.44
BM3D 34.93 33.22 30.33
CBSD6S DDRN 33.93 31.24 27.86
DnCNN 34.17 32.56 29.48
FFDNet 34.89 33.06 30.07
BM3D 33.25 30.85 27.40
Kodak24 DnCNN 33.49 31.04 27.51
FFDNet 33.21 30.98 27.67
BM3D 32.17 29.80 26.05
McMaster DnCNN 31.99 29.46 25.70
FFDNet 32.29 29.57 25.84

C. Deep Learning Based Real Test

Training and Testing Data Set

Both of the training and testing data for real test come
from the real thermal image data set such as FLIR, OSU
thermal pedestrian database and OSU color thermal database
which are all benchmark thermal datasets. The video frames
are recorded at a rate of 30fps while the image sequences
are sampled at 1fps or 2 fps. With more than 14,000 total
images, it includes numerous classes like person, car, bicycle,
dog etc. OSU thermal pedestrian database is captured using
Raytheon 300D thermal sensor core at sampling rate less than
30Hz. Total 284 frames are contained inside the dataset. OSU

(e) DNCNN

() BRDNet

(f) FFDNet

Fig. 12. Denoising results of different methods on gray-noisy group one image from the BSD68 with o = 15: (a) original image, (b) noisy image/24.62dB, (c)
BM3D/35.29dB, (d) AutoEncoder/34.98dB, (e) DnCNN/36.20dB, (f) FFDNet/36.75dB, (g) DDRN/35.94dB, (h) SRGAN/36.03dB, and (i) BRDNet/36.59dB.

(g) DDRN  (h) SRGAN

TABLE V
AVERAGE PSNR VALUES ON THE COLOR-NOISE GROUP UNDER ADDITIVE
WHITE NOISY AT VARIOUS NOISE LEVELS.

Dataset Methods o =15 o=25 o =50
BM3D 31.05 28.57 25.62
AutoEncoder 35.51 35.63 35.19
BSD6S DDRN 34.72 35.87 34.78
DnCNN 36.22 36.71 35.74
FFDNet 33.01 35.73 35.35
SRGAN 35.22 36.34 3543
BM3D 33.52 30.71 27.38
CBSD6S DDRN 33.93 31.24 27.86
DnCNN 33.98 31.24 27.86
FFDNet 33.76 31.18 27.48
BM3D 34.28 31.68 28.46
Kodak24 DnCNN 34.73 32.23 29.02
FFDNet 34.55 32.11 28.99
BM3D 34.06 31.66 28.51
McMaster DnCNN 34.08 32.47 29.21
FFDNet 34.47 32.25 29.14

color thermal database is a mix blend of thermal and color
imagery. Acquired using 25 mm Raytheon Palm IR 250 D
thermal sensor, sampling rate is nearly 30Hz with total of
17089 images (colored as well as non-colored).

Experiment Set Up

The training and testing processes for the proposed al-
gorithms are conducted on Google Colab which provide
frees GPU and TPU access to accelerated. Furthermore, the
algorithms were implemented in Python (version 3.7). As
for the deep learning library, Keras application programming
interface (API) (version 2.1.6-tf) with Tensorfiflow backend
engine (version 1.9.0) are used. The image processing part
was implemented using the OpenCV library (version 4.3.0).

Experiment Results
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(b) DNCNN

(c) DDRN

Fig. 13.
one image with ¢ = 25: (a) BM3D/31.68dB, (b) DnCNN/29.08dB, (c)
DDRN/30.03dB, (d) SRGAN/30.87dB.

(d) SRGAN

Denoising results of different methods on color-noisy group

The PSNR and SSIM values of the real test of the gray-noisy
and color-noisy group under additive Gaussian noise condition
where o0 = 25 are shown in the Table VI. It can be figured
out that deep learning network can help with the noisy thermal
image, improving the view quality. However, campared with
the simulation test results denoising with simulated thermal
image, the denoising performance on the real thermal image
is worse under same noise level. The average PSNR and SSIM
values are relative low in the case of real thermal image.

a) DnCNN b) Auto
c) DDRN d) FFNet

Fig. 14. Denoising results of different methods on gray-noisy group one
image with ¢ = 25: (a) DnCNN/28.36dB, (b) AutoEncoder/34.78dB, (c)
DDRN/26.03dB, (d) FFDNet/28.92dB.

The qualitative evaluation of the real test has been shown
in the following, which display the recovering results of gray-
noisy group in Fig.13 and Fig.14, and the recovering results
of the color-noisy group in Fig.15 and Fig.16. Specially,
the PSNR values for different methods have been noted in
the figures. It can be roughly concluded that most of the
deep learning technology perform efficiently in thermal image
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denoising as the networks reconstruct the fine-texture details
and maintains the high-frequency component of the frame.
As a result, the frames appear to be less blurry by resembling
more like the original one. However, sometimes these methods
often suffer from non-convergence and diminished gradient
problem and are difficult to train.

TABLE VI
AVERAGE PSNR AND SSIM VALUES ON BOTH COLOR-NOISY AND
GRAY-NOISY GROUPS UNDER ADDITIVE WHITE NOISY AT o = 25.

Dataset Methods  Channel PSNR SSIM
D G e oo
OSU AutoEncoder ‘;L(; gzgg 8312
DDRN U 0603 a9
paony  color 00T e
FENet ;iif’yr %9 0914
sRaaN 2T B Do
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FLIR AutoEncoder ‘;;igf 2(8)1; 822515
DDRN ' 3003 0o
Daony  Color O
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V. CONCLUSION

Image denoising based on visible and infrared images
(RGB-infrared) has attracted considerable attention and made
significant progress in the past few years. In this paper, we
comprehensively review existing RGB-infrared deep learning
based denoising methods in the literature. These approaches
can be generally divided into five categories: MLP, CNN,
ResNet, GAN, GNN. Each category is introduced and summa-
rized according to core idea and representative methods. The
experimental performance of each method is also demonstrated
on public (RGB) data set. For each category, we summarize
and analyze main results on public large-scale datasets to
potentially provide an objective performance reference for
researchers in the field of RGB-infrared denoising. Specially,
since most of the denoising methods are tested based on the
RGB datasets, in the last experiment section, these models are
also trained, tested and evaluated respectively with thermal
image. We observe that the deep learning based methods
give the leading performance and thus providing the most
promising research direction in RGB-infrared denoising. This
paper provides interested readers with an organized overview
of the RGB-infrared based denoising and can serve as a
starting point for researchers who are interested in this field.
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(a) BM3D

Fig. 15. Denoising results of different methods on color-noisy group one image with ¢ = 25: (a) BM3D/28.14dB, (b) AutoEncoder/29.06dB, (c)
DDRN/30.37dB.

(a) DNCNN (b) FFNet (c) SRGAN
Fig. 16. Denoising results of different methods on color-noisy group one image with o = 25: (a) DnCNN/30.014dB, (b) FFNet/31.03dB, (c) SRGAN/35.44dB.
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