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ABSTRACT 27 

Background: Machine learning algorithms have very high predictive ability. However, no 28 

study has used machine learning to estimate historical concentrations of PM2.5 (particulate 29 

matter with aerodynamic diameter ≤2.5 μm) at daily time scale in China at a national level.  30 

Objectives: To estimate daily concentrations of PM2.5 across China during 2005-2016. 31 

Methods: Daily ground-level PM2.5 data were obtained from 1,479 stations across China 32 

during 2014-2016. Data on aerosol optical depth (AOD), meteorological conditions and other 33 

predictors were downloaded. A random forests model (non-parametric machine learning 34 

algorithms) and two traditional regression models were developed to estimate ground-level 35 

PM2.5 concentrations. The best-fit model was then utilized to estimate the daily concentrations 36 

of PM2.5 across China with a resolution of 0.1 degree (≈10km) during 2005-2016.  37 

Results: The daily random forests model showed much higher predictive accuracy than the 38 

other two traditional regression models, explaining the majority of spatial variability in daily 39 

PM2.5 [10-fold cross-validation (CV) R2 = 83%, root mean squared prediction error (RMSE) = 40 

28.1 µg/m3]. At the monthly and annual time-scale, the explained variability of average PM2.5 41 

increased up to 86% (RMSE=10.7 µg/m3 and 6.9 µg/m3, respectively).  42 

Conclusions: Taking advantage of a novel application of modelling framework and the most 43 

recent ground-level PM2.5 observations, the machine learning method showed higher predictive 44 

ability than previous studies.  45 

 46 

Keywords: PM2.5; Aerosol optical depth; Random forests; Machine learning; China  47 

Capsule: Random forests approach could be used to estimate historical exposure to PM2.5 in 48 
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China with high accuracy. 49 
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1 INTRODUCTION 92 

 93 

Particulate matter (PM) is a complex mixture of solid and liquid particles suspended in the air 94 

of varying sizes, shapes, sources and composition (Jin et al., 2016; Pope and Dockery, 2006). 95 

Particle size is one characteristic of PM that is relevant to human health effects. Among 96 

different size fractions of PM, particles with aerodynamic diameter ≤ 2.5 μm (PM2.5) attract the 97 

most scientific attention, as they are able to penetrate into the gas exchange area of the lung 98 

and potentially reach other parts of human body through the circulatory system (Feng et al., 99 

2016). 100 

 101 

As a consequence of rapid economic growth and urban expansion, China experiences some of 102 

the world’s worst PM air pollution (Kan et al., 2009). PM2.5 has been identified as the fourth-103 

leading risk factor for mortality in China (Yang et al., 2013), and its associations with a range 104 

of diseases have also been reported, including respiratory and cardiovascular diseases, cancer, 105 

infectious disease and adverse birth outcomes (Chen et al., 2017b; Chen et al., 2017c; Guo et 106 

al., 2016; Lin et al., 2016; Liu et al., 2016; Liu et al., 2007). However, very few previous studies 107 

have examined the long-term health effects of PM2.5 in China, as measurements of PM2.5 at the 108 

national scale were not available prior to 2013. Moreover, no such study has been conducted 109 

in Western China (e.g., Tibet and Xinjiang), due to the scarcity of ground-monitoring data. To 110 

fill in the spatial gaps of ground measurements, satellite-retrieved aerosol optical depth (AOD), 111 

also known as aerosol optical thickness (AOT), has been applied to estimate ground-level PM2.5 112 

concentrations. This method has been increasingly employed in recent years (Chen et al., 2017a; 113 
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Hu et al., 2014c; Kloog et al., 2012; Lee et al., 2011; Ma et al., 2016; Van Donkelaar et al., 114 

2015).  115 

 116 

Many statistical models have been used to estimate ground-level PM2.5 from AOD and other 117 

predictors, including multiple linear regression, generalized additive model (GAM), and mixed 118 

effects models (Gupta and Christopher, 2009; Lee et al., 2011; Liu et al., 2009). However, these 119 

regression models may not fully capture the complex relationships between PM2.5 and a wide 120 

range of spatial and temporal predictors. Moreover, traditional regression models are restricted 121 

by some assumptions, e.g., the independence of observations and distribution of monitored 122 

PM2.5 (Hu et al., 2017).  123 

 124 

One approach to overcoming these limitations is machine learning, a newly developed method 125 

of data analysis that can automate statistical model development. Random forests models are 126 

non-parametric machine learning algorithms that could be used for prediction with high 127 

accuracy (Liu et al., 2018). Random forests consist of a collection of classifiers with tree 128 

structure. These classifiers are randomly and independently selected vectors with the same 129 

distribution that vote for the most popular class (Breiman, 2001). Random forests model have 130 

been successfully used for the prediction of PM2.5 in the U.S. (Hu et al., 2017), but no study 131 

has been done at a national scale in China. In this study, we first compare the performance of 132 

the random forests approach with two traditional regression models and then estimate the 133 

spatiotemporal trends of PM2.5 concentrations in China during 2005-2016 with satellite-134 

retrieved AOD data, meteorological and land use information using a random forests approach. 135 
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 136 

2 METHOD AND MATERIALS 137 

2.1 Ground-based PM2.5 measurements 138 

Daily ground-level measurements of PM2.5 from May 13, 2014 through to December 31, 2016 139 

were obtained from the China National Environmental Monitoring Center (CNEMC) 140 

(http://www.cnemc.cn/). The recently expanded network of CNEMC consists of 1,479 141 

monitoring sites covering more than 300 cities in 31 provinces and municipalities of China. 142 

The locations of the monitoring sites are shown in Figure 1. Concentrations of PM2.5 were 143 

measured at all sites using a Tapered Element Oscillating Microbalance (TEOM). The accuracy 144 

of daily mean concentration of PM2.5 for this network was ±1.5 μg/m3 (You et al., 2016). Strict 145 

quality controls were applied and abnormal values, accounting for nearly 5%, were removed 146 

(Fang et al., 2016). After data cleaning, daily mean concentrations of PM2.5 were calculated for 147 

all stations within the network. 148 

 149 

2.2 Satellite-retrieved AOD data 150 

Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data (Collection 6) from 151 

January 1, 2005 through to December 31, 2016 were downloaded from Level 1 and 152 

Atmosphere Archive & Distribution System of NASA 153 

(https://ladsweb.modaps.eosdis.nasa.gov/). “Deep Blue” (DB) and “Dark Target” (DT) AOD 154 

are two types daily Level-2 aerosol data from MODIS Aqua, produced at a spatial resolution 155 

of 10 km (Levy and Hsu, 2015). DB AOD shows better performance over bright areas (e.g., 156 

desert), while DT AOD works over dense and dark areas (e.g., vegetation). As neither 157 

http://www.cnemc.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
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algorithm outperforms the other consistently, a merged product of them two is recommended 158 

(Sayer et al., 2014). To improve the spatial coverage of AOD data, DB and DT AOD were 159 

combined after filling the gaps between them; where missing DB AOD, with corresponding 160 

valid DT AOD, was estimated with the linear regression model below and vice- versa (Chen 161 

et al., 2017a; Jinnagara Puttaswamy et al., 2014). Linear regressions of DB and DT AOD 162 

were fitted as follows: 163 

AODDB = β*AODDT + α  164 

or AODDT = β*AODDB + α 165 

where AODDB and AODDT are DB and DT AOD values, respectively; β is the coefficient and 166 

α is the intercept of linear regression. In total, 25.4% and 0.1% of DT and DB AOD values 167 

were filled with the linear regressions shown above, respectively. 168 

 169 

Ground-level observations of AOD were obtained from Aerosol Robotic Network 170 

(AERONET) of ground-based sun photometers 171 

(https://aeronet.gsfc.nasa.gov/new_web/index.html). The details of AERONET data 172 

downloading and processing are shown in the “Interpolation of AOD at 550 nm” section of 173 

the Supplementary Material. DB and DT AOD values were compared with corresponding 174 

AERONET AOD values at all AERONET monitoring sites in China. Then, combined AOD 175 

data were generated by merging DB and DT AOD using the Inverse Variance Weighting 176 

method reported previously (Ma et al., 2015). Compared to merged dark target-deep blue 177 

MODIS Collection 6 AOD product, the combined AOD data with this method showed 178 

substantial increase in spatial coverage and similar accuracy (Ma et al., 2015).   179 

https://aeronet.gsfc.nasa.gov/new_web/index.html
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 180 

2.3 Meteorological data 181 

Meteorological data during the study period (12 years) were obtained from 824 weather 182 

stations of China Meteorological Data Sharing Service System (http://data.cma.cn/). The 183 

distribution of all weather stations in mainland China is shown in Figure S2 in the 184 

Supplementary Material. Four meteorological variables were collected: daily mean 185 

temperature (ºC), relative humidity (%), barometric pressure (kPa) and wind speed (km/h). 186 

For areas not covered by the weather stations, daily values of meteorological variables were 187 

interpolated using kriging (Diggle and Ribeiro, 2007; Furrer et al., 2009). Details of the 188 

interpolation of the meteorological variables are shown in the “Interpolation of 189 

meteorological variable” section of the Supplementary Material. 190 

 191 

2.4 Land cover data and other predictors 192 

Collection 5.1 annual urban cover data from 2004 to 2012 at a spatial resolution of 500 meter 193 

were downloaded from Global Mosaics of the standard MODIS land cover type data of the 194 

Global Land Cover Facility (http://glcf.umd.edu/) (Friedl et al., 2010). As 2012 urban cover is 195 

the most recent data, they were used for the estimation from 2012 through to 2016. MODIS 196 

Level 3 monthly average Normalized Difference Vegetation Index (NDVI) data at a spatial 197 

resolution of 0.1 degree (≈10 km) were downloaded from the NASA Earth Observatory 198 

(http://neo.sci.gsfc.nasa.gov/). Daily MODIS fire counts (Collection 6) during 2005-2016 were 199 

downloaded from NASA Fire Information for Resource Management System (FIRMS) 200 

(https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data) (Hu et 201 

http://glcf.umd.edu/
http://neo.sci.gsfc.nasa.gov/
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
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al., 2014b). The global Shuttle Radar Topography Mission (SRTM) Version 4 elevation data 202 

for China at a spatial resolution of 3 arc-seconds (approximately 90 m) were downloaded from 203 

The CGIAR Consortium for Spatial Information (http://srtm.csi.cgiar.org/). 204 

 205 

2.5 Model development 206 

The random forests approach generated a large number of decision trees using independent 207 

bootstrap samples of the data set. Each node of decision tree was split depending on the best 208 

among a subset of all variables which were randomly selected at that node, and then, a simple 209 

majority vote was used for prediction (Liaw and Wiener, 2002). A wide range of spatial and 210 

temporal predictors (Table S2 in the Supplementary Material) associated with PM2.5 reported 211 

by previous studies were considered in our model development (Fang et al., 2016; Ma et al., 212 

2015; Ma et al., 2014). All predictors were firstly included in the random forests model, and 213 

then, those included in the final model were selected according to the change in mean square 214 

error and the increase in node purities which were two variable importance measures of random 215 

forests approach. In this study, we set the thresholds of these two measures as 100 and 50000, 216 

respectively. Predictors with an increase in mean square error of less than 100 and an increase 217 

in node purities of less than 50000 were not included in the final model, as they did not improve 218 

predictive ability. The final random forests model with the best performance is shown as 219 

following; 220 

 221 

PM2.5ij = AODij + TEMPij + RHij + BPij + WSij+ NDVIj + Urban_coverj + doyj + log(elevj) （1） 222 

 223 

http://srtm.csi.cgiar.org/
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where PM2.5ij is the PM2.5 on day i at station j; AODij is the combined AOD; TEMP, RH, BP 224 

and WS are mean temperature, relative humidity, barometric pressure and wind speed on day i, 225 

respectively; NDVI is the monthly average NDVI value; Urban_cover is the percentage of 226 

urban cover with a buffer radius of 10 km; doy is day of the year; log(elev) is the log transferred 227 

elevation. 228 

 229 

As random forests are non-parametric machine learning algorithms, we only set two parameters, 230 

the number of predictors in the random subset of each node (mtry) as the default value and the 231 

number of trees in the forest (ntree) as 100, in the model. The selections of optimal buffer radius 232 

for percentage of urban cover and NDVI values based on median R2 and mean square errors 233 

(mse). Details of these selections are shown in Tables S3 in the Supplementary Material. 234 

 235 

In this study, we compared the performance of random forests model with traditional 236 

generalized additive model (GAM) and a non-linear exposure-lag-response model as following;   237 

 238 

PM2.5ij = AODmij + ns(TEMPij, 3) + ns(RHij, 3) + ns(BPij, 3)+ ns(WSij, 3) + NDVI + 239 

ns(Urban_cover, 3) + ns(doy,8) + log(elev) （2） 240 

PM2.5ij = AODmij + cb_TEMPij + cb_RHij + cb_BPij + cb_WSij + NDVI + ns(Urban_cover, 3) + 241 

ns(doy,8) + log(elev) （3） 242 

 243 

Model 2 is the GAM linking PM2.5 and predictors. In contrast to Model 1, we fitted four 244 

meteorological variables and percentage of urban cover with natural cubic splines giving 3 245 
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degrees of freedom (df), considering their potential non-linear effects (Chen et al., 2017a) . We 246 

also fitted day of the year with a natural cubic spline giving 8 df. Model 3 is the non-linear 247 

exposure-lag-response model developed by incorporating distributed lag non-liner model 248 

(DLNM) into GAM, considering the potential lag effects of meteorological variables on PM2.5-249 

AOD association (Chen et al., 2018), where cb_TEMP, cb_RH, cb_BP and cb_WS are mean 250 

temperature, relative humidity, barometric pressure and wind speed on the current day and 251 

previous two days (lag 0-2 days) fitted using crossbasis() function of DLNM with 3 df 252 

(Gasparrini, 2011; Gasparrini, 2014), respectively. The selections of optimal df for non-linear 253 

variables, buffer radius for urban cover and maximum lag day for meteorological variables in 254 

Model 2 and Model 3 were based on adjusted R2 and Generalized Cross Validation (GCV) 255 

value of the model. Details of these selections are shown in Tables S3-S4 in the Supplementary 256 

Material. 257 

 258 

2.6 Validation and estimation  259 

To evaluate the predictive ability of the models, a ten-fold cross-validation (CV) was performed 260 

with ground measurements of PM2.5 during 2014-2016 by randomly selecting 148 (10% of 261 

total) stations as the validation set and the rest of the stations as the training set. This process 262 

was repeated 200 times. The overall adjusted R2, Root Mean Square Error (RMSE), regression 263 

slope and coefficients were calculated.    264 

 265 

 266 

A grid with a resolution of 0.1 degree (≈10 km) covering the entirety of China was created. In 267 

total, 96103 grid cells were included. Data on predictors included in the final model were 268 
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integrated into the grid and they were linked by location and calendar date for each grid cell. 269 

Mean values of AOD and land cover variables were calculated where multiple values fell 270 

within one grid cell. The final random forests model, based on ground measured PM2.5 during 271 

2014-2016, was then used to estimate the daily concentrations of PM2.5 for all grid cells during 272 

2005-2016. Because no historical measurement data were available to validate these 273 

predictions, we thus assumed the relationship between PM2.5 and its predictors observed for 274 

2014-16 held true back to 2005. As no ground measured data were available in Taiwan, we did 275 

the estimation in Taiwan using the model built for Fujian province, which is the nearest 276 

province to Taiwan in mainland China. Daily results of estimation were aggregated into 277 

monthly and seasonal averages. Considering the regional variations of PM2.5-AOD associations 278 

(Zhang et al., 2009), models were developed and the predictions were performed by each 279 

province separately.  280 

 281 

To investigate the trends of estimated PM2.5 over time, linear regressions of annual mean PM2.5 282 

and calendar year were fitted for each grid cell. Coefficients of calendar year were extracted to 283 

indicate the change of PM2.5 over time. Positive coefficients indicated increase in PM2.5 over 284 

time and negative coefficients indicated decrease in PM2.5 285 

  286 

3 RESULTS 287 

 288 

Means of daily concentrations of PM2.5 at 1,479 ground monitoring stations during 2014-2016 289 

are shown in Figure 1. Overall, the mean concentration of PM2.5 in China was 50.1 µg/m3. The 290 
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mean value of combined AOD was 0.6. The largest concentrations of ground-level measured 291 

PM2.5 ( ≥ 85 µg/m3) were observed in the south of Hebei, the north of Henan and western 292 

remote areas of Xinjiang, while the lowest levels ( < 25 µg/m3) were present in the southwestern 293 

areas of China, such as Hainan, Yunnan and Tibet. A summary of ground measurements of 294 

PM2.5 in each province is shown in Table S5 in the Supplementary Material. 295 

 296 

The variable importance measures of all predictors are shown in Table S2 in the Supplementary 297 

Material. In total, 12 predictors were considered in the model development stage and 9 of them 298 

were included in the final random forests model. Day of the year, AOD and daily temperature 299 

were the top three important predictors. The results of 10-fold cross-validation at the national 300 

scale in China are shown in Figure 2. These showed that daily model explained most of the 301 

variability in ground measured PM2.5 (CV R2=83%, RMSE=18.0 µg/m3). Aggregated into 302 

monthly and seasonal average, the model explained 86% (RMSE=10.7 µg/m3 and 6.9 µg/m3, 303 

respectively) of variability in PM2.5, respectively. Daily GAM and non-linear exposure-lag-304 

response model showed similar predictive abilities. They explained 55% (RMSE=29.1 µg/m3) 305 

and 51% (RMSE=30.3 µg/m3) of PM2.5 variability, respectively. Daily random forests model 306 

had much higher CV R2 and lower RMSE than GAM and non-linear exposure-lag-response 307 

model.  308 

 309 

Table 1 shows the results of 10-fold cross-validation in each province of China. The random 310 

forests model had highest CV R2 in provinces in Northern China (e.g., Hebei, Beijing and 311 

Tianjin), while the lowest CV R2 in Western China (e.g., Tibet, Qinghai and Yunnan). On 312 
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average, the CV R2 of daily random forests model was 30% higher than that of GAM and non-313 

linear exposure-lag-response model. 314 

 315 

Thus, daily concentrations of PM2.5 across China were estimated with random forests model 316 

rather than GAM or non-linear exposure-lag-response model. Figure 3 shows the estimated 317 

mean concentrations of PM2.5 across China during 2005-2016. The highest levels of PM2.5 (>85 318 

µg/m3) were observed in North China Plain (central and southern areas of Hebei). Apart from 319 

Hebei, severe PM2.5 pollution were also present in Shandong, Henan, Yangtze River Delta, 320 

Sichuan Basin and Taklimakan Desert of Xinjiang. The lowest levels of PM2.5 (<25 µg/m3) 321 

were observed in south-western and northern remote areas of China, including Yunnan, Tibet 322 

and Inner Mongolia.  323 

 324 

Figure 4 shows the seasonal patterns of estimated PM2.5 across China. Levels of PM2.5 in the 325 

entire China were the highest in winter (mean PM2.5 = 40.6 µg/m3) while lowest in summer 326 

(mean PM2.5 = 21.6 µg/m3). In spring and autumn, levels of PM2.5 were similar (Mean PM2.5 = 327 

31.0 µg/m3 and 29.1 µg/m3, respectively).  328 

 329 

Figure 5 illustrates the time trends of estimated PM2.5 during the study period. Overall, modest 330 

changes of PM2.5 were observed in China during 2005-2016. Increasing trends of PM2.5 were 331 

present in Beijing-Tianjin-Hebei region and Yangtze River Delta, while decreasing trends were 332 

present in the Pearl River Delta. When divided the whole study period into three 4-year periods, 333 

substantial increases in PM2.5 were observed in most parts of China during 2005-2008, while 334 
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the concentrations decreased during the following 8 years (2009-2016). 335 

 336 

4 DISCUSSION 337 

 338 

In this study, a random forests model was developed to estimate PM2.5 in China with MODIS 339 

AOD data, meteorological and land use information. The model showed much higher 340 

predictive ability than two traditional regression models. It was then used to estimate 341 

concentrations of PM2.5 across China during 2005-2016. According to our estimates, the 342 

highest levels of PM2.5 were observed in Southern Hebei, while the lowest levels were present 343 

in South-Western and Northern China in remote areas. Overall, levels of PM2.5 in China peaked 344 

in 2008 and decreased from that year on. 345 

 346 

Several previous studies have attempted to estimate PM2.5 in China. Ma et al. (2015) analyzed 347 

the spatial and temporal trends of PM2.5 in China during 2004-2013 with satellite-retrieved 348 

estimation (Ma et al., 2015). The CV R2 for daily model, monthly average and seasonal average 349 

were 41%, 73% and 79%, respectively. Fang at al. (2016) estimated the annual concentrations 350 

of PM2.5 across China from June 2013 through to May 2014 (Fang et al., 2016). The CV R2 351 

was 80%. Wei et al. (2016) estimated levels of PM2.5 in China in 2013 and compared satellite-352 

based models with different AOD products (You et al., 2016). The CV R2s for annual estimation 353 

were 76% for MODIS AOD and 81% for MISR AOD. Our prediction with the random forests 354 

approach showed higher accuracy than those studies. 355 

 356 
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In contrast to previous studies, we employed non-parametric machine learning algorithms to 357 

estimate daily concentrations of PM2.5 across China. Our study is consistent with previous 358 

studies showing advantages in prediction compared traditional regression models (Brokamp et 359 

al., 2017; Were et al., 2015). The injection of randomness (bagging and random features) 360 

contributes to substantial increase in accuracy of classification and regression, which makes 361 

this method robust to noise (Breiman, 2001). This method is user-friendly, as there is no need 362 

to define the complex relationships between predictors (e.g., linear or nonlinear relationships 363 

and interactions) and the variable importance measures provided by random forests help user 364 

to identify important variables and noise variables (Liaw and Wiener, 2002). Finally, this 365 

method makes full use of the strength of each predictor and their correlations and it is robust 366 

to overfitting (Breiman, 2001). The random forest approach used in this study showed 367 

comparable predictive abilities to other neural network approach and machine learning 368 

algorithms (Di et al., 2016; Reid et al., 2015), but it was more user-friendly. Apart from the 369 

different methods we used, we also had the ability to incorporate the most recent ground-level 370 

measured PM2.5 data, which led to substantial improvements in spatial coverage across China. 371 

Compared with previous ground monitoring network of CNEMC, the current one has expanded 372 

from 943 to 1,479 monitoring stations in mainland China. Most of the new stations are located 373 

in Western and Central China, rather than coastal areas of South-Eastern China. The locations 374 

of the new stations are shown in Figure S3 in the Supplementary Material. In the previous 375 

CNEMC network, many fewer stations were available in Western China, where lower levels of 376 

PM2.5 air pollution were observed, than Eastern China (Zhang et al., 2016). Thus, in-situ PM2.5 377 

data obtained from the expanded CNEMC network are likely to be better-suited to capturing 378 
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overall population exposures to PM2.5 air pollution in China.  379 

 380 

Other land-use variables (forest cover and water cover) and population data were used by 381 

previous studies for model development (Fang et al., 2016; Ma et al., 2015; Ma et al., 2014). 382 

Compared to the annual land cover data available during 2005-2012, the NDVI data used in 383 

our model are monthly data available over the whole study period, which can capture more 384 

variability in PM2.5. We found adding water cover data did not improve the final model, as most 385 

of monitoring stations are located in city areas with no water areas nearby. We did not add 386 

population data in our model, considering it would be highly correlated with urban cover data 387 

in our study.  388 

 389 

The North China Plain has been identified as area with the heaviest PM air pollution in China 390 

(Wang et al., 2015). Its severe air pollution has been attributed to the dense local steel and 391 

power industries, and the air quality has also been affected by surrounding provinces including 392 

Henan and Shandong (Wang et al., 2014). The high level of PM2.5 in Sichuan Basin was not 393 

only associated with the rapid economic growth and urbanization but also the unique local 394 

topography (Li et al., 2015a). The climate of the Sichuan Basin is characterized with low wind 395 

speed and high humidity, which does not facilitate the dispersion of air pollutants.  396 

 397 

The time trends of PM2.5 in China illustrated in this study are consistent with a previous study 398 

that the peak of PM2.5 occurred in 2008 and kept declining after wards (Ma et al., 2015). The 399 

Chinese government took a series of strict measures to control air quality during the Beijing 400 
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Olympic Games in 2008, and the subsequent benefits of these actions have been reported by 401 

many studies (Li et al., 2016). After Beijing Olympic Games, China took further measures to 402 

control air pollution. For example, the goal of preventing and controlling air pollution was 403 

included in the 12th National Five-Year Plan and the first National Action Plan on Air Pollution 404 

and Control was released in 2013 (Chen et al., 2013).  405 

 406 

Based on historical levels of PM2.5 estimated in this study, it could be inferred that China has 407 

made considerable progress in air quality control via strict legislation, regulation and 408 

enforcement over a relatively short period of time (Li et al., 2016). However, challenges remain 409 

to meet the goal of clean air (Wang and Hao, 2012). Currently, more than 90% of the Chinese 410 

population are experiencing unhealthy air according to US EPA standard (Rohde and Muller, 411 

2015). In most parts of China, levels of PM2.5 far exceed the WHO standard (Jindal, 2007; 412 

Zhang et al., 2016). Air pollution is even more severe in mega cities of China characterized 413 

with dense industries and population, such as Beijing, Tianjin, Shanghai, and Chongqing (Chan 414 

and Yao, 2008).  415 

 416 

There are some limitations in our study. Like some of the previous studies (Hu et al., 2014a; Li 417 

et al., 2015b; Ma et al., 2015), we estimated the historical levels of PM2.5 air pollution in China 418 

based on the PM2.5-AOD association. However, due to unavailability of ground measuring data, 419 

we could not validate the PM2.5-AOD association before 2014. Our historical estimates should 420 

be interpreted with due caution for that reason. To account for the spatial variations of PM2.5-421 

AOD associations, PM2.5 was first predicted at the provincial level and then combined into the 422 
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national level. The drawback of this approach leads to discontinuities at some provincial 423 

boundaries. Finally, due to cloud cover, missing values of AOD are problematic and could be 424 

highly prevalent in some seasons and regions (Just et al., 2015). 425 

 426 

5 CONCLUSIONS 427 

Novel statistical models with high accuracy and reliability were developed to estimate PM2.5 428 

concentrations. Taking advantage of the most recent in-situ PM2.5 data and expanded network, 429 

many more ground measurements of PM2.5 were available in central and western China, 430 

making our estimates more representative of the overall historical level of PM2.5 air pollution 431 

in China. The results of this study could help to evaluate the long-term effects of PM2.5 air 432 

pollution and disease burden attributed to PM2.5 exposures. The study could also provide 433 

valuable information and evidence for the future prevention and control of air pollution in 434 

China. 435 

 436 
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 640 

Table 1. The results of 10-fold cross-validation in each province of China 641 

 642 

Province 
Random forests 

model   GAM   
Non-linear exposure-
lag-response model 

CV R2 RMSE   CV R2 RMSE   CV R2 RMSE 
Hebei 90% 20.7  60% 30.7  54% 34.4 
Beijing 90% 19.6  66% 27.7  60% 30.4 
Tianjin 88% 20.4  60% 25.7  49% 29.1 
Henan 86% 19.2  52% 22.4  46% 23.7 
Hubei 86% 14.6  60% 13.3  55% 14.5 
Jilin 86% 15.5  44% 17.4  45% 18.2 
Sichuan 84% 13.9  58% 10.7  56% 10.6 
Jiangsu 84% 15.0  51% 14.7  46% 15.2 
Heilongjiang 83% 18.8  45% 18.8  44% 18.3 
Chongqing 83% 13.3  53% 9.5  54% 9.3 
Shanghai 82% 16.1  43% 15.4  46% 14.3 
Shandong 82% 21.0  53% 20.4  48% 22.0 
Hunan 82% 14.5  45% 12.2  45% 12.4 
Guangxi 81% 13.0  48% 9.5  51% 9.3 
Shanxi 81% 19.7  47% 21.9  39% 23.9 
Liaoning 80% 16.6  43% 19.5  34% 20.9 
Zhejiang 80% 13.1  47% 10.6  48% 10.6 
Shaanxi 80% 18.3  54% 19.3  50% 19.1 
Anhui 76% 18.0  43% 15.7  39% 16.3 
Guizhou 75% 12.6  34% 7.4  39% 7.2 
Jiangxi 75% 14.6  32% 12.3  33% 12.0 
Guangdong 72% 12.0  41% 7.8  45% 7.5 
Xinjiang 72% 24.9  55% 27.7  49% 25.6 
Inner Mongol 70% 15.9  38% 15.1  33% 16.1 
Gansu 66% 18.9  33% 18.0  29% 16.9 
Fujian 65% 9.8  24% 6.5  29% 6.8 
Ningxia 63% 19.6  28% 20.2  27% 18.7 
Yunnan 51% 13.1  26% 8.3  34% 7.7 
Qinghai 46% 19.1  24% 13.2  23% 12.7 
Tibet 36% 13.4   28% 5.6   26% 5.8 

Note: GAM is generalized addictive model; CV R2 is R-squared for cross validation; RMSE is 643 

root mean squared prediction error (μg/m3) 644 
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 653 

Figure 1. Mean concentrations of ground-level measured PM2.5 (µg/m3) at 1479 stations 654 

during 2014-2016. 655 

 656 
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Figure 2. Density scatterplots of model performance and validation. (A), (B) and (C) are daily, monthly and seasonal results for random 
forests model; (D), (E) and (F) are daily, monthly and seasonal results for generalized additive model (GAM); (G), (H) and (I) are daily, 
monthly and seasonal results for non-linear exposure-lag-response model. Note: RMSE, root mean squared prediction error (μg/m3)
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Figure 3. Estimated mean concentrations of PM2.5 (µg/m3) across China during 2005-2016. 
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Figure 4. Estimated mean concentrations of PM2.5 (µg/m3) across China in four seasons during the study period. 
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Figure 5. Changes in estimated concentrations of PM2.5 (µg/m3 per year) over time in China during the study period. 


