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ABSTRACT
As the promise of Virtual and Augmented Reality (VR and AR)
becomes more realistic, an interesting aspect of our enhanced liv-
ing environment includes the availability — indeed the potential
ubiquity — of scannable markers. Such markers could represent an
initial step into the AR and VR worlds. In this paper, we address
the important question of how to recognise the presence of visual
markers in freeform digital photos. We use a particularly challeng-
ing marker format that is only minimally constrained in structure,
called Artcodes. Artcodes are a type of topological marker system
enabling people, by following very simple drawing rules, to design
markers that are both aesthetically beautiful and machine readable.
Artcodes can be used to decorate the surface of any objects, and yet
can also contain a hidden digital meaning. Like some other more
commonly used markers (such as Barcodes, QR codes), it is possible
to use codes to link physical objects to digital data, augmenting
everyday objects. Obviously, in order to trigger the behaviour of
scanning and further decoding of such codes, it is first necessary
for devices to be aware of the presence of Artcodes in the image.

Although considerable literature exists related to the detection
of rigidly formatted structures and geometrical feature descriptors
such as Harris, SIFT, and SURF, these approaches are not sufficient
for describing freeform topological structures, such as Artcode im-
ages. In this paper, we propose a new topological feature descriptor
that can be used in the detection of freeform topological mark-
ers, including Artcodes. This feature descriptor is called a Shape
of Orientation Histogram (SOH). We construct this SOH feature
vector by quantifying the level of symmetry and smoothness of
the orientation histogram, and then use a Random Forest machine
learning approach to classify images that contain Artcodes using
the new feature vector. This system represents a potential first step
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for an eventual mobile device application that would detect where
in an image such an unconstrained code appears. We also explain
how the system handles imbalanced datasets — important for rare,
handcrafted codes such as Artcodes — and how it is evaluated. Our
experimental evaluation shows good performance of the proposed
classification model in the detection of Artcodes: obtaining an over-
all accuracy of approx. 0.83, F2 measure 0.83, MCC 0.68, AUC-ROC
0.93, and AUC-PR 0.91.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented real-
ity; Human computer interaction (HCI); Mobile computing; •
Computing methodologies→ Supervised learning by classi-
fication; Bagging;

KEYWORDS
Visual markers; Artcodes; Topological feature descriptor; Classifier

1 INTRODUCTION
With the proliferation of augmented reality techniques, we can
expect to encounter various digital markers in everyday life: scan-
ning QR codes for mobile pay, watching objects come alive via
services such as Blippar, or triggering digital footprints by scanning
Artcodes [25]. We are living with visual markers; some are visible
to people and some others are “hidden”, appearing as commonly
encountered images, drawings or shapes. In this paper, we inves-
tigate the challenge of recognizing the presence of these hidden
visual markers in images. In particular, we propose a system that
can be used to alert mobile devices to be aware of the presence of
Artcodes in images.

Artcodes (Figure 1) are visual markers originated from D-touch
[11] in which computer-readable visual codes are embedded into
images, allowing a designer to create machine-readable and human-
meaningful codes that adopt the space between the visibility of the
QR codes and the secrecy of these “invisible” markers. As an aug-
mented reality artefact, Artcodes are human-designed topological
visual markers that are both attractive and meaningful to humans
and machine readable [25], and have been applied in various sce-
narios, including enhancing a dining experience [25], augmenting
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Figure 2: Localizing the presence of Artcodes and the process of Artcodes decoding

an accoustic guitar with digital footprints [4, 5], attaching com-
plex narratives to public illustrations [35], and designing a mobile
garden guide by Artcode-based signages [28].

As codes such as Artcodes enter into everyday life and appear
on the surface of objects, automatically recognizing their presence
becomes a key first step before decoding and triggering its digital
effects: before we can act on a code, we must first know it exists. Un-
like the restrictive geometry of other commonly used markers such
as QR codes [34] or ARTags [15], Artcodes are built topologically
and have no fixed geometric shape. Therefore, it is difficult to de-
tect them using traditional differentiation geometry-based feature
descriptors. The characteristic that makes Artcodes different from
other images is this topological structure, a number of connected
regions containing several blobs (as presented in Figure 1) [11, 25].

This paper addresses the question of recognizing the presence
of Artcodes in images – namely, the problem of Artcode detection
rather than decoding. In other words, we wish to classify an image
as containing an “Artcode” or not, a binary classification problem.
There are three steps in general to address such a classification prob-
lem: first, build the training data; second, find a feature descriptor
with high invariance under a variety of photometric and geometric
changes; and third, train a classifier (e. g. Support vector machine
[10], or Random forests [6]) using these features on training data,
and make predictions on forthcoming unseen input data. Consider-
ing the necessarily real-time response of detection and recognition
of Artcodes on a mobile platform, random forests are used as the
classifier.

Here, we propose a new feature descriptor more suited to de-
scribe Artcode images — the Shape of Orientation Histograms
(SOH). Unlike traditional geometry-based feature descriptors (e. g.
SIFT, or SURF), SOH is a topological descriptor designed for dis-
criminating different topologies. Topological distinctiveness can
be calculated from the smoothness and symmetry of orientation
histograms [16]. Two factors — symmetry and smoothness— are pro-
posed to describe the shape of histogram, representing the symmet-
rical similarity between the left and right sections of the histogram,
and the smoothness level of this histogram, respectively. Distance
metrics are then employed to quantify the symmetry and smooth-
ness of the orientation histogram. As we shall see, this allows us to
pick out unique features of the closed-contour Artcodes.

The rest of this paper is organized as follows: Section 2 describes
some related work. Section 3 introduces Artcodes and Artcodes
detection. Section 4 describes the SOH feature descriptor and the
process of constructing the SOH vector. Experimental evaluation is
given in Section 5, and Section 6 concludes this paper.

2 RELATEDWORK
Over the past decades, there has been extensive research into feature
localization and/or description, mainly including two classes: geo-
metrical features (Harris [19], SIFT [22], and SURF [1]) and binary
features (FAST [31], BRIEF [7], and ORB [32]). Geometric features
commonly first detect the keypoints at the most distinctive loca-
tions (local extrema after using Hessian or Harris operators, for in-
stance) in the Laplacian of Gaussian (LoG) or approximate LoG scale
space of the images, such as corners, blobs and T-junctions; and then
construct feature descriptors based on local patches around the key-
points, such as histogram of oriented gradients (SIFT), Haar wavelet
responses (SURF), or convolved orientation maps (DAISY[36]).

Binary feature detectors describe keypoints by examining the in-
tensities of local patches. Rosten et al. [31] proposed FAST detector,
a decision tree based detector which is able to effectively classify
the image patches based on a relatively small number of pair-wise
intensity comparisons. Colonder et al. [7] proposed BRIEF, directly
comparing the intensities of pairs of pixels in an image patch after
applying Gaussian smoothing to build the descriptor vector without
requiring a training phase. Rublee et al. [32] proposed an Oriented
FAST and Rotated BRIEF (ORB) descriptor, which is invariant to
rotation and robust to noise, and much faster than even FAST and
BRIEF features.

However, both geometric and binary features are based on local
image patches, they detect and/or describe keypooints depending
on these keypoints’ neighborhoods. They are not designed to model
topology. We propose in this paper a new topological feature de-
scriptor called Shape of Orientation Histogram (SOH) to model
the image’s topology. SOH is built from the existing orientation
histogram [16]. However, rather than directly using the orienta-
tion histogram, SOH is a quantitative feature vector constructed
from the quantification of the symmetry and smoothness of the
orientation histogram.

Orientation histograms were first used by Freeman et al. [16] in
1995 for hand gesture recognition, where an orientation histograms
were computed using steerable filters and the orientations with
magnitudes below a threshold were suppressed. This orientation
histograms have a certain level of robustness to lighting changes
and transformational invariance. Orientation histograms are fast
to calculate and therefore are suited to real-time applications.

Using histograms to build a feature vector has been well studied.
Lowe used histograms of oriented gradients (HoGs) in the neigh-
borhood of keypoints to build the feature description vector [22].
Makolajczyk et al. [26] used orientation-location histograms com-
bined with thresholded gradient magnitude as feature descriptors
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Figure 3: Non-artcode examples selected from the Artcodes Dataset

Figure 4: Artcode examples selected from the Artcodes Dataset. Artcodes are visually hidden markers which can be decoded, like Barcodes.

to represent different parts of an object. Dalal et al. [12] used the
HoG as feature sets and shown that this descriptor significantly
outperformed existing features for human detection. These HoG
descriptors are reminiscent of orientation histograms and HoG in
SIFT; however, to improve performance, they were computed on
a dense grid of uniformly spaced cells and used overlapping local
contrast normalizations. These features are effective to represent
local image patches, such as geometry and appearance, but they are
inappropriate for describing such global information as topology.

3 ARTCODES DETECTION
As shown in Figure 2, the surface of some objects (menu, plate, and
mat) in the first image are decorated with Artcodes. To alert people
to the presence of Artcodes and trigger their decoding, the first
step is to detect their presence and then locate them (2nd image),
and then decode the Artcodes by constructing the adjacency tree of
each Artcode (3rd image) — the code of this Artcode is a string of
numbers of leaves in each node. In this paper, we address the first
step: recognizing the presence of Artcodes in digital images.

As human-designable aesthetic visual markers, Artcodes in-
clude a recognisable foreground part and background imagery (Fig-
ure 1) [25]. As shown in Figure 1, the recognisable part of an Artcode
contains a closed boundary that is split into several regions (usually
five), with each region containing one or more blobs – solid ob-
jects disconnected from the region edge – the code embedded in an
Artcode is a string of numbers of blobs (leaves) in each connected
region: for example, the code in Figure 1 is “1.1.2.3.5”. Additionally,
background imagery can be added to the recognisable part of an
Artcode to enhance the aesthetics, but only if it does not break the
Artcode’s topological structure. More information about Artcodes
can be found, for example, in the work of Meese et al. [25], and
Benford et al. [4].

Artcode detection is a binary classification problem, classifying
an input image or video sequence as either containing an Artcode,
or not — labelled “Artcode” or “non-Artcode” classes, in this study.
The Artcode class follows the topological definition of Artcodes,

whereas the non-Artcode class is simply images that do not con-
form to these topological rules. As can be seen from the examples
in Figures 3 and 4, there is no obvious difference in geometrical
shape or appearance between Artcodes and non-Artcodes; here, we
wish to uncover the hidden topological properties. The geometrical
variation associated with Artcodes is very different to that of other
well-known well-structured markers (such as Barcodes [24], QR
codes, ARTags, ARToolKit [21], and reacTIVision [3]).

4 SOH FEATURE DESCRIPTOR
The shape of orientation histogram (SOH) is used for classifica-
tion between the two categories: Artcode and non-Artcode. This
section describes the motivation for the SOH and the process of con-
structing a SOH feature vector. Orientation histograms or oriented
gradients have beenwell studied for the description of local informa-
tion in various applications. Previous work [2, 12, 16, 22, 26, 27, 29]
based on gradient orientation only concerns the geometric repre-
sentation property of the orientation histograms, but pays little
attention to the shape of the histogram itself, which is a potential
property for describing the topological property of image patches.
Being inherently topological visual markers with predefined topo-
logical structure (Section 3), any geometrical shapes are possible
for a valid Artcode; therefore traditional geometrical and binary
feature descriptors are inappropriate for representing this class of
objects.

4.1 Shape of orientation histogram
Unlike well-structured visual markers, Artcodes are defined by fol-
lowing predefined topological rules. Artcode detection in images
can then depend on their specific topological structure, a closed
boundary containing several hollow regions dominating the de-
codable topology of Artcodes. Considering the ideal situation, that
all the connected hollow regions in Artcode are circles, then the
directions of the gradient at the points (imagining a line passing
through the circle and its center) of the circles are collinear with
the normal vector at those points. The gradients at the four points
intersected by the line are two pairs of opposite directional vectors,
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Figure 5: Orientation histograms, cumulative histograms, and distance curves calculated from the Artcode (top in (a)) and non-Artcode
(bottom in (a)) images. (b) shows the two orientation histograms of Artcode and non-Artcode, where the top histogram is more symmetric and
smoother than the bottom histogram; (c) illustrates the cumulative histogram curves of the two classes of images; and (d) shows the left and
right sections of the distance curves — the top figure also clearly shows higher levels of both symmetry and smoothness between the left and
right parts of the cumulative curve than that of non-Artcode. Our SOH feature vector is mainly built by comparing the similarity between
the two curves.
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Figure 6: The process of constructing SOH feature vector

assuming the intensity of boundary is uniform, then the orientation
of all the gradients around the circles are uniformly distributed
from −180◦ to 180◦. Therefore, the orientation histogram will be
uniformly distributed, with its left (−180◦ to 0◦) and right half (0◦
to 180◦) being symmetric (the line perpendicular to the x-axis at
0◦ is the symmetry axis). The two properties in this paper that we
will use to interrogate these histograms are smoothness (waviness)
and symmetry of the orientation histogram.

As shown in Figure 5(b), the top and bottom figures are the ori-
entation histograms from Artcode and non-Artcode, respectively.
The orientation histogram in bottom figure of Figure 5(b) displays a
certain level of symmetry but is highly non-uniformly distributed,
whereas the top figure shows both symmetry and smoothness. This
observation inspires us to employ both symmetry and smoothness
of the orientation histogram for the representation of topologi-
cal structure of an image, and use them as Artcode classification
features, which we call a Shape of Orientation Histogram (SOH).

4.2 Feature vector construction
We present, in this section, details of how to describe the Shape of
Orientation Histogram, particularly, to quantify the level of sym-
metrical similarity and smoothness of orientation histogram, and
construct the appropriate feature vector.

4.2.1 Orientation histogram. As shown in Figure 6, the input
image is first converted into a grayscale image and smoothed us-
ing a small Gaussian kernel to remove the color information and
noise (step (a)). Then we calculate the magnitude and orientation
of the gradient at each pixel of the grayscale image (step (b)). We
remove the orientation of pixels whose corresponding magnitude is
below a given threshold (step (c)). We then calculate the orientation

histogram from the suppressed orientation map and normalize the
values of bins using vi = Ci

N , i = 1, · · · ,nBins , where Ci and N are
the number of elements in the ith bin and in the input data, respec-
tively, nBins is the number of bins in this orientation histogram (we
give nBins = 72 in this study, i.e. the range of bin is 5◦) (step (d)).

4.2.2 Cumulative orientation histogram. The symmetry of an
orientation histogram can be calculated directly by comparing the
left and right sections of the orientation histogram using simi-
larity measures. The smoothness of the orientation histogram is
difficult to represent directly from orientation histogram. The ori-
entation histogram is sensitive to image rotation, but its level of
smoothness and symmetry is invariant to image orientation (see
Figure 7). Thus, we calculate cumulative orientation histogram (step
(e)), which is a special orientation histogram whose kth bin satis-
fies: cumbin(k) =

∑k
i=1 bin(i), k = 1, . . . , nBins, where bin(i ) is the

value of the ith bin of the orientation histogram. Using a cumulative
orientation histogram, the smoothness is visually represented: the
convex and concave parts of the cumulative orientation histogram
reflect the increase and decrease in corresponding parts of the ori-
entation histogram. We next enter into step (f): fit a straight line
(red line in Figure 5(c)) for the cumulative histogram curve, and
then calculate the distances from this straight line, and generate
the distance curves (see Figure 5(d)).

4.2.3 Construction of SOH feature vector. As presented in previ-
ous sections, we need to quantify the symmetry and smoothness
of the orientation histograms. We calculate these two aspects from
the distance curve, separating the distance curve into two uniform
parts: left and right curves (denoted as Cl and Cr , as illustrated
in Figure 5(d)), and then compute the similarity between the two
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Figure 7: Orientation histogram of the images under rotations: 15◦, 45◦, 60◦, 90◦, and 120◦. The level of symmetry and smoothness of the
orientation histogram of rotated images are preserved, showing SOH is invariant to image rotations.

curves using similarity metrics. The similarity metrics used in this
study are Procrustes and Chi-square distance. Formally, the two
curves with n points are denoted as Cl =

{(
xi, yi
)
| i = 1, . . . , n

}
,

and Cr =
{(
ui, vi

)
| i = 1, . . . , n

}
, where n = nBins

2 .
Procrustes analysis is a form of statistical shape analysis of a set

of shapes. Before calculation of Procrustes distance, it is necessary
to perform Procrustes superimposition: translation, rotation, scal-
ing, and reflection. After transformation, the Procrustes distance
between the two curves Cl and Cr , is computed by:

proDist
(
Cl ,Cr

)
=

√√ n∑
i=1

(
(xi − ui )2 + (yi − vi )2

)
(1)

In this case, the left and right parts of the distance curve are al-
ready aligned, thus only reflection is required. Since thex-coordinates
of the points on the distance curve are always zero, Equation 1 is
simplified as:

proDist
(
Cl ,Cr

)
=

√√ n∑
i=1

(
(yi − vi )2

)
(2)

Additionally, Chi-square distance is used to measure the similar-
ity between two histograms or shapes, in this case, the Chi-square
distance between Cl and Cr is denoted as:

χ2
(
Cl ,Cr

)
=

n∑
i=1

(yi − vi )2

(yi + vi )
(3)

We also measure the sensitivity of change of the distance curve
by computing the similarity between the first derivatives of Cl and
Cr usling Procrustes distance, denoted as proDist (dCl , dCr ).

The smoothness of orientation histogram is measured by the
mean and std. (standard deviation) of the residual vector (Figure 6
step (f)), where the residual is the difference between the fitted
line p and cumulative histogram curve cumhist (i.e. the vertical
distance between the red and blue lines in Figure 5(d)). Therefore,
the residual vector has the same dimensions as the cumulative
histogram. Formally, the residual vector r is denoted as:

r =
{
ri | ri =|pi − cumhisti |, i = 1, . . . , nBins

}
(4)

where pi and cumhisti are the values of the fitted line and the ith
bin of the cumulative histogram, respectively. Then we have two
variables, mean(r) and std (r), to describe the smoothness of the
orientation histogram. The quantities describing the symmetry and
smoothness combined with other global image statistics compose
the 7-dimensional SOH feature vector:

S =
{
S1, S2, S3, S4, S5, S6, S7

}
(5)

where S1 = proDist (Cl , Cr ); S2 = χ 2 (Cl , Cr ); S3 = proDist (dCl , dCr );
S4 = mean(r); S5 = std (r); S6 = mean(im); and S7 = std (im) — im
is the grayscaled and smoothed input image.

5 EXPERIMENTAL EVALUATION
5.1 Dataset
To study the Artcodes detection problem, we created a dataset
of Artcode and non-Artcode images. Artcodes are hand crafted
by designers by following the predefined drawing rules, while
non-Artcodes are the images not containing any Artcodes. Fig-
ure 4 presents some of Artcode examples selected from the Artcode
dataset: fish, Scotland knots, flowers, and human face, which are
very different in geometry. Rather than the completely randomly
selected images, the non-Artcodes were intentionally picked to be
confusing for such a system. Figure 3 shows six non-Artcode images,
including a Microsoft Tag, trees, an advertisement, tiger, Coco-cola
logos, and flowers. Although they are human created images that
are visually very similar to Artcodes, they do not have any im-
posed topological structure. Thus it is difficult, or even impossible,
to recognize the presence of Artcodes through inspection of the
appearance and geometry alone. In this dataset, we collected non-
Artcodes from various human-created images, like logos, drawings,
advertisements, paintings, and graphics. Other types of images such
as natural scenes, human images, daily life images, were excluded,
as these categories are obviously different from Artcodes in visual
aspects, and thus would be easy to make correct predictions.

Because Artcodes are manually created by designers, the number
of available Artcodes is currently small (especially considering
the large number of available non-Artcodes), but work is ongoing
to extend this dataset. A consequence of this limited number of
available Artcodes is an imbalanced dataset, with a larger number
of non-Artcode images, containing 47 Artcode and 148 non-Artcode
images. However, this does reflect the real-life expected usage, as
many more non-Artcode images will be presented to the camera
than Artcodes.

5.2 Classifier
Since Artcode detection and the decoding system are deployed
via a mobile platform, speed and memory are key consideration
factors for choosing an appropriate classifier. Random forests [6], as
an ensemble learning method, can provide accurate prediction for
classification. More importantly, the random forests technique is
efficient when running, and is sufficient for a real time application.
Therefore, Random forests were taken as the classifier in this study.

Random forests were proposed by Breiman in 2001, as an ensem-
ble of decision trees such that each tree depends on the values of a
random vector sampled independently, with the same distribution
for all trees in the forest. Random forests have desirable character-
istics for the learning task in this study: accurate as Adaboost[17];
robust to outliers and noise; faster than bagging and boosting; they
have intuitive, easy to tune parameters — only the number of deci-
sion trees required to consider.
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Table 1: SOH feature vector examples selected from SD4 dataset

S1 S2 S3 S4 S5 S6 S7 Class

0.087523 0.005356 0.086905 204.19 69.02 0.005816 0.004186 1
0.096828 0.0070071 0.13416 86.394 47.851 0.005721 0.0032236 0
0.15182 0.0036975 0.044452 147.78 32.841 0.015098 0.0080612 1

Table 2: Original and SMOTED datasets

Original SD1 SD2 SD3 SD4

#Artcodes. 47 94 94 94 141
#non-Artcodes. 148 70 94 117 147
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Figure 8: Performance comparison among the classifiers (nTrees = 80) trained on datasets: Original, SD1, SD2, SD3, and SD4.

It is well known that learning from an imbalanced dataset usually
produces biased classifiers that have higher predictive accuracy over
the majority class, but poorer predictive accuracy over the minority
(rare) class [33]; we therefore first deal with this imbalance in the
Artcode dataset in the next section.

5.3 Dealing with imbalance
A number of techniques [8, 9, 13, 14, 18, 33] have been proposed to
handle imbalanced data learning, mainly including: methods at data
or at algorithmic levels. Methods at data level ([8, 9, 18, 33]) attempt
to balance distributions by examining the representative propor-
tions of class examples in the dataset, while methods at algorithmic
level ([13, 14]) consider the costs associated with misclassifying
examples, also known as cost-sensitive learning. In this section, we
only describe the methods working on data level, a comprehen-
sive survey on investigating learning from imbalanced data can be
found in [20].

One simple and effective imbalance handling technique is ran-
dom resampling, either random oversampling or undersampling.
The former randomly adds samples from theminority class and aug-
ments the original dataset, whereas the latter achieves a balanced
distribution by randomly removing samples from themajority class.
Random oversampling simply appends replicated data to the orig-
inal dataset, easily leading to overfitting. With regard to avoid
overfitting, Chawla et al. [8] proposed a synthetic sampling method
– the Synthetic Minority Oversampling TEchnique (SMOTE), where
the minority class is oversampled by creating “synthetic” examples
rather than simply oversampling with replacement. SMOTE gener-
ates synthetic examples in a less application-specific manner, by
working in “feature space” rather than “data space”. The minority
class is oversampled by taking each minority class sample and in-
troducing synthetic examples along the line segments connecting
any/all of k nearest neighbors of the minority class. The synthetic
examples are generated by the following formula:{

fnew | fnnew = f + r ·
(
f − fi

)
, i = 1 . . . k; n = 1 . . . ⌊N/100⌋

}
(6)

where fnew and fi are the new set of synthetic feature vectors
(examples) and the ith neighbor of the feature vector f under con-
sideration, respectively; r is a random number between 0 and 1;
and N% denotes the amount of SMOTE. How many neighbors are
randomly chosen from the k nearest neighbors is based on the
required amount of synthetic examples ((N /100) ·T , whereT is the
number of minority class samples).

Obviously, SMOTE is unable to be directly used in an Artcode
dataset that only contains images. Due to the proposed SOH feature
vector, each image in the Artcode dataset will be converted into a
quantitative feature vector (Equation 5), producing a quantitative
Artcode dataset with same amount of samples as the original Art-
code dataset. In this dataset, Artcode and non-Artcode classess are
assigned integers 1 and 0, respectively, as shown in Table 1.

To obtain an “optimal” dataset contributing to best classifica-
tion performance, four SMOTED datasets (SDs) (SD1, SD2, SD3,
and SD4) (Table 2) with different numbers of Artcodes and non-
Artcodes were generated using the SMOTE algorithm. We compare
the performance of the classifiers evaluated on Original and SDs
using ROC and PR curves and their respective area under curve
(AUC). Because MCC (Matthews Correlation Coefficient[23]) is an
informative measure for both balanced and imbalanced datasets, we
also use MCC. As illustrated in Figure 8, the classifiers on the SDs
greatly outperform Original dataset in terms of ROC, PR curves,
AUC-ROC, AUC-PR and MCC, showing that the SDs significantly
enhance the classifier’s performance. Among the four SDs, the clas-
sifier evaluated on SD4 achieves the best performance in terms of
all four measures — the improved performance is not very large
though. Therefore, we used SD4 as the dataset for further experi-
mental evaluation of the proposed classifier.

5.4 Experimental setup
We implemented the classification model using Matlab, and eval-
uated its performance using k-fold cross-validation on the SD4
dataset. Because random forests are used in the classifier, the per-
formance exhibits a certain level of variation on the execution due
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Figure 9: Performance measures of the proposed classifier evaluated on the SD4 dataset.
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Figure 10: Performance curves of the proposed classifier with different values of nTrees, evaluated on the SD4 dataset.

to the random variable selection from the feature vector. We run
this procedure 50 times and produce Notched boxplots of quanti-
tative performance measures for performance evaluation. In this
experiment, a random forests were used, and we conducted experi-
ment to study the impact of the tuning parameter — the number of
trees (nTrees) in the forests — on the classifier’s performance.

5.4.1 Performance metrics. Considering the sensitivity of single
performance metrics, we selected a group of measurements to pro-
vide an informative view of the proposed classifier’s performance:
Recall, Precision, TNR (True negative rate), Accuracy, F2 measure,
and MCC (Matthews Correlation Coefficient) [23] were all used to
examine the classifier’s performance.

Recall (sensitivity) and precision are two measures focusing on
the positive examples (Artcodes) and predictions. Their importance
varies over learning tasks: precision, for example, being more de-
sirable than recall in information retrieval. However, in the case of
Artcode detection, we may desire higher Recall than Precision, be-
cause recognizing the presence of Artcodes is the basis for their later
decoding in augmented reality. Similarly, TNR (specificity) mea-
sures the proportion of negatives (non-Artcodes) that are correctly
identified as such. Accuracy, the F2 measure, and MCC measure
the overall performance of the classifier, considering both positive
and negative classes. Accuracy is the overall proportion of correct

predictions, for both Artcode and non-Artcode classes, and is a
simple way of describing a classifier’s performance on the given
dataset. However, Accuracy is sensitive to size differences among
classes. F2 measure is a special instance of Fβ measure, which Fβ
measure uses the weighted harmonic average of Precision and Re-
call to evaluate the classifier’s preciseness (β is the factor used to
control the importance of recall over precision). We in this exper-
iment, considering the desirability of recall over precision, used
the F2 measure (β = 2), making recall twice importance as preci-
sion. Compared with Accuracy, F2 measure provides more insight
into the performance of a classifier, but can be as sensitive to data
distributions as Accuracy, although the sensitivity is less. MCC
is in essence a correlation coefficient between the observed and
predicted classifications, incorporating true and false positives and
negatives. It is generally regarded as one of the best measures for
classifier performance evaluation [30], and remains effective even
if the dataset is imbalanced.

Additionally, ROC (Receiver operating characteristic) and PR
(Precision-recall) curves and their area under curve (AUC-ROC and
AUC-PR) were used to illustrate the classifier’s performance. ROC
and PR curves are commonly used to evaluate the performance of
the classifier in binary classification problems in machine learning.
ROC curves plot the false positive rate on the x-axis versus the
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true positive rate on the y-axis, while PR curves plot Recall on the
x-axis and Precision on the y-axis. The goal of ROC curves is to
be in the upper-left-hand corner, whereas the goal of PR curves is
to be in upper-right-hand corner. The closer the curves approach
to these two corners ([0, 1] and [1, 0], respectively), the better is
the performance of the classifier. ROC and PR curves provide a
visual inspection of the classifier’s performance, AUC-ROC and
AUC-PR provide a single numeric metrics for evaluating the classi-
fier’s performance. Models with higher AUC values are preferred
over those with lower AUCs. However, when dealing with highly
skewed datasets, PR curves present a more informative picture of a
classifier’s performance.

5.5 Results
Figures 9 and 10 present the classifier’s performance with different
values of nTrees (the number of decision trees in random forests).
Figure 9 presents the six performance metrics generated from the
50 rounds of running cross-validation of the classifiers. This figure
also shows the average values (pink diamonds in boxplots) of these
performance metrics also calculated from 50 rounds of running.

The impact of nTrees on the classifier’s performance illustrated
in Figures 9 and 10, where the classifier stabilizes at about nTrees =
40, in terms of the evaluation metrics, with a small variations on
the performance when nTrees = 40, . . . , 200. This is reflected by
whether the notches between the classifiers with different values
of nTrees overlap or not. As shown in Figures 9(a), (e), and (f), the
notch of the first box (nTrees = 20) does not overlapped with the
notches of other boxes in these three overall performance metrics
(Accuracy, F2 measure, and MCC). According to the definition of
notched boxplot, this means that the medians of the three metrics
differ at a 95% confidence level. On the other hand, the notches of
these boxes (nTrees = 40, . . . , 200) are all overlapped, indicating
their medians are not significantly different. This is also shown in
Figure 10(c) by the sharp increase of PR-AUC when the value of
nTrees is increased from 20 to 40. In the following analysis, we focus
on the performance evaluation of the classifiers with nTrees ≥ 40.

Regarding the classifier’s performance predicting the positive
class (Artcodes), as measured by Recall and Precision, the classi-
fier obtains scores of about 0.82 and 0.84 for Recall and Precision,
respectively. This means that the classifier correctly predicts 82%
of Artcodes from the given dataset and predicts an Artcode class
with 84% probability to be an true Artcode. Likewise, the classifier
performs well on predicting the negative class (non-Artcodes) as
predicting positive class, as measured by TNR (Figure 9(d)), with
85% of non-Artcodes correctly predicted. Formally, given 1 and 0
to denote Artcode and non-Artcode classes, respectively, and Ŷ as
the predicted class of the true class Y , the proposed classifier has
following conditional probabilities:

Recall = Pr
(
Ŷ = 1 | Y = 1

)
= 0.82 (7)

Precision = Pr
(
Y = 1 | Ŷ = 1

)
= 0.84 (8)

TNR = Pr
(
Ŷ = 0 | Y = 0

)
= 0.85 (9)

Accuracy, F2 measure, andMCC assess the classifier’s overall perfor-
mance, considering both positive and negative classes. As shown in
Figures 9(a) and (e), the Accuracy and F2 measure of the classifiers
are about 0.84 and 0.83, respectively, indicating that the classifier

correctly predicts 84% proportion of samples in SD4 dataset and
achieves a good trade-off (0.83) between preciseness and robustness.
Because the given dataset SD4 is almost balanced, Accuracy is as
an effective performance measure as is F2 measure: both of them
show good overall performance of the proposed classifier. The
MCC of the classifier on the given dataset is approximately 0.68,
as a Pearson correlation coefficient for two binary variables, MCC
has similar interpretation as Pearson correlation coefficient: MCC
= 0.68 exhibits a strong positive agreement between predictions and
observations, showing the good predictive ability of the classifier.

The good predictive ability of the classifier is also visually re-
flected by the ROC and PR curves. In Figures 10(a) and (b), the ROC
and PR curves of the classifiers with different numbers of nTrees
are all approaching to the upper-left-hand and upper-right-hand
corners, respectively, showing good overall performance of the
classifiers. Moreover, the area under the curves of the classifiers
are high, compared to random change, as shown in Figure 10(c),
with mean of 0.93 (std.=0.0083) and 0.91 (std.=0.0301) across all
different values of nTrees, respectively. This shows the probability
(Equation10) that the classifier will rank a randomly chosen pos-
itive example (Artcode) higher than a randomly chosen negative
example (non-Artcode), denoted as follows, indicating the good
performance of the classification model.

Pr
(
score(Y = 1) > score(Y = 0)

)
= 0.93 (10)

6 CONCLUSIONS
In this paper, we have presented a new topology-based system for
the detection of the presence of “invisible” yet structured markers
in images. We proposed a new system for Artcode detection, which
shows the feasibility of using such geometrically-variable markers
in free-form images, thanks to a machine learning-driven approach.
An Artcodes datasets was collected for the study. Artcodes are hand-
crafted by designers, which by their nature means that the number
of Artcode samples is limited, therefore introducing an imbalance
to the dataset. SMOTE was used to tackle this imbalance, creating
an augmented dataset with relatively-balanced class distribution,
showing great performance enhancement.

To detect such free-form codes, traditional geometry-based fea-
tures were not suitable. Therefore, the SOH feature descriptor based
on the symmetry and smoothness of the orientation histogram was
proposed in this paper, and showed its effectiveness on the classifica-
tion of Artcodes versus non-Artcodes in a random forest framework.
Here we use Artcodes as one example case for recognizing the pres-
ence of similar hidden visual markers in a real-life context. In this
paper, we demonstrate how we can use topological information
about the markers to detect their existence in images. Our future
work will include deploying this system via the mobile platform to
study its impact on the user experience in augmented reality.

ACKNOWLEDGMENTS
The author acknowledges the financial support from the Inter-
national Doctoral Innovation Centre, Ningbo Education Bureau,
Ningbo Science and Technology Bureau, and the University of Not-
tingham. This work was also supported by the UK Engineering and
Physical Science Research Council [grant No. EP/L015463/1].

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

217



REFERENCES
[1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. 2008. Speeded-up

robust features (SURF). Computer vision and image understanding 110, 3 (2008),
346–359.

[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. 2001. Matching shapes. In Com-
puter Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference
on, Vol. 1. IEEE, 454–461.

[3] Ross Bencina, Martin Kaltenbrunner, and Sergi Jorda. 2005. Improved topological
fiducial tracking in the reactivision system. In Computer Vision and Pattern
Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference
on. IEEE, 99–99.

[4] Steve Benford, Adrian Hazzard, Alan Chamberlain, Kevin Glover, Chris Green-
halgh, Liming Xu, Michaela Hoare, and Dimitrios Darzentas. 2016. Accountable
artefacts: the case of the Carolan guitar. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’16). ACM, San Jose, CA, USA,
1163–1175.

[5] Steve Benford, Adrain Hazzard, Alan Chamberlain, and Liming Xu. 2015. Aug-
menting a Guitar with Its Digital Footprint. In Proceedings of International Confer-
ence on New Interfaces for Musical Expression (NIME’15). Louisiana, USA, 303–306.

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. 2010. Brief:

Binary robust independent elementary features. Proceedings of the 2010 European
Conference on Computer Vision (ECCV’10) 6314 (2010), 778–792.

[8] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, andW. Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[9] Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer.
2003. SMOTEBoost: Improving prediction of the minority class in boosting.
In European Conference on Principles of Data Mining and Knowledge Discovery.
Springer, 107–119.

[10] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[11] Enrico Costanza and Jeffrey Huang. 2009. Designable visual markers. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
1879–1888.

[12] Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), Vol. 1. IEEE, 886–893.

[13] Charles Elkan. 2001. The foundations of cost-sensitive learning. In International
joint conference on artificial intelligence, Vol. 17. Lawrence Erlbaum Associates
Ltd, 973–978.

[14] Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan. 1999. AdaCost:
misclassification cost-sensitive boosting. In Proceedings of the Sixteenth Interna-
tional Conference on Machine Learning (ICML’99). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 97–105.

[15] Mark Fiala. 2005. ARTag, a fiducial marker system using digital techniques. In
Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), Vol. 2. IEEE, San Diego, CA, USA, 590–596.

[16] William T Freeman and Michal Roth. 1995. Orientation histograms for hand
gesture recognition. In International workshop on automatic face and gesture
recognition, Vol. 12. 296–301.

[17] Yoav Freund and Robert E Schapire. 1995. A desicion-theoretic generalization
of on-line learning and an application to boosting. In European conference on
computational learning theory. Springer, 23–37.

[18] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. 2005. Borderline-SMOTE: a
new over-sampling method in imbalanced data sets learning. In International
Conference on Intelligent Computing. Springer, 878–887.

[19] Chris Harris and Mike Stephens. 1988. A combined corner and edge detector. In
Alvey vision conference, Vol. 15. Manchester, UK, 50.

[20] Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering 21, 9 (2009), 1263–1284.

[21] Hirokazu Kato and Mark Billinghurst. 1999. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Augmented Reality,
1999.(IWAR’99) Proceedings. 2nd IEEE and ACM International Workshop on. IEEE,
85–94.

[22] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 2 (2004), 91–110.

[23] Brian W Matthews. 1975. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein
Structure 405, 2 (1975), 442–451.

[24] Michael W Maynard. 1993. Classifying apparatus and method. US Patent
5,232,099. (3 Aug. 1993).

[25] Rupert Meese, Shakir Ali, Emily-Clare Thorne, Steve D Benford, Anthony Quinn,
Richard Mortier, Boriana N Koleva, Tony Pridmore, and Sharon L Baurley. 2013.
From codes to patterns: designing interactive decoration for tableware. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13).
ACM, Paris, France, 931–940.

[26] Krystian Mikolajczyk, Cordelia Schmid, and Andrew Zisserman. 2004. Human
detection based on a probabilistic assembly of robust part detectors. In Proceedings
of 2004 European Conference on Computer Vision (ECCV’04). Springer, 69–82.

[27] Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. 2001. Example-
based object detection in images by components. IEEE transactions on pattern
analysis and machine intelligence 23, 4 (2001), 349–361.

[28] Kher Hui Ng and Shazia Paras Shaikh. 2016. Design of a mobile garden guide
based on Artcodes. In Proceedings of 2016 International Conference on User Science
and Engineering (i-USEr’16),. IEEE, 23–28.

[29] Constantine Papageorgiou and Tomaso Poggio. 2000. A trainable system for
object detection. International Journal of Computer Vision 38, 1 (2000), 15–33.

[30] David M. W. Powers. 2011. Evaluation: From precision, recall and f-measure
to roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies 2, 1 (2011), 37–63.

[31] Edward Rosten and Tom Drummond. 2006. Machine learning for high-speed
corner detection. In Proceedings of 2006 European Conference on Computer Vision
(ECCV’06). Springer, 430–443.

[32] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: an
efficient alternative to SIFT or SURF. In Proceedings of 2011 IEEE International
Conference on Computer Vision (ICCV’11). IEEE, 2564–2571.

[33] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano.
2010. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transac-
tions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40, 1 (2010),
185–197.

[34] ISO/IEC International Standard. 2000. QR Code. (2000).
[35] Emily-Clare Thorn, Stefan Rennick-Egglestone, Boriana Koleva, William Preston,

Steve Benford, Anthony Quinn, and Richard Mortier. 2016. Exploring large-scale
interactive public illustrations. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems. ACM, 17–27.

[36] Engin Tola, Vincent Lepetit, and Pascal Fua. 2008. A fast local descriptor for
dense matching. In Proceedings of 2008 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’08). IEEE, 1–8.

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

218


	Abstract
	1 Introduction
	2 Related work
	3 Artcodes detection
	4 SOH Feature descriptor
	4.1 Shape of orientation histogram
	4.2 Feature vector construction

	5 Experimental evaluation
	5.1 Dataset
	5.2 Classifier
	5.3 Dealing with imbalance
	5.4 Experimental setup
	5.5 Results

	6 Conclusions
	Acknowledgments
	References



