
Computers and Operations Research 89 (2018) 193–205

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Optimisation of transportation service network using κ-node large

neighbourhood search

Ruibin Bai a , ∗, John R. Woodward

b , Nachiappan Subramanian

c , John Cartlidge

a

a School of Computer Science, Artificial Intelligence and Optimisation Research Group, University of Nottingham Ningbo China, China
b School of Computing Science and Mathematics, University of Stirling, Scotland, United Kingdom

c University of Sussex, UK

a r t i c l e i n f o

Article history:

Received 30 April 2015

Revised 6 June 2017

Accepted 7 June 2017

Available online 12 June 2017

Keywords:

Logistics

Transportation network

Service network design

Metaheuristics

Large neighbourhood search

a b s t r a c t

The Service Network Design Problem (SNDP) is generally considered as a fundamental problem in trans-

portation logistics and involves the determination of an efficient transportation network and correspond-

ing schedules. The problem is extremely challenging due to the complexity of the constraints and the

scale of real-world applications. Therefore, efficient solution methods for this problem are one of the

most important research issues in this field. However, current research has mainly focused on various

sophisticated high-level search strategies in the form of different local search metaheuristics and their

hybrids. Little attention has been paid to novel neighbourhood structures which also play a crucial role

in the performance of the algorithm. In this research, we propose a new efficient neighbourhood struc-

ture that uses the SNDP constraints to its advantage and more importantly appears to have better reach-

ability than the current ones. The effectiveness of this new neighbourhood is evaluated in a basic Tabu

Search (TS) metaheuristic and a basic Guided Local Search (GLS) method. Experimental results based on

a set of well-known benchmark instances show that the new neighbourhood performs better than the

previous arc-flipping neighbourhood. The performance of the TS metaheuristic based on the proposed

neighbourhood is further enhanced through fast neighbourhood search heuristics and hybridisation with

other approaches.

© 2017 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

f

l

n

k

p

h

l

t

m

c

w

j

p

w

v

a

s

n

H

t

g

i

s

p

p

(

h

0

. Introduction

E-commerce and online shopping have rapidly transformed the

ormats of businesses in recent years. Online shopping companies

ike Amazon.com and China-based Taobao.com have seen sig-

ificant growth in sales in recent years. While most companies are

een to leverage new business opportunities such as online shop-

ing, many of them also encounter new issues, such as providing

igh quality delivery of billions of products. Hence the problem of

ogistics has received increasing attention from both industry and

he research communities.

Freight transportation has great potential for further improve-

ent in efficiency and service level in the era of big data and

loud computing. The Service Network Design Problem (SNDP) is

idely considered as the core problem of freight transportation
∗ Corresponding author.

E-mail addresses: ruibin.bai@nottingham.edu.cn (R. Bai),

ohn.woodward@stir.ac.uk (J.R. Woodward), N.Subramanian@sussex.ac.uk

(N. Subramanian), john.cartlidge@nottingham.edu.cn (J. Cartlidge).

C

2

a

h

r

ttp://dx.doi.org/10.1016/j.cor.2017.06.008

305-0548/© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article
lanning for less-than truck load transport and express deliveries

here consolidation is necessary to improve the efficiency. It in-

olves the determination of a cost-effective transportation network

nd the services which it will provide, while satisfying the con-

traints related to geographically and temporally diverse demands,

etwork availability, assets capacity, etc. The SNDP is strongly NP-

ard (Ghamlouche et al., 2003) and hence it is impractical to op-

imally solve the problem of realistic sizes. In fact, the SNDP is

enerally of large-scale, due to the size of potential network. This

s particularly the case when the formulation is based on a time-

pace network in which each node and each arc has a copy in each

eriod of the scheduling horizon (see Fig. 1).

Various heuristic and metaheuristic approaches have been ap-

lied to this problem and substantial progress has been made

 Andersen et al., 2011; Bai et al., 2012; Chouman and Crainic, 2014;

rainic et al., 20 0 0; Ghamlouche et al., 20 03; 20 04; Hoff et al.,

010; Minh et al., 2013; Pedersen et al., 2009). However, almost

ll of these research studies have focused on various intelligent

igh-level strategies for better trade-offs between search explo-

ations and exploitations. Here, we consider high-level strategies
under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.cor.2017.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.06.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ruibin.bai@nottingham.edu.cn
mailto:john.woodward@stir.ac.uk
mailto:N.Subramanian@sussex.ac.uk
mailto:john.cartlidge@nottingham.edu.cn
http://dx.doi.org/10.1016/j.cor.2017.06.008
http://creativecommons.org/licenses/by/4.0/

194 R. Bai et al. / Computers and Operations Research 89 (2018) 193–205

day 1 day 2 day 3 day 4 day 5 day 6 day 7

n1

n2

n3

Fig. 1. An example of a time-space network with 3 nodes and 7 periods.

C

t

h

e

e

d

l

i

a

o

m

c

t

m

a

d

o

s

e

b

n

g

v

v

s

s

m

l

d

l

m

B

t

a

o

t

w

l

a

a

o

t

t

m

t

1

c

v

a

a

b

p

l

(

s

s

(

t

(

n

m

t

Y
as domain-independent heuristic approaches that do not take spe-

cific advantage of a problem’s underlying low-level solution struc-

ture. Examples of high-level strategies for more efficient search in-

clude the tabu-assisted guided local search by Bai et al. (2012) and

the hybrid tabu search with path-relinking method by Minh et al.

(2013) . Analysis of the problem solution structure and its con-

straints is very limited. As indicated in Kendall et al. (2016) , a lot of

optimization research studies merely borrow different metaphors

without much deep insights on algorithmic or problem properties.

These approaches do not satisfy real-world requirements either

in terms of solution quality delivered or in computational time

required. This is because the SNDP contains some difficult con-

straints and a flow distribution sub-problem, generally referred to

as the Capacitated Multicommodity Min-Cost Flow (CMMCF) prob-

lem, which can be very expensive to solve if it is called many times

within an iterative metaheuristic approach. This motivates us to

develop more efficient metaheuristics for this important and chal-

lenging sub-problem. Therefore, unlike the above papers which fo-

cus on high-level strategies, in this paper, we propose and study

a new larger neighbourhood that exploits the special structure of

the SNDP constraints and has much better reachability due to the

implicit constraint handling. The experiments on two basic meta-

heuristic approaches and a hybrid algorithm show that the new

neighbourhood is very effective and could be used to develop more

efficient algorithms for the SNDP.

The remainder of the paper is structured as follows:

Section 2 provides a brief introduction to the SNDP and an

overview of the research in freight service network design.

Section 3 presents the arc-node based mathematical formula-

tion for SNDP. Section 4 discusses the neighbourhood structure

used in the previous studies. Section 5 describes the proposed

κ-node neighbourhood operator whose performance is evaluated

in Section 6 through a basic Tabu Search (TS) method and a basic

Guided Local Search (GLS) method. Section 7 describes a hybrid al-

gorithm based on the κ-node neighbourhood. Section 8 concludes

the paper.

2. Literature review

This section provides a brief overview of the previous research

into SNDP which is closely related to classic network flow prob-

lems (Ahuja et al., 1993). Comprehensive reviews can be found in

Crainic (20 0 0) , Crainic and Kim (20 07) and Wieberneit (20 08) .

Early work in this field includes Crainic and Rousseau (1986) ,

Powell (1986) and Crainic and Roy (1988) . Crainic et al. (1993) ap-

plied a TS metaheuristic to the container allocation/positioning

problem. Crainic et al. (20 0 0) investigated a hybrid approach for

capacitated multicommodity network design (CMND), combining

a TS method with pivot-like neighbourhood functions and col-

umn generation. Ghamlouche et al. (2003) continued the work and

proposed a more efficient cycle-based neighbourhood function for
MND. Experiments with a simple TS framework demonstrated

he superiority of the method to the earlier pivot-like neighbour-

ood functions in Crainic et al. (20 0 0) . This approach was later

nhanced by adopting a path-relinking mechanism (Ghamlouche

t al., 2004).

Barnhart et al. (2002) addressed a real-life air cargo express

elivery SNDP. The problem instances are characterised by their

arge sizes and the addition of further complex constraints to those

n the general SNDP model. A tree formulation was introduced

nd the problem was solved heuristically using a method based

n column generation. Armacost et al. (2002) introduced a new

athematical model based on an innovative concept called the

omposite variable , which has a better Linear Programming bound

han other models. A column generation method using this new

odel was able to solve the problem successfully within a reason-

ble computational time, taking advantage of the specific problem

etails. However, it may be difficult to generalise their model to

ther freight transportation applications, especially when there are

everal classes of services being planned simultaneously. Pedersen

t al. (2009) studied more generic SNDP in which a set of asset

alance constraints was added to model the requirements that the

umber of incoming vehicles at each node must equal to the out-

oing vehicles in order to maintain the continuity of freight ser-

ices over time. A multi-start metaheuristic, based on TS, was de-

eloped and shown to outperform a commercially available MIP

olver when computational time was limited to one hour per in-

tance. Andersen et al. (2009) compared the node-arc based for-

ulation, the path-based formulation and a cycle-based formu-

ation for SNDPs. Computational results on a set of small ran-

omly generated instances indicated that the cycle-based formu-

ation gave significantly stronger bounds and hence may allow for

uch faster solution methods of problems. More recent work by

ai et al. (2012) attempted to further reduce the computational

ime and investigated a Guided Local Search (GLS) based hybrid

pproach. The computational study showed that GLS was able to

btain better solutions than Tabu Search (TS) but with less than

wo thirds of the computational time. However, GLS in that study

as based on an arc-flipping neighbourhood which sometimes

eads to poor solutions.

Other methods of approaching SNDP have included ant colony

nd a branch and price method. Barcos et al. (2010) investigated an

nt colony optimization approach to address a simplified variant

f freight SNDP. The algorithm was able to obtain solutions better

han those adopted in the real-world within a reasonable compu-

ational time. Andersen et al. (2011) studied a branch and price

ethod for the SNDP. Although the proposed algorithm was able

o find solutions of higher quality than the previous methods, the

0-h computational time required by the algorithm poses a great

hallenge for practical applications.

Variants of SDNP have also been studied. Hoff et al. (2010) in-

estigated a variable neighbourhood search based metaheuristic

pproach for the service network design with stochastic demand,

 problem sharing similar structure to SNDP. However, the neigh-

ourhood functions used in their approach are mainly based on

ath oriented operators which, like the arc-flipping operator, have

imitations in dealing with asset balance constraints. Alumur et al.

2012) studied a heuristic approach for the simultaneous optimi-

ation of hub locations and the service network. A multi-period

upply chain network design problem was studied in Carle et al.

2012) and an agent-based metaheuristic was proposed based on

he idea of asynchronous cooperation between agents. Nickel et al.

2012) studied a stochastic supply network design problem with fi-

ancial decisions and risk management for which the authors only

anaged to solve small instances. Heuristic approaches appear

o be the most promising methods for these types of problems.

aghini et al. (2012) proposed a simulated annealing metaheuris-

R. Bai et al. / Computers and Operations Research 89 (2018) 193–205 195

t

a

r

m

p

d

t

s

a

b

o

r

g

r

t

t

s

n

a

k

3

p

t

s

u

t

c

t

b

t

r

w

t

b

r

a

e

e

n

A

c

i

c

a

a

f

u

l

z

s

∑

w

w

o

s

d

o

w

b

a

f

a

n

p

a

z

t

y

(

l

s

C

m

(

4

n

s

t

o

C

t

s

m

F

p

s

i

n

b

t

i

a

s

i

5

v

e

i
ic for the CMND problem without asset-balance constraints. The

pproach utilised a neighbourhood structure based on the pivoting

ules of the Simplex method in order to speed up the search. A

ultiobjective evolutionary algorithm was proposed for this same

roblem in Kleeman et al. (2012) . However, these metaheuristics

o not necessarily perform well on SNDP due to the presence of

he asset-balance constraints. Bai et al. (2014) studied a stochastic

ervice network design problem with rerouting. In Bai et al. (2015) ,

 service network design formulation was used to obtain the lower

ound of a multi-shift full truckload transportation problem.

It can be seen that the aforementioned research mainly focused

n either new models to better capture the complexities of the

eal-world freight transportation problems or new generic strate-

ies to search the solution space more efficiently. However, limited

esearch has been done to investigate new neighbourhood func-

ions to tackle the difficult constraints and expensive flow distribu-

ion sub-problems. The goal of this paper is to address this gap by

tudying a new neighbourhood structures for SNDP. The effective-

ess of the new structure is evaluated in two basic metaheuristic

pproaches (TS and GLS) and a hybrid method for a set of well-

nown SNDP benchmark instances.

. The freight SNDP problem and model

The SNDP is an important tactical/operational freight trans-

ortation planning problem. It is of particular interest for less-than

ruck load transportation and express delivery services, where con-

olidation of deliveries is widely adopted in order to maximise the

tilisation of freight resources (Crainic, 20 0 0). The SNDP involves

he search for optimal or near-optimal service characteristics, in-

luding the selection of routes and the vehicle types for each route,

he service frequency and the delivery timetables, the flow distri-

ution paths for each commodity, the consolidation policies, and

he idle vehicle re-positioning, so that legal, social and technical

equirements are met (Wieberneit, 2008).

The SNDP differs from the Capacitated Multicommodity Net-

ork Design (CMND) problem, a well-known NP-Hard problem, in

hat it has an additional source of complexity due to the required

alance constraint for freight assets in order to ensure that vehicle

outes are contiguous and that vehicles are in the correct positions

fter each planning cycle.

The problem of concern in this paper can be formulated in sev-

ral ways. We used a node-arc based model described in Pedersen

t al. (2009) and also present it here for completeness. The list of

otation used in the model is given in Table 1 .

Let G = (N , A) denote a directed graph with nodes N and arcs

 . Let (i, j) denote the arc from node i to node j . Let K be the set of

ommodities. For each commodity k ∈ K, let o (k) and s (k) denote

ts origin and destination nodes, respectively. Let y ij be Boolean de-

ision variables, where y ij = 1 if arc (i, j) is used in the final design

nd 0 if it is not used. Let x k
i j

denote the flow of commodity k on

rc (i, j). Let u ij and f ij be the capacity and fixed cost, respectively,

or arc (i, j). Finally, let c k
i j

denote the variable cost of moving one

nit of commodity k along arc (i, j). The SNDP can then be formu-

ated as follows:minimise

(x , y) =

∑

(i, j) ∈A
f i j y i j +

∑

k ∈K

∑

(i, j) ∈A
c k i j x

k
i j (1)

ubject to

k ∈K
x k i j ≤ u i j y i j ∀ (i, j) ∈ A (2)

∑

j∈N + (i)

x k i j −
∑

j∈N −(i)

x k ji = b k i , ∀ i ∈ N , ∀ k ∈ K (3)
∑

j∈N −(i)

y ji −
∑

j∈N + (i)

y i j = 0 ∀ i ∈ N (4)

here x k
i j

≥ 0 and y ij ∈ {0, 1} are the decision variables. The net-

ork capacity constraint (2) ensures that the maximum capacity

f arc (i, j) is not violated. The flow conservation constraint (3) en-

ures that the entire flow of each commodity is delivered to its

estination, where N

+ (i) denotes the set of outward neighbours

f node i and N

−(i) the set of inward neighbours. b k
i

is the out-

ard flow of commodity k for node i , so we set b k
i

= d k if i = o(k) ,

k
i

= −d k if i = s (k) , and b k
i

= 0 otherwise. Constraint (4) is the

sset-balance constraint , which is missing from the standard CMND

ormulation, as discussed in Section 2 and which ensures the bal-

nce of transportation assets (i.e. vehicles) at the end of each plan-

ing period.

For a given design variable vector y = < y 00 , . . . , y i j , . . . >, the

roblem becomes one of finding the optimal flow distribution vari-

bles. Constraint (4) is no longer relevant and the flow must be

ero on all closed arcs, so only open arcs have to be considered in

he model. Let A denote the set of open arcs in the design vector

 and N be the set of nodes in A , then flow distribution variables

 x k
i j

) for all open arcs ((i, j) ∈ A) can be obtained by solving the fol-

owing CMMCF problem, where x k
i j

≥ 0 ∀ (i, j) ∈ A , k ∈ K :minimise

z (x) =

∑

k ∈K

∑

(i, j) ∈ A
c k i j x

k
i j (5)

ubject to
∑

k ∈K
x k i j ≤ u i j ∀ (i, j) ∈ A (6)

∑

j∈N + (i)

x k i j −
∑

j∈N −(i)

x k ji = b k i , ∀ i ∈ N , ∀ k ∈ K (7)

onstraint (6) ensures the total flow on each open arc in A is no

ore than its capacity. Constraint (7) is same as the constraint

3) which is the flow conservation constraint.

. A revisit of previous heuristic approaches

In the previous effort s (Bai et al., 2012; Pedersen et al., 2009),

eighbourhood search functions were primarily based on single arc

tate-flipping (otherwise referred to as arc adding/dropping) with

he flow distribution handled separately either heuristically (based

n a residual graph) or optimally by solving the corresponding

MMCF problem using an LP solver. Interested readers are referred

o Pedersen et al. (2009) for more details of this neighbourhood

tructure.

However, one drawback of this neighbourhood is the inability to

aintain solution feasibility in terms of asset-balance constraints.

or a feasible solution satisfying the asset-balance constraints, flip-

ing the state of a single arc will typically generate an infeasible

olution (i.e. violating constraint (4)). Let us take a simple network

n Fig. 2 as an example. In the current configuration (Fig. 2 .(a)), the

etwork consists of 8 open arcs (and 4 closed arcs) and is asset-

alanced since, for each node, the number of incoming arcs equals

o the number of outgoing arcs. Using the neighbourhood function

n Pedersen et al. (2009) and Bai et al. (2012) , one could gener-

te 12 neighbouring solutions. Unfortunately none of them is fea-

ible due to asset balance constraint violations. For example, open-

ng arc (1,5) will lead to vehicle imbalance at both nodes 1 and

. Similarly, closing arc (2,1) will lead to asset-balance constraint

iolations at nodes 1 and 2. In Pedersen et al. (2009) and Bai

t al. (2012) , this constraint violation issue was addressed by us-

ng a special feasibility-recovery procedure at the end of each local

196 R. Bai et al. / Computers and Operations Research 89 (2018) 193–205

Table 1

List of notation used in the SNDP model.

Notation Meaning

N The set of nodes.

A The set of arcs in the network.

G = (N , A) A directed graph with nodes N and arcs A .

(i, j) ∈ A The arc from node i to j .

u ij The capacity of arc (i, j).

f ij The fixed cost of arc (i, j).

K The set of commodities.

o (k) The origin (source) of commodity k ∈ K.

s (k) The sink (destination) of commodity k .

d k The flow demand of commodity k .

c k
i j

The variable cost for shipping a unit of commodity k on the arc (i, j).

x k
i j

The amount of flow of commodity k on the arc (i, j).

y ij The network design variables. y i j = 1 if arc (i, j) is open and 0 if it is closed.

x The vector of all flow decision variables, i.e. x = < x 0 00 , . . . , x
k
i j
, . . . > .

y The vector of all design variables, i.e. y = < y 00 , . . . , y i j , . . . > .

N

+ (i) The set of outward neighbouring nodes of node i .

N

−(i) The set of incoming neighbouring nodes of node i .

b k
i

The outward flow of commodity k . b k
i

= d k if i = o(k) , b k
i

= −d k if i = s (k) and 0 otherwise.

z (x, y), z (s) The objective of SNDP model, which represents the sum of the fixed cost and the variable cost for given solution vectors x and y , or

expressed in terms of a potential solution s .

g (s), g (x, y) The objective function which is actually solved, including a penalty for infeasibility, expressed in terms of a potential solution s or the

decision variable component vectors x and y of s .

Fig. 2. An illustration of the reachability issue of the arc-flipping neighbourhood. The status of the thicker arcs are changed during the neighbourhood move.

l

m

5

w

m

t

E

t

5

a

b

s

T

i

d

g

i

b

c

t
search phase. Although effective in finding a feasible solution, the

method may suffer from performance issues when the feasibility-

recovery procedure leads to a large increase in costs, and hence

inferior solutions.

Another major drawback of the arc-flipping neighbourhood

function is the reachability in the search space. Observations from

experimental tests in Bai et al. (2012) show that considerable num-

ber of neighbourhood moves are rejected during the search and

local search methods (both TS and GLS) tend to get stuck at local

optima. It appears that this neighbourhood function struggles to

reach certain regions of the search space regardless of the number

of iterations permitted. This observation explains why the “multi-

ple starts” used in Pedersen et al. (2009) and Bai et al. (2012) is

effective. In fact, this can be illustrated by the network in Fig. 2 .

Assume that the network shown in Fig. 2 .(b) is a better feasible

solution than Fig. 2 .(a). Moving from the solution in Fig. 2 .(a) to

the solution depicted in Fig. 2 .(b) requires closing two arcs 4 → 3

and 3 → 2 and opening arc 4 → 2. Since only one arc can be mod-

ified at each neighbourhood move (excluding arcs that are modi-

fied during the flow redistribution procedure), in theory it is pos-

sible to move to the neighbouring solution in Fig. 2 .(b) through 3

successive operators. In practice the success rate of such a move

could be extremely low since the first two moves will result in as-

set imbalance at all three nodes involved and the penalty for this

constraint violations can prevent the intermediate solutions from

being accepted. In addition, if the flow redistribution during any of

these three moves is infeasible, the search will not reach the so-

a
ution depicted in Fig. 2 .(b) from Fig. 2 .(a). This explains why the

ulti-start was required in the previously proposed algorithms.

. The proposed κ-node neighbourhood

In this section, we describe the proposed new neighbourhood

hich was originated from the idea of paired-route-flipping. The

ain purpose is to maintain the feasibility of the solution during

he search by changing the status of two carefully selected routes.

ach route is a sequence of arcs representing vehicle moves over

ime. We describe this idea in the following subsection.

.1. The paired route-flipping

Instead of flipping an arc, we identify a set of arc-flipping oper-

tions with automatic feasibility satisfaction in terms of the asset-

alance constraint. Fig. 3 illustrates this arc-flipping operator. The

olid lines represent open arcs and dotted arcs denote closed arcs.

he paired-route-flipping operator involves simultaneously chang-

ng the statuses of two routes which share the same source and

estination nodes. In this particular example, suppose that the al-

orithm decides to close a route 1 → 2 → 3. If we can find one of

ts paired route that also starts at node 1 and finishes at node 3

ut with different statuses (i.e. route is closed), the asset balance

onstraint can be satisfied by simply opening the paired route (i.e.

he dotted route). Although this neighbourhood operator can guar-

ntee satisfaction of asset-balance constraints, identifying such a

R. Bai et al. / Computers and Operations Research 89 (2018) 193–205 197

Fig. 3. An illustration of the paired route-flipping neighbourhood. Solid lines are

open arcs and dashed ones are closed arcs.

p

f

h

5

a

c

t

e

s

(

t

r

n

h

o

s

n

a

t

l

n

c

b

e

s

a

y

y

y

C

n

o

t

s

d

m

s

f

f

l

s

o

b

o

2

t

e

w

e

y

c

y

4

a

y

c

b

t

i

n

y

y

y

y

o

t

4

p

H

s

t

p

a

d

m

t

m

m

y

y

y

a

b

c

6

C

p

h

t

c

s

air of routes is not trivial. On the contrary, it is much easier to

ocus on nodes rather than arcs, leading to our κ-node neighbour-

ood structure which we describe in the next subsection.

.2. The κ-node neighbourhood operator

In this neighbourhood, a subset of κ nodes out of all the nodes

re selected and arcs incident upon these nodes are considered for

hanges. Note that in order to prevent evaluating a candidate solu-

ion many times, we require that the change of arcs should involve

xactly κ nodes rather than a subset of them. We focus on the

mall and medium sized neighbourhoods. Large neighbourhoods

e.g. κ > 4) are not considered since it is impractical to evaluate

hem within a realistic time limit.

Fig. 4 illustrates the κ-node operator when κ = 2, 3 and 4,

espectively. It is not difficult to see that when κ = 2 , a feasible

eighbour may exist only if both arcs connecting the two nodes

ave a same status (i.e. either both closed or both open). If one

f them is open and the other is closed, no feasible neighbouring

olution exists.

When κ = 3 , the maximum number of arcs between these

odes is 6. For a feasible current solution s , we denote design vari-

bles for arcs a 0 , a 1 , . . . , a 5 as y 0 , y 1 , . . . , y 5 , respectively. Including

he current solution s , the maximum number of neighbouring so-

utions for a 3-node operator will be 2 6 = 64 . However, not every

eighbouring solution will be feasible in terms of asset-balance

onstraint (4) . For any neighbouring solution s ′ , to satisfy asset-

alance constraint, the following constraints should be respected,

ach of which corresponds to one of the three nodes under con-

ideration. We denote the corresponding design variables in s ′ for

rcs a 0 , a 1 , . . . , a 5 as y ′ 0 , y ′ 1 , . . . , y ′ 5 , respectively.

 0 + y 2 − y 1 − y 3 = y ′ 0 + y ′ 2 − y ′ 1 − y ′ 3 (8)

 1 + y 4 − y 0 − y 5 = y ′ 1 + y ′ 4 − y ′ 0 − y ′ 5 (9)

 3 + y 5 − y 2 − y 4 = y ′ 3 + y ′ 5 − y ′ 2 − y ′ 4 (10)

ondition (8) is obtained from the asset balance constraint for

ode 0. The left side term is the difference between the number

f outgoing and incoming arcs connecting node 0 and the other

wo nodes in solution s , while the right side term stands for the

ame difference for node 0 in its neighbouring solution s ′ . In or-

er to make sure node 0 stays asset-balanced after neighourhood

oves in s ′ , the left side term should be made equal to the right

ide. That is, any neighbourhood moves should not change the dif-

erence between the number of outgoing arcs and incoming arcs

or node 0. The same requirements applies to node 1 and node 2,

eading to conditions (9) and (10) , respectively.

Note that any of the two conditions will be sufficient to en-

ure feasibility since the third condition can be obtained from the

ther two conditions. For example, condition (10) can be obtained
y simply adding (8) and (9) on both sides correspondingly. In the-

ry, the total possible number of neighbouring solutions of s is

η − 1 where η is the number of directed arcs inter-connecting

he κ nodes. Hence when κ = 3 , η = 6 , and 2 η − 1 = 63 . How-

ver, since y ′ 0 , y ′ 1 , . . . , y ′ 5 take binary values only, these conditions

ill exclude lots of neighbouring networks that are infeasible. For

xample, if the left side of condition (8) equals 2 (meaning y 0 =
 2 = 1 , y 1 = y 3 = 0), none of the 63 neighbours will be feasible be-

ause of this condition. If the left side of condition (8) equals 1, i.e.

′
0

+ y ′
2

− y ′
1

− y ′
3

= 1 , including the original network there will be

 possible feasible neighbouring solutions for this condition. They

re: (1, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 1), (1, 1, 1, 0). Due to variables

′
4

and y ′
5
, more solutions are expected if both condition (8) and

ondition (9) are considered. Nevertheless, the number of asset-

alanced neighbouring solutions for s will be significantly smaller

han 63.

Similarly when κ = 4 , the following conditions should be sat-

sfied for candidate solutions to ensure the asset-balance at each

ode:

 0 + y 2 + y 4 − y 1 − y 3 − y 5 = y ′ 0 + y ′ 2 + y ′ 4 − y ′ 1 − y ′ 3 − y ′ 5 (11)

 1 + y 6 + y 8 − y 0 − y 7 − y 9 = y ′ 1 + y ′ 6 + y ′ 8 − y ′ 0 − y ′ 7 − y ′ 9 (12)

 3 + y 7 + y 10 − y 2 − y 6 − y 11 = y ′ 3 + y ′ 7 + y ′ 10 − y ′ 2 − y ′ 6 − y ′ 11 (13)

 5 + y 9 + y 11 − y 4 − y 8 − y 10 = y ′ 5 + y ′ 9 + y ′ 11 − y ′ 4 − y ′ 8 − y ′ 10 (14)

Again, only 3 out the above 4 conditions are active and the

ther one is redundant. For a medium sized network of 60 nodes,

he number of subsets of nodes with cardinality of 4 is C 4
60

=
87635 . For each node subset, as mentioned above, the maximum

ossible number of neighbouring solutions of s is 2 12 − 1 = 4095 .

owever, the actual number of feasible neighbouring solutions that

atisfy the above conditions is significantly smaller. The size of

he neighbourhood depends on the current solution s . For exam-

le, there will be no feasible neighbours when the left side of the

bove conditions takes extreme values (−3 or 3) since it means

ifference of in-degree and out-degree for all 4 nodes is 3. Any

odification of y 0 , . . . , y 11 will violate at least one of these condi-

ions. The number of feasible neighbours most probably reaches a

aximum when the left side of these conditions take values in the

iddle of permitted range (i.e. equal to 0). That is:

′
0 + y ′ 2 + y ′ 4 − y ′ 1 − y ′ 3 − y ′ 5 = 0 (15)

′
1 + y ′ 6 + y ′ 8 − y ′ 0 − y ′ 7 − y ′ 9 = 0 (16)

′
3 + y ′ 7 + y ′ 10 − y ′ 2 − y ′ 6 − y ′ 11 = 0 (17)

Through a binary tree search algorithm, one could solve the

bove equations and it turns out that only 121 possible feasi-

le neighbours exist as far as the asset-balance constraint is con-

erned. Despite this reduction, the size of the neighbourhood in a

0-node network when κ = 4 is still more than 59 million (121 ×

4
60

). Considering the time taken to solve the flow distribution sub-

roblem for each of these candidate solutions in the neighbour-

ood, it is impractical to efficiently evaluate neighbourhoods larger

han κ = 4 . Even with κ = 4 , it could still be very slow to have a

omplete evaluation of the neighbourhood. Faster neighbourhood

earch procedures are required.

198 R. Bai et al. / Computers and Operations Research 89 (2018) 193–205

Fig. 4. An illustration of κ-node operator when κ = 2 , 3, and 4.

C

C

C

C

s

s

a

|

s

r

p

b

d

a

w

v

l

e

t

l

g

κ

b

a

h

fi

v

a

h

a

o

a

W

b

e

N

h

a

i

n

b

t

h

p

a

g

(

C

c
5.3. Speeding up the neighbourhood search

In this section, we discuss ways that could speed up the neigh-

bourhood search. In the previous neighbourhood structure, there

may be solutions which can be discarded directly without ascer-

taining their objective values. Firstly, given a solution s and one

of its neighbouring solutions s ′ , if too many arcs are closed in s ′
compared to s , there is very little chance that the flow on these

arcs can be redistributed among the remaining network. It is there-

fore not necessary to solve the CMMCF sub-problem. Similarly if a

neighbouring solution s ′ has too many open arcs than the original

solution, it is not necessary to evaluate this solution either since

the fixed cost would increase dramatically, resulting in a poor so-

lution. These two “extreme” cases are dealt with by adding cut-set

inequalities and a heuristic rule respectively which we now dis-

cuss.

Let N κ be the set of κ nodes selected in the κ-node neighbour-

hood and A κ be the set of arcs that join any of two nodes from N κ .

For a given κ , the maximum number of arcs incident with these κ
nodes is P 2 κ = κ(κ − 1) . For each of node i ∈ N κ , we define the fol-

lowing cut-sets S i and T i :

S i = { N κ\ i } , T i = { N\ S i } (18)

Let CapST i =

∑

s ∈ S i ,t∈ T i u st y st be the aggregated arc capacity from S i
to T i in a candidate solution with design vector y . Let DemandST i
be the total amount of commodity flows that originate from S i and

destine to T i . Similarly, let CapTS i and DemandTS i be the total avail-

able capacity from T i to S i and total amount of commodity flows

from T i to S i , respectively. The necessary conditions for the candi-

date solution with design variable y to be feasible are:

apST i ≥ DemandST i ∀ i ∈ N κ (19)

apT S i ≥ DemandT S i ∀ i ∈ N κ (20)

In addition, any modification of arcs related to a node i ∈ N κ

will likely impact on the flows going through its neighbouring

nodes. Therefore, similar flow cut-set inequalities can be generated

for its neighbouring nodes. Let S ′
i
= N

+ (i) and T ′
i

= { N\ S ′
i
} , ∀ i ∈ N κ .

We have:

apN ST i ≥ DemandN ST i ∀ i ∈ N κ (21)

apN T S ≥ DemandN T S i ∀ i ∈ N κ (22)

where CapNST i =

∑

s ∈ S ′
i

∑

t∈ T ′
i

u st y st is the aggregated arc capac-

ity from S ′
i

to T ′
i

for node ∀ i ∈ N κ in solution design vector y ,

and CapNTS i is the aggregated arc capacity available from T ′
i

to

S ′
i
. DemandNST i and DemandNTS i , respectively, are the aggregated

commodity flows from S ′
i

to T ′
i

and T ′
i

to S ′
i
.
Although useful in avoiding unnecessary CMMCF sub-problem

olving, these cut set inequalities can be computationally expen-

ive themselves simply because of the huge number of cuts avail-

ble. In our implementation, we set the cardinality of the cut set

 S i | ≤ 3 and we only check against these inequalities for candidate

olutions which have 3 arcs or more closed compared to the cur-

ent solution.

In the case of an “excessive” number of open arcs in s ′ com-

ared to s , the following condition is used to check whether s ′ will

e evaluated or discarded. Neighbours that do not satisfy this con-

ition will be discarded.
∑

 ∈ A κ
f a × y ′ a ≤

∑

a ∈ A κ
f a × y a + w × f κ (23)

here f κ is the average fixed cost of the arcs in A κ that are in-

olved in this neighbourhood move. We discard a neighbouring so-

ution if it contains w more open arcs than the original solution,

valuated in terms of the average fixed costs. In our implementa-

ion we set w = 2 . 5 .

The number of nodes required for κ-node neighbourhood is at

east 2. For a given input κ (≥ 2), a neighbouring solution can be

enerated by making changes to arcs connecting exactly h (2 ≤ h ≤
) nodes. Therefore, here neighbourhood κ = 3 will contain neigh-

ouring solutions with changes involved by all possible node pairs

nd all possible node triplets. The pseudo-code of the neighbour-

ood is given in Algorithm 1 .

For every neighbouring design variable vector y ′ , the procedure

rst checks whether asset-balance constraint is respected by this

ector. If not, y ′ is discarded and the next vector is considered. The

sset-balance constraint is checked in the following way. When

 = 2 , as discussed in the previous section, y ′ is feasible only if two

rcs connecting the two nodes have a same status (i.e. both open

r close). When h = 3 or h = 4 , one can check the asset-balance

t each node using conditions (8) –(10) and (11) –(14) , respectively.

hen κ > 4, as we discussed in Section 5.2 , the size of the neigh-

ourhood increases significantly. It is impractical to evaluate the

ntire neighbourhood. Therefore in our experiment, we set κ = 4 .

ote that when we generate neighbouring solutions for h = 3 or

 = 4 , we should not duplicate neighbours which have been gener-

ted for h = 2 . That is, the neighbourhood moves for h = 3 should

nvolve all three nodes, rather than a subset of it. For example, the

eighbourhood for node set {1,2,3} should not contain the neigh-

ourhood for node set {1,2}, neither for node set {2,3} or {1,3}. In

his way, we can ensure the search starts from smaller neighbour-

oods and when we explore larger neighbourhoods, we do not du-

licate solution evaluations for previously visited solutions.

Once a neighbouring design variable vector y ′ satisfies the

sset-balance constraint and the net number of closed arcs is

reater or equal to 3, we check it against the inequality conditions

16)–(21) to filter infeasible design variable vectors. After this, the

MMCF procedure is called to find a feasible flow if it exists. If the

orresponding node set NS is in the tabu list and aspiration cri-

R. Bai et al. / Computers and Operations Research 89 (2018) 193–205 199

Algorithm 1 The pseudo-code of the proposed κ-node neighbourhood function with TabuList support. It returns a first-improvement

neighbouring solution s ∗ from the current solution s = (x , y) as well as the corresponding node set NS ∗ which defines the neighbourhood.

κ is the maximum number of nodes allowed in the κ-node neighbourhood and z (.) is the fitness function.

1: procedure FirstDescent (s, z(.) , κ)

2: Initialise the best neighbouring solution s ∗ = { 0 } , and set z(s ∗) = ∞ .

3: for h ← 2 , κ do

4: Generate all possible node sets N h , with each set containing h distinct nodes.

5: for all NS ∈ N h do

6: From the current design variable y of s , generate all its neighbours Y by changing

7: the statuses of arcs that interconnect the nodes in NS.

8: for all y ′ ∈ Y do

9: if the asset-balance constraint is violated, skip to the next y ′ . end if

10: if any of inequality constraints (19)-(22) is violated, skip to the next y ′ . end if

11: if CMMCF (y ′) returns a feasible flow then � If a feasible flow is found

12: if NS is in TabuList and the aspiration criterion is not met then

13: skip to the next node set NS.

14: else Copy the solution to s ′ .
15: end if

16: if z(s ′) < z(s) then � A better solution is found, return to caller

17: return s ′ and NS

18: end if

19: if z(s ′) < z(s ∗) then

20: s ∗ = s ′ , NS∗ = NS � Update the best neighbour

21: end if

22: end if

23: end for

24: end for

25: end for

26: return s ∗ and NS∗ � Return the best neighbouring solution

27: end procedure

t

p

d

t

s

6

n

a

b

s

6

κ

u

i

s

m

t

b

A

s

m

κ

n

i

(

f

Algorithm 2 A basic TS with κ-node neighbourhood.

input An initial feasible solution s 0 , the objective function z(.) , κ ,

tabu length T L .

Initialise the TabuList, the current solution s ′ = s 0 , and the best

solution s b = s 0 .

while stopping criterion is not met do

s ′ , NS ← FirstDescent (s ′ , z(.) , k) � Get the first-descent

solution and the node set NS

if z(s ′) < z(s b) then

s b = s ′ � Update the best solution

end if

TabuList.Add(NS) � Add the corresponding node set to the

TabuList

if (TabuList.Length > T L) then

TabuList.RemoveFrist � Maintain the TabuList

end if

end while

return s b

t

r

w

s

t

T

s

n

c

s

k

s

t
erion is not met, this solution is discarded. Otherwise, it is com-

ared against the initial solution and best solution so far. If a can-

idate solution improves the initial solution, the procedure returns

he first-improved solution. Otherwise, it returns the best solution

∗ in the current neighbourhood.

. Performance evaluation

In this section, we evaluate the performance of the κ-node

eighbourhood against two recent metaheuristics based on the

rc-flipping neighbourhood. For purposes of comparison, we chose

asic TS and basic GLS to avoid complications from other factors

uch as various intensification and diversification mechanisms.

.1. A basic TS with κ-node neighbourhood function

We firstly implement a basic TS method with the proposed

-node neighbourhood function (denoted as TS_ κ-node) to eval-

ate its performance. We compare it against the results reported

n Pedersen et al. (2009) by a multi-start TS method given and re-

ults reported in Bai et al. (2012) by a tabu assisted multi-start GLS

ethod. Both algorithms use the arc-flipping neighbourhood func-

ion. More details and discussions about TS can be found in the

ook of Glover and Laguna (1997) .

The pseudo-code of TS_ κ-node algorithm is given in

lgorithm 2 . The inputs of the algorithm are a feasible initial

olution s 0 , the objective function of the problem z (.), the maxi-

um number of nodes allowed in the neighbourhood generation

, and the maximum length of the tabu list TL . Because the

eighbourhood search operates on feasible solutions only, the

nitial solution was generated by the tabu assisted GLS method

TA_MGLS) in Bai et al. (2012) which was stopped as soon as a

easible solution is found. As such, the initial solutions used by
he TS method in this experiment are much inferior than the final

esults reported by TA_MGLS (Bai et al., 2012). In our experiment,

e set κ = 4 to keep the size of the neighbourhood relatively

mall so that it can be evaluated quickly. We used a fixed length

abu list TabuList which is maintained on the first-in-last-out basis.

he maximum length is set to T L = 10 after some initial tests on a

ubset of the benchmark instances. Because the proposed κ-node

eighbourhood is based on node sets rather than arcs, the tabu list

ontains the node set which leads to the adoption of the current

olution returned by the procedure FirstDescent(s ′ , z (.),
) . The procedure repeatedly calls the FirstDescent(.) to

earch for a first-decent neighbouring solution which is not in

he tabu list until the stopping criterion is met. In this case, the

200 R. Bai et al. / Computers and Operations Research 89 (2018) 193–205

Table 2

An initial evaluation of the performance of the proposed κ-node neighbourhood in a basic TS algorithm (TS_ κ-

node) in comparison with two previous algorithms; TS (Pedersen et al., 2009) and TA_MGLS (Bai et al., 2012).

TS was used once only because it was developed into a deterministic algorithm. The best objective values are

highlighted in bold.

Instance TS TA_MGLS TS_ κ-node

id feature (1 run) best avg worst best avg worst

c37 C20,230,200,V,L 102,919 98,760 99,622 101,606 97,737 98,498 99,726

c38 C20,230,200,F,L 150,764 142,113 143,867 146,823 140,146 142,770 146,343

c39 C20,230,200,V,T 103,371 102,137 102,833 104,424 101,325 101,931 103,001

c40 C20,230,200,F,T 149,942 141,802 143,839 146,141 140,576 141,475 146,119

c45 C20,30 0,20 0,V,L 82,533 79,030 79,895 80,888 78,111 80,032 81,156

c46 C20,30 0,20 0,F,L 128,757 121,773 124,454 127,607 122,498 124,873 127,039

c47 C20,30 0,20 0,V,T 78,571 77,066 78,302 80,009 77,002 78,393 79,330

c48 C20,30 0,20 0,F,T 116,338 114,465 115,836 117,046 114,886 115,939 117,140

c49 C30,520,100,V,L 55,981 55,732 55,986 56,260 55,243 55,551 55,995

c50 C30,520,100,F,L 104,533 100,290 102,017 102,838 101,287 102,838 103,049

c51 C30,520,100,V,T 54,493 54,372 54,708 54,838 53,759 54,177 54,282

c52 C30,520,100,F,T 105,167 104,574 105,423 106,477 103,661 105,047 106,018

c53 C30,520,400,V,L 119,735 116,196 116,915 117,888 116,363 117,638 118,824

c54 C30,520,400,F,L 162,360 154,941 156,008 157,630 156,506 157,810 160,193

c55 C30,520,400,V,T 120,421 118,336 118,894 120,445 118,253 119,609 120,594

c56 C30,520,400,F,T 161,978 157,940 159,427 161,272 158,814 160,096 160,774

c57 C30,70 0,10 0,V,L 49,429 49,385 49,457 4 9,4 82 48,826 49,210 49,370

c58 C30,70 0,10 0,F,L 63,889 62,055 62,774 63,397 62,733 62,947 63,200

c59 C30,70 0,10 0,V,T 48,202 47,519 47,728 47,937 47,407 47,477 47,602

c60 C30,70 0,10 0,F,T 58,204 57,571 58,046 58,447 58,015 58,015 58,015

c61 C30,70 0,40 0,V,L 103,932 101,610 102,216 103,008 102,185 102,391 102,827

c62 C30,70 0,40 0,F,L 157,043 142,563 144,755 147,828 142,711 145,397 149,292

c63 C30,70 0,40 0,V,T 103,085 98,657 99,726 100,590 98,926 100,099 101,754

c64 C30,70 0,40 0,F,T 141,917 135,778 136,727 138,004 135,902 137,518 139,666

p

i

a

p

6

n

A

A

n

i

o

i

T

t

l

i

d
procedure stops when the maximum allowed time is exhausted.

This was set to 2400 s minus the amount of time spent in the

initial feasible solution generation phase.

Table 2 presents the computational results by the basic TS with

the proposed neighbourhood function (denoted as TS_ κ-node) in

comparison with two other metaheuristics for this problem; TS

(Pedersen et al., 2009) and TA_MGLS (Bai et al., 2012). Since TS

in Pedersen et al. (2009) , tested on a Pentium IV 2.26 GHz PC

with 3600 s CPU time, was developed into a determinstic algo-

rithm, only one run is required. Both TA_MGLS and TS_ κ-node

were run on a PC with 2.0 GHz Intel Core 2 CPU, single-threaded

and a 2400 -s time limit in conjunction with Cplex12 as the linear

programming solver. Therefore, both TS_MGLS and TS_ κ-node uses

much less time than TS in Pedersen et al. (2009) .

The experiments were based on a set of benchmark instances

drawn from Pedersen et al. (2009) . This data set consists of 24

instances of different sizes (nodes, arcs, commodities) and distri-

butions of fixed cost, variable cost and capacity. The first three

numbers in the instance name represent the number of nodes,

the number of arcs and number of commodities respectively. ‘F’

indicates that the fixed cost dominates the cost function while

a ‘V’ means dominant variable costs. ‘L’ stands for loose capacity

constraints while ‘T’ means capacities are tight. For each instance,

10 independent runs with different random seeds were conducted

and their best, mean and worst results are reported. The best re-

sults among the three approaches are highlighted in bold. It can be

seen that even with a very basic TS method, the new neighbour-

hood function is able to produce very competitive results. Both the

TS method in Pedersen et al. (2009) and the tabu assisted multi-

start GLS method (TA_MGLS) in Bai et al. (2012) used a multi-

start framework to diversify the search. It can be seen that the

proposed neighbourhood evaluated in a basic TS, performed bet-

ter than the TS method in Pedersen et al. (2009) . It also outper-

formed TA_MGLS for many instances, particularly small instances.

For large instances (e.g. instances with 400 commodities), TS_ κ-

node was slightly inferior to TA_MGLS. This is probably caused

by longer computational time taken by each FirstDescent(.)
rocedure call for larger sized problems which leads to significant

ncrease in CMMCF solution time. A possible improvement for this

lgorithm is then to develop some faster heuristic flow distribution

rocedures to reduce the number of CMMCF calls.

.2. A basic guided local search with new neighbourhood function

We also implemented a basic GLS method with the proposed

eighbourhood. The pseudo-code of the algorithm is given in

lgorithm 3 . GLS is a metaheuristic designed for constraint sat-

lgorithm 3 Pseudo-code for a basic guided local search with new

eighbourhood function.

nput an initial feasible solution s 0 , an original objective function

z(s) , a set of features R , the cost h r associated with each feature

r ∈ R and a scaling parameter λ.

utput an improved solution s ′ .
1: foreach r ∈ R , set p r := 0

2: initialise s ← s 0 and I r (s) , set g(s) = z(s) + λ × ∑

r p r I r (s)

3: while stopping criterion is not met do

4: s ← FirstDescent (s, g(s) , k) � Get the first descent solution

with regard to g(s)

5: for all r ∈ R do

6: util r (s) = I r (s) × h r
1+ p r

7: Find r with maximum util r , set p r = p r + 1

8: end for

9: end while

10: return s ′ ← best solution found according to the original ob-

jective function z(s) .

sfaction and combinatorial optimisation problems (Voudouris and

sang, 2003). The underlining idea is to take advantage of informa-

ion gathered during the search to guide it and enable it to escape

ocal optima. GLS adopts a transformed objective function which

ncludes a penalty to penalise “unattractive” features in a candi-

ate solution. We denote p r as the current penalty for the presence

R. Bai et al. / Computers and Operations Research 89 (2018) 193–205 201

Table 3

Computational results by a GLS metaheuristic with κ-node neighbourhood (GLS_ κ-node) in comparison with

results by a basic GLS method with an arc-flipping neighbourhood (GLS) and a multi-start tabu assisted GLS

(TA_MGLS) from Bai et al. (2012) . All the algorithms were run on a PC with 2.0 GHz Intel Core 2 CPU, single-

threaded and a 2400-s time limit in conjunction with Cplex12 as the linear programming solver. The basic

GLS in Bai et al. (2012) was run once only due to its deterministic nature and failed to find a feasible solution

for 4 instances (denoted as inf.). The results by TA_MGLS and GLS_ κ-node are based on 10 independent

runs. The best results are highlighted in bold.

Instance GLS TA_MGLS GLS_k-node

id feature (1 run) best avg worst best avg worst

c37 C20,230,200,V,L 100,649 98,760 99,622 101,606 98,395 98,567 98,739

c38 C20,230,200,F,L 145,872 142,113 143,867 146,823 142,851 143,190 143,529

c39 C20,230,200,V,T 104,863 102,137 102,833 104,424 101,861 103,010 103,405

c40 C20,230,200,F,T 146,884 141,802 143,839 146,141 145,463 147,209 148,954

c45 C20,30 0,20 0,V,L 80,356 79,030 79,895 80,888 79,977 80,355 80,918

c46 C20,30 0,20 0,F,L 127,356 121,773 124,454 127,607 125,288 126,474 127,511

c47 C20,30 0,20 0,V,T 79,700 77,066 78,302 80,009 77,807 79,282 80,875

c48 C20,30 0,20 0,F,T 131,878 114,465 115,836 117,046 118,238 118,838 119,715

c49 C30,520,100,V,L 56,166 55,732 55,986 56,260 56,109 56,137 56,229

c50 C30,520,100,F,L 102,354 100,290 102,017 102,838 101,942 103,662 105,342

c51 C30,520,100,V,T inf. 54,372 54,708 54,838 54,556 54,642 54,664

c52 C30,520,100,F,T 108,223 104,574 105,423 106,477 105,180 106,833 107,574

c53 C30,520,400,V,L 120,828 116,196 116,915 117,888 117,420 117,570 117,713

c54 C30,520,400,F,L 162,213 154,941 156,008 157,630 156,480 157,925 160,347

c55 C30,520,400,V,T inf. 118,336 118,894 120,445 118,253 119,470 120,726

c56 C30,520,400,F,T 166,721 157,940 159,427 161,272 159,113 160,162 161,113

c57 C30,70 0,10 0,V,L 49,327 49,385 49,457 4 9,4 82 49,247 49,271 49,367

c58 C30,70 0,10 0,F,L 65,270 62,055 62,774 63,397 62,776 63,503 63,952

c59 C30,70 0,10 0,V,T inf. 47,519 47,728 47,937 47,704 47,738 47,810

c60 C30,70 0,10 0,F,T 58,927 57,571 58,046 58,447 58,408 58,408 58,408

c61 C30,70 0,40 0,V,L 103,317 101,610 102,216 103,008 102,210 102,356 102,648

c62 C30,70 0,40 0,F,L 153,204 142,563 144,755 147,828 142,711 145,148 149,578

c63 C30,70 0,40 0,V,T inf. 98,657 99,726 100,590 99,581 100,019 100,380

c64 C30,70 0,40 0,F,T 143,447 135,778 136,727 138,004 135,902 136,795 138,844

o

t

f

t

t

a

o

λ
i

b

t

f

l

e

b

a

f

r

g

b

b

c

b

i

h

w

a

c

n

b

w

m

C

g

i

i

e

l

t

T

g

l

e

f

r

T

n

t

b

b

o

t

b

w

v

7

p

m

i

p
f a given feature r in the current solution s , and I r (s) is an indica-

or variable such that I r (s) = 1 if the candidate solution s contains

eature r and I r (s) = 0 otherwise. h r is a cost associated with fea-

ure r . In this application, we chose all of the arcs as the GLS fea-

ures and their fixed costs as the feature costs, i.e. h r = f r for each

rc r ∈ A . Parameter λ is a scaling coefficient between the original

bjective function z (s) and the aggregated feature penalties. Since

is problem instance dependent and is difficult to tune directly,

t was estimated by λ = αg(s ∗) /
∑

r I r (s ∗) where s ∗ is the current

est solution and α is a parameter that is less problem-dependent

han λ. At each GLS iteration, the proposed κ-node neighbourhood

unction FirstDescent(.) was used to find a first-descent so-

ution except that the TabuList in FirstDescent(.) was set to

mpty. Therefore, the GLS we tested here is in its basic version.

Similar to the experimental setup in the previous section, the

asic GLS metaheuristic started from a feasible solution s 0 gener-

ted by the TA_MGLS in Bai et al. (2012) which stops as soon as a

easible solution is found. Similar to TS_ κ-node, the stopping crite-

ion was 2400 s of computational time, minus the time spent for

enerating an initial feasible solution and the size of the neigh-

ourhood is set to κ = 4 . The arcs in the network were chosen to

e GLS features R and the fixed cost of each arc is defined as the

orresponding feature cost. The GLS parameter was set to α = 0 . 05

ased on a preliminary experiment on a number of representative

nstances.

Table 3 presents the results by GLS with κ-node neighbour-

ood for the same set of benchmark instances, in comparison

ith a same basic GLS with an arc-flipping neighbourhood oper-

tor (denoted as GLS) and the TA_MGLS in Bai et al. (2012) . It

an be seen that with a same GLS framework, the proposed κ-

ode neighbourhood function outperformed the arc-flipping neigh-

ourhood for each of the 24 instances. Compared with TA_MGLS

hich is much more sophisticated, GLS_ κ-node was inferior for

o
ost instances but obtained better results for instance C51 and

57, both of which have a small commodity size. GLS_ κ-node is

enerally competitive when the problem size is small. For large

nstances, each FirstDescent(.) call is expensive and hence

mpedes the search significantly. This is compounded with influ-

nce of the transformed objective function g (s) used in GLS that

eads to poor solutions since local optima were not reached when

he computational time is not sufficient. This also explains why

S_ κ-node was able to obtain better solutions than GLS_ κ-node in

eneral although both of them started from the same initial so-

utions and used exactly the same neighbourhood function. Nev-

rtheless, through these two experiments, the new neighbourhood

unction has shown its effectiveness by producing very promising

esults, obtaining the new best-known results for many instances.

his is largely attributed to its better reachability because of larger

eighbourhood sizes and abilities to maintain feasibility. Contrary

o many other neighbourhood operators, the proposed new neigh-

ourhood operator uses the constraint violations to their advantage

y ignoring lots of infeasible solutions. Compared with the previ-

us neighbourhood function, the superiority of the κ-node opera-

or was demonstrated by the superior results obtained both by the

asic GLS and basic TS without the multi-start mechanism which

as crucial in a previous hybrid method TA_MGLS in order to pre-

ent the search from getting stuck at local optima.

. Fast neighbourhood search and hybridisation

In the previous section, we have shown that the pro-

osed neighbourhood showed promising performance when imple-

ented in two basic metaheuristic approaches. It performs better

n a tabu search method for small instances. However, the pro-

osed neighbourhood suffers from two main issues: firstly, the size

f the neighbourhood is generally very big, therefore a complete

202 R. Bai et al. / Computers and Operations Research 89 (2018) 193–205

Fig. 5. The diagrammatic illustration of the hybrid algorithm.

t

t

t

f

fi

i

t

m

l

i

f

s

r

a

p

p

f

v

d

(

(

b

w

n

v

w

t

i

M

a

v

p

f

h

s

κ

t

4

r

5

I
neighbourhood evaluation is extremely time consuming. Secondly,

evaluation of each candidate solution in a neighbourhood will re-

quire solving a CMMCF sub-problem which again is computation-

ally expensive. In this section, we investigate how the proposed

neighbourhood method can be improved further. We now describe

the heuristics that we used in our experiments to speed up the κ-

node neighbourhood search, followed by a hybrid metaheuristic to

further enhance the performance of the algorithm.

7.1. Speeding up the neighbourhood search

Due to the size of the neighbourhood and the relatively large

solution time for the full CMMCF sub-problem, we adopted the fol-

lowing approximate method which solved a reduced network flow

problem. More specifically, in Algorithm 1 , line 11, instead of solv-

ing the CMMCF sub-problem exactly to obtain the optimal flow for

y ′ , we assume that the existing flows of the current solution s are

already well distributed except that the commodity flows through

nodes in set NS have to be redistributed since arcs interconnecting

these nodes have changed in the neighbourhood move. Let x be

the flow vector before the neighbourhood move and x ′ be the flow

vector after the neighbourhood move. Let K r be the set of com-

modities that have a positive flow through one of nodes in NS .

Firstly, we set x ′ = x and then delete from x ′ all the flows of every

commodity in K r . Let A r be the set of open arcs in y ′ with a pos-

itive residual capacity (after the removal of commodity flows for

K r) and rc ij be residual capacity for arc (i, j) ∈ A r . Finally, let N r be

the set of nodes joined by any of arcs in A r . The optimal flows for

commodities K r are then obtained by solving the following reduced

minimum cost network flow problem.

min z r =

∑

k ∈ K r

∑

(i, j) ∈ A r
e k i j x

k
i j (24)

subject to
∑

k ∈K
x k i j ≤ rc i j ∀ (i, j) ∈ A r (25)

∑

j∈N + (i)

x k i j −
∑

j∈N −(i)

x k ji = b k i , ∀ i ∈ N r , ∀ k ∈ C r (26)

Once the reduced network flow problem is solved, the objec-

tive value of s ′ can be computed through partial evaluation since it

is easier to calculate the objective difference between s and s ′ . In

addition, in our implementation, we further speed up the search

by only sampling 10% of the neighbourhood randomly when h = 4

(see Algorithm 1) since the size of this neighbourhood is extremely

large. However, for cases h = 2 and h = 3 , the entire neighbour-

hoods are evaluated.

7.2. Hybridising with other approaches

In this section we describe how the κ-node neighbourhood

based tabu search approach can be hybridised with other ap-

proaches to improve its performance. More specifically we hy-

bridise it with a variable fixing heuristic. The proposed hybrid al-

gorithm can be illustrated by Fig. 5 .

The hybrid algorithm is divided into four phases, they are

MIP_TL, TA_MGLS, TA_k-node, and RMIP. The first stage (denoted

as MIP_TL) is the initialisation stage which adopts a Cplex MIP

solver to generate a feasible solution by directly solving the SNDP

model (1) –(4) within a given time limit (t 1). TA_MGLS is the tabu

assisted multi-start guided local search method proposed in Bai

et al. (2012) . TA_k-node is the tabu search method we described in

the previous section. RMIP is a post optimisation procedure which

solves a reduced MIP problem based on a pool of elite solutions

found during the second and the third phases. The computational
ime for these three phases are denoted as t 2 , t 3 and t 4 , respec-

ively. The search starts from the first phase and then goes through

hese phases sequentially. Each stage starts from the best solution

ound from the previous stage and tries to improve it, except the

nal stage RMIP which operates on a pool of elite solutions found

n phase 2 and phase 3. In this application, the maximum size of

he elite solution pool is fixed to 100. Once the pool reaches the

aximum size, inferior solutions will be replaced with better so-

utions that are not in the elite pool yet. In the initialisation phase,

f Cplex fails to generate a feasible solution, TA_MGLS will start

rom an initial solution generated by LP_Round, a procedure which

olves the corresponding LP-relaxation of the problem and then

ounds the design variables to the nearest integers. The flow vari-

bles are then recomputed by solving the corresponding CMMCF

roblem.

The underlining ideas for this hybridisation are: (1) for many

roblem instances, Cplex MIP solver can find good quality (in a

ew cases, optimal) solutions fairly quickly but often converges

ery slowly afterwards. In addition, Cplex MIP tends to fail to pro-

uce feasible solutions for instances with a large number of arcs.

2) The Tabu Assisted Multi-start Guided Local Search (TA_MGLS)

 Bai et al., 2012) is very efficient in finding a good quality feasi-

le solution thanks to the special ability of the guided local search

hich exploits the structure of the problem directly. (3) The κ-

ode neighbourhood has much better reachability than the pre-

ious neighbourhood. It can reach some local optima that other-

ise cannot be found. (4) We observed, in our initial experiments,

hat the network design differences between the best neighbour-

ng solutions found in stage two and stage three are not significant.

any of them share identical arc settings. In our hybrid algorithm,

 reduced network design problem is modelled by prefixing the

alues of these identical arcs in the original MIP model. In our ex-

eriments, the reduced problem was generally solvable in 10–15 s

or the majority of our tested instances with a few exceptions. We

ave set a time limit of 60 s for this stage (see Table 4) to en-

ure the majority of the computational time can be spent on the

-node neighbourhood search stage

The hybrid algorithm is applied to solve the same instances. The

ime limits for the four stages are set to t 1 = 2400 , t 2 = 600 , t 3 =
140 , t 4 = 60 s, respectively. Therefore, the total CPU time for each

un of the hybrid algorithm is 7200 s. The hybrid algorithm is run

 times (each with a different random seed) on a PC with 2.0 GHz

ntel Core 2 CPU and 8GB RAM and the best and the mean re-

R. Bai et al. / Computers and Operations Research 89 (2018) 193–205 203

Table 4

The results of the hybrid algorithm from the four stages, MIP_TL, TA_MGLS, TS_ κ-node, and RMIP. Times per-

mitted at these stages are t 1 = 2400 s, t 2 = 600 s, t 3 = 4140 s, t 4 = 60 s, respectively. gap% is the relative gap to

the best known solution.

Instance MIP_TL TA_MGLS TS_ κ_node RMIP Overall

best avg best avg best avg best

c37 obj 98,829 98,829 98,829 97,737 98,163 97,274 97,767 97,274

gap% 1.6% 1.6% 1.6% 0.5% 0.9% 0.0% 0.5%

c38 obj 140,495 140,495 140,495 139,921 140,351 139,395 139,468 139,395

gap% 0.8% 0.8% 0.8% 0.4% 0.7% 0.0% 0.1%

c39 obj 100,478 100,478 100,478 100,478 100,478 100,478 100,478 100,478

gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c40 obj 140,171 140,017 140,131 138,994 139,275 138,994 139,174 138,994

gap% 0.8% 0.7% 0.8% 0.0% 0.2% 0.0% 0.1%

c45 obj 78,054 78,037 78,049 77,674 77,826 77,463 77,658 77,463

gap% 0.8% 0.7% 0.8% 0.3% 0.5% 0.0% 0.3%

c46 obj 120,926 119,324 120,123 119,259 119,706 119,259 119,346 119,259

gap% 1.4% 0.1% 0.7% 0.0% 0.4% 0.0% 0.1%

c47 obj 76,208 76,208 76,208 76,208 76,208 76,208 76,208 76,208 a

gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c48 obj 112,449 112,449 112,449 111,475 112,0 0 0 111,475 111,475 111,475

gap% 0.9% 0.9% 0.9% 0.0% 0.5% 0.0% 0.0%

c49 obj 54,683 54,683 54,683 54,683 54,683 54,683 54,683 54,683 a

gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c50 obj 99,322 99,112 99,211 98,948 99,141 98,595 98,773 98,595

gap% 0.7% 0.5% 0.6% 0.4% 0.6% 0.0% 0.2%

c51 obj 53,030 53,030 53,030 53,030 53,030 53,030 53,030 53,030

gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c52 obj 102,512 102,512 102,512 101,808 102,022 101,576 101,798 101,576

gap% 0.9% 0.9% 0.9% 0.2% 0.4% 0.0% 0.2%

c53 obj 115,452 115,384 115,384 115,330 115,330 114,891 114,962 114,891

gap% 0.5% 0.4% 0.4% 0.4% 0.4% 0.0% 0.1%

c54 obj 161,118 155,487 155,715 154,668 155,033 154,336 154,837 154,336

gap% 4.4% 0.7% 0.9% 0.2% 0.5% 0.0% 0.3%

c55 obj 118,441 117,891 117,975 117,295 117,699 117,141 117,527 117,141

gap% 1.1% 0.6% 0.7% 0.1% 0.5% 0.0% 0.3%

c56 obj 159,863 159,115 159,246 157,755 158,241 157,655 158,137 157,655

gap% 1.4% 0.9% 1.0% 0.1% 0.4% 0.0% 0.3%

c57 obj 48,693 48,693 48,693 48,693 48,693 48,693 48,693 48,693 a

gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c58 obj 61,732 61,647 61,710 61,494 61,601 61,433 61,434 61,433

gap% 0.5% 0.3% 0.5% 0.1% 0.3% 0.0% 0.0%

c59 obj 46,751 46,750 46,751 46,750 46,751 46,750 46,750 46,750

gap% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c60 obj 56,269 56,269 56,269 56,252 56,252 56,207 56,241 56,207

gap% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1%

c61 obj 215,621 102,876 103,746 101,692 102,166 101,316 101,641 101,316

gap% 112.8% 1.5% 2.4% 0.4% 0.8% 0.0% 0.3%

c62 obj 405,452 148,627 150,385 145,571 146,812 145,185 146,447 145,185

gap% 179.3% 2.4% 3.6% 0.3% 1.1% 0.0% 0.9%

c63 obj 192,725 100,041 100,808 99,330 99,750 99,133 99,604 99,133

gap% 94.4% 0.9% 1.7% 0.2% 0.6% 0.0% 0.5%

c64 obj 137,015 135,873 136,407 134,720 135,437 134,122 134,916 134,122

gap% 2.2% 1.3% 1.7% 0.4% 1.0% 0.0% 0.6%

avg obj 120,679 100,993 101,220 100,407 100,694 100,221 100,460 100,221

avg gap% 16.9% 0.6% 0.8% 0.2% 0.4% 0.0% 0.2%

a The optimal solution objective value.

s

d

fi

M

h

w

d

o

C

g

i

i

C

i

8

p

s

p

f

p

m

b

t

i

t

t

ults are reported. Table 4 shows the detailed results of the four

ifferent stages of the hybrid algorithm and Table 5 compares the

nal results by the hybrid algorithm against those by Cplex12.4

IP solver with 2 h time limit (Cplex_2h), and a very recent meta-

euristic TS-PR (Minh et al., 2013), which was run on a workstation

ith AMD Dual-Core Opteron 2.4 GHz CPU and 16GB RAM. Due to

ata unavailability in the referenced article, only the best results

ut of 10 runs by TS-PR are included, each of which takes 7785 s

PU time on average. It can be seen that the proposed hybrid al-

orithm based on the κ-node neighbourhood performed compet-

tively and has found new best solutions for several instances. It

s particularly suitable as a quick post-optimisation approach for

plex which appears to suffer slow convergence issues for some

nstances.
. Conclusions and future work

Service network design is the core problem for freight trans-

ortation network planning and optimisation. The problem is

trongly NP-Hard and is particularly challenging due to the com-

lex constraints. Differing from the previous studies which have

ocused on more effective generic search strategies, this research

roposed and studied a novel neighbourhood structure that per-

its simultaneous changes of multiple arcs incident upon a num-

er of given nodes while maintaining the solution feasibility

hroughout the search. The new neighbourhood function, evaluated

n the context of two basic metaheuristic approaches, showed bet-

er reachability than the existing arc-flipping neighbourhood func-

ions.

204 R. Bai et al. / Computers and Operations Research 89 (2018) 193–205

Table 5

Results of the hybrid algorithm in comparison with Cplex and TS-PR. TS-PR (Minh et al., 2013) was run on a workstation

with AMD Dual-Core Opteron 2.4 GHz CPU and 16GB RAM. The results are the best objective values out of 10 runs, with

each run taking 7785 s CPU time on average. Both CPlex_2h and our hybrid algorithm was given 7200 s CPU time on a PC

with 2.0 GHz Intel Core 2 CPU and 8GB RAM. Therefore, TS-PR consumes much more computational time than both CPlex

and our hybrid algorithm. The hybrid algorithm was run five time and both the best, average and the worst results are

reported here. The best performing algorithm for each instance are highlighted in bold and the best results are listed in

the last column.

Instance Cplex_2h TS-PR Hybrid Algorithm best

id feature obj gap% best gap% best gap% avg gap% known

c37 C20,230,200,V,L 98,271 1.0% 97,274 0.0% 97,274 0.0% 97,767 0.5% 97,274

c38 C20,230,200,F,L 141,398 1.4% 139,395 0.0% 139,395 0.0% 139,468 0.1% 139,395

c39 C20,230,200,V,T 100,221 0.0% 100,720 0.5% 100,478 0.3% 100,478 0.3% 100,221 a

c40 C20,230,200,F,T 139,278 0.2% 138,962 0.0% 138,994 0.0% 139,174 0.2% 138,962

c45 C20,30 0,20 0,V,L 77,907 0.6% 77,584 0.2% 77,463 0.0% 77,658 0.3% 77,463

c46 C20,30 0,20 0,F,L 120,926 1.4% 119,987 0.6% 119,259 0.0% 119,346 0.1% 119,259

c47 C20,30 0,20 0,V,T 76,208 0.0% 76,450 0.3% 76,208 0.0% 76,208 0.0% 76,208 a

c48 C20,30 0,20 0,F,T 111,963 0.4% 111,776 0.3% 111,475 0.0% 111,475 0.0% 111,475

c49 C30,520,100,V,L 54,683 0.0% 54,783 0.2% 54,683 0.0% 54,683 0.0% 54,683 a

c50 C30,520,100,F,L 99,101 0.5% 100,098 1.5% 98,595 0.0% 98,773 0.2% 98,595

c51 C30,520,100,V,T 53,023 0.0% 53,035 0.0% 53,030 0.0% 53,030 0.0% 53,023

c52 C30,520,100,F,T 101,599 0.2% 101,412 0.0% 101,576 0.2% 101,798 0.4% 101,412

c53 C30,520,400,V,L 114,983 0.1% 115,528 0.6% 114,891 0.0% 114,962 0.1% 114,891

c54 C30,520,400,F,L 154,295 0.6% 153,409 0.0% 154,336 0.6% 154,837 0.9% 153,409

c55 C30,520,400,V,T 116,781 0.0% 117,226 0.4% 117,141 0.3% 117,527 0.6% 116,781

c56 C30,520,400,F,T 158,307 1.5% 155,906 0.0% 157,655 1.1% 158,137 1.4% 155,906

c57 C30,70 0,10 0,V,L 48,693 0.0% 48,807 0.2% 48,693 0.0% 48,693 0.0% 48,693 a

c58 C30,70 0,10 0,F,L 61,448 0.1% 61,408 0.0% 61,433 0.0% 61,434 0.0% 61,408

c59 C30,70 0,10 0,V,T 46,750 0.0% 46,812 0.1% 46,750 0.0% 46,750 0.0% 46,750

c60 C30,70 0,10 0,F,T 56,177 0.0% 56,237 0.1% 56,207 0.1% 56,241 0.1% 56,177

c61 C30,70 0,40 0,V,L 99,493 0.0% 100,583 1.1% 101,316 1.8% 101,641 2.2% 99,493

c62 C30,70 0,40 0,F,L 141,735 0.5% 141,037 0.0% 145,185 2.9% 146,447 3.8% 141,037

c63 C30,70 0,40 0,V,T 97,748 0.0% 97,875 0.1% 99,133 1.4% 99,604 1.9% 97,748

c64 C30,70 0,40 0,F,T 133,387 0.0% 133,686 0.2% 134,122 0.6% 134,916 1.1% 133,387

overall avg 100,182 0.4% 10 0,0 0 0 0.3% 100,221 0.4% 100,460 0.6% 99,735

a denotes the optimal solution objective.

B

B

B

B

C

C

C

C

C

C

G

G

G
H
Due to the scale of the proposed neighbourhood size and the

computational complexity of the solution evaluation, various tech-

niques and heuristics have been designed to speed up the evalua-

tion, including cut/set inequality conditions checking for candidate

solutions with insufficient open arcs, approximate flow redistribut-

ing on a residual network, and partial solution evaluations.

Finally a hybrid algorithm based on the κ-node neighbour-

hood is developed and its results are compared against Cplex MIP

solver and a recent metaheuristic method TS-PR. The results by the

prosed hybrid algorithm are very competitive and some of them

are the new best solutions. In future, we plan to extend the pro-

posed new neighbourhood method to stochastic service network

design problems which has similar constraints but much larger

problem sizes and hence is more challenging to solve.

Acknowledgements

This work is supported by the National Natural Science Founda-

tion of China (Grant No. 71471092), Zhejiang Natural Science Foun-

dation (Grant No. LR17G010 0 01) and Ningbo Science and Technol-

ogy Bureau (Grant No. 2011B81006 , 2014A35006).

References

Ahuja, R. , Magnanti, T. , Orlin, J. , 1993. Network Flows: Theory, Algorithms and Ap-

plications. Prentice Hall .
Alumur, S.A., Kara, B.Y., Karasan, O.E., 2012. Multimodal hub location and hub net-

work design. Omega 40 (6), 927–939. doi: 10.1016/j.omega.2012.02.005 .
Andersen, J. , Christiansen, M. , Crainic, T.G. , Gronhaug, R. , 2011. Branch and price for

service network design with asset management constraints. Transp. Sci. 45 (1),

33–49 .
Andersen, J. , Crainic, T.G. , Christiansen, M. , 2009. Service network design with man-

agement and coordination of multiple fleets. Eur. J. Oper. Res. 193 (2), 377–389 .
Armacost, A.P. , Barnhart, C. , Ware, K.A. , 2002. Composite variable formulations for

express shipment service network design. Transp. Sci. 36 (1), 1–20 .
ai, R. , Kendall, G. , Qu, R. , Atkin, J. , 2012. Tabu assisted guided local search ap-

proaches for freight service network design. Inf. Sci. 189, 266–281 .
ai, R. , Wallace, S. , Li, J. , Chong, A. , 2014. Stochastic service network design with

rerouting. Transp. Res. Part B 60, 50–65 .
ai, R. , Xue, N. , Chen, J. , Roberts, G.W. , 2015. A set-covering model for a bidirec-

tional multi-shift full truckload vehicle routing problem. Transp. Res. Part B 79,

134–148 .
Barcos, L. , Rodriguez, V. , Alvarez, M. , Robuste, F. , 2010. Routing design for

less-than-truckload motor carriers using ant colony optimization. Transp. Res.
Part E 46, 367–383 .

arnhart, C. , Krishnan, N. , Kim, D. , Ware, K. , 2002. Network design for express ship-
ment delivery. Comput. Optim. Appl. 21, 239–262 .

arle, M.A., Martel, A., Zufferey, N., 2012. The CAT metaheuristic for the solution of

multi-period activity-based supply chain network design problems. Int. J. Prod.
Econ. 139 (2), 664–677. doi: 10.1016/j.ijpe.2012.06.016 .

houman, M. , Crainic, T.G. , 2014. Cutting-plane meta-heuristic for service network
design with design-balanced requirements. Transp. Sci. 49 (1), 99–113 .

rainic, T.G. , 20 0 0. Service network design in freight transportation. Eur. J. Oper. Res.
122 (2), 272–288 .

rainic, T.G. , Gendreau, M. , Farvolden, J.M. , 20 0 0. A simplex-based tabu search

method for capacitated network design. INFORMS J. Comput. 12 (3), 223–236 .
Crainic, T.G. , Gendreau, M. , Soriano, P. , Toulouse, M. , 1993. A tabu search procedure

for multicommodity location/allocation with balancing requirements. Ann. Oper.
Res. 41 (1–4), 359–383 .

Crainic, T.G. , Kim, K.H. , 2007. Chapter 8 intermodal transportation. In: Barnhart, C.,
Laporte, G. (Eds.), Transportation, Handbooks in Operations Research and Man-

agement Science, 14. Elsevier, pp. 467–537 .

rainic, T.G. , Rousseau, J.M. , 1986. Multicommodity, multimode freight transporta-
tion: a general modeling and algorithmic framework for the service network

design problem. Transp. Res. Part B 20 (3), 225–242 .
rainic, T.G. , Roy, J. , 1988. Or tools for tactical freight transportation planning. Eur.

J. Oper. Res. 33 (3), 290–297 .
hamlouche, I. , Crainic, T.G. , Gendreau, M. , 2003. Cycle-based neighbourhoods for

fixed-charge capacitated multicommodity network design. Oper. Res. 51 (4),

655–667 .
hamlouche, I. , Crainic, T.G. , Gendreau, M. , 2004. Path relinking, cycle-based neigh-

bourhoods and capacitated multicommodity network design. Ann. Oper. Res.
131, 109–133 .

lover, F. , Laguna, M. , 1997. Tabu Search. Kluwer academic publishers, Boston .
off, A. , Lium, A.G. , Lø kketangen, A. , Crainic, T. , 2010. A metaheuristic for stochastic

service network design. J. Heuristics 16 (5), 653–679 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004731
http://dx.doi.org/10.13039/501100007928
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0001
http://dx.doi.org/10.1016/j.omega.2012.02.005
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0010
http://dx.doi.org/10.1016/j.ijpe.2012.06.016
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0022

R. Bai et al. / Computers and Operations Research 89 (2018) 193–205 205

K

K

M

N

P

P

V

W

Y

endall, G. , Bai, R. , Blazewicz, J. , De Causmaecker, P. , Gendreau, M. , John, R. , Barry
McCollum, J. , Pesch, E. , Qu, R. , Sabar, N. , Vanden Berghe, G. , Yee, A. , 2016. Good

laboratory practice for optimization research. J. Oper. Res. Soc. 67 (4), 676–689 .
leeman, M.P., Seibert, B.A., Lamont, G.B., Hopkinson, K.M., Graham, S.R., 2012.

Solving multicommodity capacitated network design problems using multi-
objective evolutionary algorithms. IEEE Trans. Evol. Comput. 16 (4), 449–471.

doi: 10.1109/TEVC.2011.2125968 .
inh, V.D. , Crainic, T.G. , Toulouse, M. , 2013. A three-stage metaheuristic for the ca-

pacitated multi-commodity fixed-cost network design with design-balance con-

straints. J. Heuristics 19 (5), 757–795 .
ickel, S. , Saldanha-da Gama, F. , Ziegler, H.P. , 2012. A multi-stage stochastic supply

network design problem with financial decisions and risk management. Omega
40 (5), 511–524 .
edersen, M.B. , Crainic, T.G. , Madsen, O.B. , 2009. Models and tabu search meta-
heuristics for service network design with asset-balance requirements. Transp.

Sci. 43 (2), 158–177 .
owell, W.B. , 1986. A local improvement heuristic for the design of less-than-truck-

load motor carrier networks. Transp. Sci. 20 (4), 246–257 .
oudouris, C. , Tsang, E.P. , 2003. Guided local search. In: Glover, F., Kochenberger, G.

(Eds.), Handbook of Metaheuristics. Kluwer, pp. 185–218 .
ieberneit, N. , 2008. Service network design for freight transportation: a review.

OR Spectr. 30, 77–112 .

aghini, M., Momeni, M., Sarmadi, M., 2012. A simplex-based simulated annealing
algorithm for node-arc capacitated multicommodity network design. Appl. Soft

Comput. 12 (9), 2997–3003. doi: 10.1016/j.asoc.2012.04.022 .

http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0023
http://dx.doi.org/10.1109/TEVC.2011.2125968
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30146-6/sbref0030
http://dx.doi.org/10.1016/j.asoc.2012.04.022

	Optimisation of transportation service network using -node large neighbourhood search
	1 Introduction
	2 Literature review
	3 The freight SNDP problem and model
	4 A revisit of previous heuristic approaches
	5 The proposed -node neighbourhood
	5.1 The paired route-flipping
	5.2 The -node neighbourhood operator
	5.3 Speeding up the neighbourhood search

	6 Performance evaluation
	6.1 A basic TS with -node neighbourhood function
	6.2 A basic guided local search with new neighbourhood function

	7 Fast neighbourhood search and hybridisation
	7.1 Speeding up the neighbourhood search
	7.2 Hybridising with other approaches

	8 Conclusions and future work
	 Acknowledgements
	 References

