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Introduction

The evolution of information technology in the 21st century made 
significant contribution to the productivity and economic growth 
worldwide as well as a series of environmental problems. With the 
rapid upgrade of electronic products, waste electrical and elec-
tronic equipment (WEEE) has become one of the most rapidly 
growing waste streams (Herat and Agamuthu, 2012). Global 
WEEE production is expected to increase from 41.5 million tons in 
2011 to 93.5 million tons in 2016, with a compound average 
growth rate of 17.6% (Marketsandmarkets.com, 2011). In terms of 
revenue, the WEEE market is estimated to rise from $9.15 billion 
in 2011 to $20.25 billion in 2016 at a compound average growth 
rate of 17.22% (Marketsandmarkets.com, 2011). From resource 
and economic points of view, WEEE can be regarded as an “urban 
mine” for metal extraction. A lifecycle assessment report for metal 
recovery from high-grade WEEE stated the recovery of 165 kg 
copper and precious metal, 381 kg iron, and 22 kg aluminum from 
1000 kg of high-grade WEEE (Bigum et al., 2012). The high pre-
cious metal content is the major factor that drives the WEEE recy-
cling market worldwide. The WEEE issue is particularly important 
to China. Although there are international organizations like the 

Basel Convention trying to ban cross-boundary transportation of 
WEEE, China is still the destination of more than 70% of WEEE 
produced around the globe (He et al., 2008). Most WEEE recy-
cling in China is conducted by informal sectors with little concern 
about environmental impact and health and safety issues. The 
commonly adopted recycling process for WEEE recycling includes 
manual dismantling, open burning, de-soldering, acid leaching, 
and open dumping (Schluep et al., 2009). The operation of these 
illegal sectors releases large amounts of heavy metal and toxic 
organic pollutants to the surrounding environment and generates 
health threats to their employees and people living in the local 
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areas (Song and Li, 2015). It is reported that in 2007 over 700,000 
people were employed in the WEEE recycling industry in China, 
among which 98% worked for informal sectors (Yu et al., 2009). 
One of the most famous examples of WEEE-induced environmen-
tal and human health problems is that at Guiyu, Guangzhou. An 
illegal WEEE recycling operation has been active for over 10 years 
(Wong et  al., 2007). Elevated heavy metal content has been 
reported in air, river, sediment, and soil in the surrounding area 
(Wong et al., 2007). Lead, nickel, and cadmium concentrations in 
local residents’ body tissues are found to be significant higher 
compared with other places (Song and Li, 2015). In addition to 
heavy metal contamination, the presence of brominated flame 
retardants in printed wiring board (PWB) also leads to the release 
of organohalogens during the open incineration process (Labunska 
et  al., 2015; Li et  al., 2014). Nephroliths and some respiratory 
problems became common local diseases and no potable water 
could be found within 10 km of this town (Lai and Lu, 2003).

Formal WEEE recycling operations with environmental 
friendly techniques provide a solution to the environmental impact 
and health and safety problems. Currently, the majority of physi-
cal processing for WEEE recycling relies on wet density-based 
separation with only a 60–70% metal recovery rate. In addition, 
the wet separation process generates secondary wastewater with 
high metal content (He and Xu, 2014). Various national level reg-
ulations have been issued to control WEEE problems over the past 
few years, for example Directive 2012/19/EU on WEEE in the 
European Union and Regulations on the Prevention and Control 
of Environmental Pollution by WEEE in China, etc. However, the 
complexity of material and structure of WEEE creates substantial 
challenges for the recycling industry, especially of PWBs. 
Conventional PWB recycling technologies include chemical 
methods like hydrometallurgy methods (Bas et al., 2014; Tuncuk 
et  al., 2012; Yazici and Deveci, 2014), pyrolysis (Hall and 
Williams, 2007), supercritical water treatment (Xiu et al., 2013), 
and bioleaching processes (Brandl et  al., 2001, Marhual et  al., 
2008), as well as some physical methods like magnetic and elec-
trostatic separation (Marhual et  al., 2008, Senouci et  al., 2013) 
and air classification (Marhual et al., 2008). Chemical methods 
have the advantage of better efficiency for metal recovery; on the 
other hand, mechanical pretreatment practices have the potential 
to improve the environmental performance of the overall process 
due to their chemical-free nature. Therefore an integrated system 
with both mechanical and chemical technologies is required for 
the recycling of WEEE (He and Xu, 2014). The dry separation 
method is the preferential process compared with wet separation 
techniques for physical pretreatment process because of no sec-
ondary pollution. The work presented in this paper investigates 
the potential application of pneumatic jigging as a pretreatment 
procedure for metal recovery from PWBs.

Jigging

Jigging is one of the oldest gravity concentration techniques. It 
separates materials based on specific gravity by the pulsation of 
fluid through a bed of materials (Perry et al., 1997). Jigging can 

be classified into two categories based on the fluid employed in 
the system: pneumatic jigging using air to produce pulsation and 
wet jigging using a liquid.

Separation mechanism of jigging

Research has been carried out to explain the separation mechanism 
of jigging. Various theories have been proposed, e.g. the energy 
dissipation theory (Rong and Lyman, 1993) and potential energy 
theory (Tavares and King, 1995). However, the separation mecha-
nism of jigging is not clearly understood. The general behavior of 
particles can be explained by single particle theory, whose princi-
ple lies in Stokes’ law and terminal velocity (Gupta and Yan, 2006). 
There are essentially three forces acting on a particle in the jigging 
action: gravitation, buoyance, and drag forces (Shinde, 2014). The 
motion of a single particle can be described by

	 M a F F Fs p g b d= − − 	 (1)

where Ms  is the mass of solid, ap  the particle acceleration, and 
F F Fg b d, ,  are the gravitation, buoyance, and drag forces, 
respectively.

The separation of different materials is governed by their set-
tling rate. Equations (2) and (3) describe the terminal settling 
velocity of solid spheres in a fluid.

For fine particles with viscous resistance (Stokes’ law):
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For coarse particles with turbulent resistance (Newton’s law):
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where v vT fine T coarse, ,;  are terminal settling velocities, d  is the 
particle diameter, ρs  the density of solid, ρ f  the density of 
fluid, CD  the drag coefficient, µ  the fluid viscosity, and g the 
gravitational acceleration.

The separation of particles in jigging results from the repeated 
expansion and contraction induced by pulsation of fluid, air in 
this case to avoid secondary contamination problem from wet 
separation methods. The behavior of heavy and light particles is 
illustrated in Figure 1.

Each cyclic jigging action comprises four steps (Shinde, 
2014):

A: Bed at rest: particle mixtures at rest on the screen;

B: Pulsation: air pulsation forced through particle bed from the 
bottom, particles being lift up by air, and this is a density based 
differential acceleration separation process;

C: Hindered settling: after air pulsation, particles start to settle, 
drag force dominate the separation of particles based on density 
and size, the key mechanisms is hindered settling;
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D: Consolidation trickling: final stage of jigging action, compac-
tion of particle bed, fine particles penetrate through dense coarse 
particles into the bottom layer, this is particle size dependent 
separation process.

The separation efficiency of pneumatic jigging is controlled by 
four major process parameters (Rong and Lyman, 1991):

•• Jigging time: there is a linear relationship between the degrees 
of particle stratification and jigging time, elongated jigging 
time can promote particle separation efficiency.

•• Superficial air velocity: the differential acceleration and hin-
dered settling process is governed by the superficial velocity 
of pulsation fluid, which determines the drag force applied on 
particles (Mukherjee and Mishra, 2006).

•• Frequency of pulsation: the frequency of pulsation should 
enable enough expansion and compaction time for individual 
jigging actions therefore particle mixing generated from tur-
bulence could be minimized.

•• Feed characteristics: including size ratio, volume fraction and 
particle bed, these factors determines whether particle mix-
ture can be separated or not.

Application of jigging technology

Most of applications of jigging are for coal and other minerals 
processing. Examples for pneumatic jigging application include 
removal of sulfur and ash content in coal (Boylu et  al., 2014; 
Panda et al., 2012; Sampaio et al., 2008; Singh and Das, 2013) and 
separation of dry fine coal particles from non-aqueous gangue 
particles (Luo et al., 2008). Fluid used in wet jig provides higher 
viscosity compared with air, which enables ore concentration 
applications (Beniuk et al., 1994; Naudé et al., 2013). To avoid the 
generation of contaminated fluid from wet separation processes, 
dry jigging is the preferential choice in waste management appli-
cations. The development of jigging applications in waste man-
agement is driven by their economic and environmental 
performance. One of the most successful applications is the recy-
cling of construction and demolition waste with pneumatic jig-
ging. Recycled aggregate produced from pneumatic jigging 
separation proves to be a good quality substitute for natural 
aggregates in pavement sub-base materials (Cazacliu et al., 2014). 
The potential applications of wet jigging for the separation of 

non-ferrous car scrap (De Jong and Dalmijn, 1997) and waste 
plastics (Ito et al., 2010; Tsunekawa et al., 2005) have also been 
reported. To assess the potential of pneumatic jigging as a dry 
separation process for WEEE recycling, a batch-scale pneumatic 
jig has been developed by the University of Nottingham, Ningbo. 
A trial with WEEE samples provided by Axion Recycling has 
been performed (Bennett et al., 2009). Batch operation generates 
metal-rich product; to be of practical and commercial relevance a 
continuous pneumatic jig has been developed.

Experimental details
Pilot scale pneumatic jigging system

The novel pilot scale pneumatic jigging system used in this exper-
iment consists of four main units: feeding unit, air supply unit, 
separation chambers, and discharge unit (Figure 2). A vibratory 
feeder has been employed to load samples into the separation 
chamber at constant rate. Air pulsation for separation is provided 
by a 4 kW blower (Secomak, CL 20/01), which is controlled with 
frequency converter. The superficial velocity can be adjusted 
between 0 and 8 m/s. Air from the blower split into two streams 
for two separation chambers. The air supply is controlled by a pair 
of pneumatic butterfly valves with programmable logic control to 
operate in alternating pattern. Air duct from the blower is con-
nected to the separation chambers through air distribution system 
which enhance the uniformity of air distribution within separation 
chamber. This pneumatic jigging has two Perspex separation 
chambers with the same dimension (length × width × height = 170 
mm × 170 mm × 300 mm). The bottom screen used is standard 
staggered 60° pattern perforated plates with 3 mm diameter holes. 
The movement of particles within the separation chamber is 
driven by a pair of vibrators (Invicta Vibrators, BLZ/05-2/4) 
attached to both sides of the frame. The vibration intensity of the 
vibrators can be adjusted from 0 to 100% of its full vibration 
capacity. The top fraction exits the separation chamber from the 
top outlet under vibration. The extraction of bottom fractions is 
assisted with a rotary valve (Rotolok Valve, Round 150).

Sample preparation

The sample used in this experiment is computer mother boards 
disassembled from waste computers collected by the recycler 
from households and internet cafés (lithium batteries removed). 

Figure 1.  Expansion and contraction of a bed of particles due to jigging action (black particles indicate heavy material and 
white particles indicate light material; adapted from Gupta and Yan, 2006).
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Computer main boards of different brands are included in the 
sample, including ASUS, APON, AsRock, Colorful, Dell, ECS, 
Foxconn, Gemen, Gigabyte, HASEE, Hummer, Intel, IWILL, 
Koloe, MSI, ONDA, SOLTEK, SOYO, etc., which are widely 
available on the market and represent the miscellaneous nature of 
the waste stream. The computer main boards were shredded with 
a CSF570 hammer mill from Fengli Pulverization Equipment 
Co., Ltd; aperture size on the discharge plate is 10 mm. Aluminum 
heat sinks have been manually removed from each waste com-
puter main boards prior to shredding to avoid any jamming dur-
ing the grinding process.

Shredded PWBs have quite a wide size range, so particles size 
analysis was carried out with a Capco Inclyno test sieve shaker. 
Sieves used for particle size distribution analysis are Endecotts 
sieves, which have a square root of two ratio for aperture widths 
of adjacent sieves. The particle size distribution of a shredded 
PWB is shown in Figure 3. The density of the shredded PWB 
sample is 2.27 g cm−3.

Operation parameters

Both batch and continuous pneumatic jigging separation has 
been investigated. The sample was loaded into the separation 
chambers prior to operation. The air pulsation was then started 
with the blower to establish stratification of light and dense frac-
tion layers. The movement of particles in the separation chamber 
is generated by vibration of the separation chamber. To establish 
continuous operation, the vibrators, feeder, and rotatory valve 
are started and the stratified layers will exit the outlets, respec-
tively. Initially, batch scale operation has been conducted to 
establish basic operation parameters like bed height and 

superficial air velocity. There is no continuous airflow within the 
design of this pneumatic jig to suspend fine particles; therefore, 
two layers of steel mesh with pore size of 150 μm have been 
placed on top of the supporting screen to prevent fine particles 
from penetrating into the ducts for air supply. The steel mesh is 
also used to cover the top of both separation chambers to confine 
the movement of particles during jigging actions. The particle 
bed height is determined by superficial velocity and the height 
of separation chamber. Fluidization of particles should be 
achieved with air pulsation and the bed expansion should be 
contained within the separation chamber. A dust extraction unit 
(Donaldson, Easy Trunk) has been used to collect particles 
blown out of the chambers by pulsed air. Batch scale experi-
ments with different combinations of air superficial velocities 
and bed heights demonstrate that a suitable bed height is 8–10 
cm with a superficial velocity of air pulsation between 3.6 m s−1 
and 4.0 m s−1 for the pilot jig. The duration of each air pulsation 
is 1 s; therefore, the frequency is 1 Hz. With the operation 
parameters stated above, the jigging time should be greater than 
2 min to achieve stratification of two distinguishable layers – the 
top layer consists of mainly non-metallic fraction and the bottom 
layer consists of metallic particles and non-liberated parts. For 
all continuous separation experiments, the process starts with 2 
min of batch operation to establish the stratification condition. 
With superficial velocity and other jigging operation parameter 
established from batch experiment, two sets of operation param-
eters (conditions 1 and 2) have been identified for continuous 
separation. The height and size of outlets for both conditions are 
exactly the same. A pair of 50 mm height Perspex plates serves 
as a weir between chambers, which determines the height and 
size of outlets for bottom and top streams in the pneumatic 

Figure 2.  Pilot scale pneumatic jigging developed by University of Nottingham (design drawing provided by Tony Gospel).
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jigging. The sizes of outlet for bottom fraction on the first and 
second chambers are 20 mm and 15 mm, respectively. The sizes 
of outlet for the top fractions are kept at 50 mm because fluffs 
and fibrous material tend to form agglomerates. The correspond-
ing vibration intensities for conditions 1 and 2 are 30% and 25% 
of full capacity of the vibrators. The difference in vibration 
intensities results in different retention time of particles within 
the separation cell.

Method for product analysis

Riffle was used to acquire representative samples from the sepa-
ration process. An Ultrapyc 1200e gas pycnometer was used to 
measure the true density of samples, which provides qualitative 
indication of the extent of separation. The metal content of each 
sample fraction is analyzed to provide quantitative information 
of the separation efficiency. A representative sample of each frac-
tion is grinded with a Retsch SM2000 cutting mill followed by a 
Retsch ZM 200 centrifugal mill. The particle size of the sample 
is reduced to below 250 μm to ensure the uniformity of sample in 
the following microwave digestion stage. A CEM Mars 5 micro-
wave digester is then used to dissolve the sample. Elementary 
analysis is conducted with ThermoFisherM Series iCE 3500 
atomic absorption spectrometry and PerkinElmer NexION 300x 
inductively coupled plasma–mass spectrometry.

Results and discussion

Figure 4 shows an image of representative samples from the 
pneumatic separation process. Before separation, the shredded 
PWB is a mixture of particles and fibrous materials. Pneumatic 
jigging separates the shredded particles into two streams: the bot-
tom fraction comprises plastic particles, PWB fragments, and 
metallic parts, and the top fraction is mainly a mixture of fibers, 
fluff, and small PWB pieces. The sample recovered from the dust 

extraction unit is essentially an aggregation of fluff and fibrous 
material with fine particles trapped inside.

The identification of boundary layer between top fraction and 
bottom fraction is based on visual observation. For batch scale 
separation, the sample is extracted from the separation chamber 
with a vacuum cleaner to prevent re-mixing. In the continuous 
separation process, separation of top and bottom layers is 
achieved by adjusting the height and size of the outlets of separa-
tion chambers. Experimental records of three runs for both batch 
and continuous separation are presented in the tables below. 
Table 1 shows the results from batch operation with a retention 
time of 4 min. Table 2 illustrates two different conditions of con-
tinuous separation with top to bottom fraction weight ratio of 
about 1:6 and 1:9, for which the throughput is 170 kg hr−1 and 
150 kg hr−1, respectively.

Table 1 shows considerable variation in weight ratio between 
each run. This is caused by the relatively small sample size and 
the manual extraction process. Compared with batch operation, 
the results from continuous operation demonstrate good consist-
ency for both weight and density measurement. The density 
change for top and bottom fractions indicates concentration of 
metallic fractions in the bottom fractions. Further chemical anal-
ysis has been carried out to determine the efficiency of this pneu-
matic separation process.

Table 3 shows different metal concentrations in representative 
samples of the continuous pneumatic separation process. The 
hammer mill used for grinding is made of steel; therefore, the 
iron concentration may be affected. The metal concentration of 
shredded PWB before separation is 34.6%. For condition 1, 
metal contents in the bottom and top fraction are 15.3% and 
39.9%, respectively. For condition 2, the corresponding metal 
contents in the bottom and top fraction are 14.0% and 45.1%. The 
metal concentration efficiency in condition 2 is higher than that 
of condition 1, which results from its longer retention time in the 
jig. Pneumatic jigging proves to be an effective technology for 
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the recovery of metallic fractions from shredded PWB. Most of 
the metals concentrate in the bottom fractions, although some 
metals such as lithium concentrate in the top fraction. The results 
also show high concentration of various elements in the sample 
recovered from the dust extraction unit, e.g. barium (3.4 times 
that of original sample), titanium, and palladium. The weight of 
sample collected from the dust extraction unit accounts for 0.51% 

of the total weight of processed PWB; therefore, the loss is minor 
from a recycling point of view.

Conclusions and future work

The work presented in this paper, which is original and unprec-
edented, has demonstrated the feasibility of applying dry 

Figure 4.  PWB samples from pneumatic jigging: (a) shredded PWB before separation; (b) dust collected in the dust extraction 
unit; (c) bottom fraction; (d) top fraction.

Table 1.  Batch pneumatic separation results of shredded PWB.

Run 1st chamber 2nd chamber

Top Bottom Ratio Top Bottom Ratio

Weight of sample (kg)
1 0.19 1.98 10.42 0.16 3.16 19.75
2 0.22 2.80 12.73 0.22 1.96 8.91
3 0.25 2.93 11.72 0.26 1.88 7.23
Average 0.22 2.57 11.62 0.21 2.33 11.96
RSDa 11% 16% 8% 20% 25% 46%

Density (g cm−3)
1 2.04 2.59 1.27 2.06 2.29 1.11
2 1.94 2.52 1.29 1.94 2.66 1.37
3 1.93 2.54 1.32 1.92 2.42 1.26
Average 1.97 2.55 1.3 1.97 2.46 1.25
RSDa 2.5% 1.2% 1.6% 3.1% 6.2% 8.5%

aRSD = relative standard deviation.
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separation techniques, i.e. pneumatic separation, in metal 
recovery from WEEE. This provides a potential pretreatment 
process to improve the overall economic and environmental 
performance of WEEE recycling. Two continuous operation 

conditions have been identified with light-to-dense fraction 
weight ratio of 1:5.7 and 1:9.2. In terms of metal concentra-
tion, total metal content in the dense fraction from condition 2 
has been increased to 45.1% from 34.6% in shredded PWB. 

Table 2.  Continuous pneumatic separation results of shredded PWB.

Condition 1 Condition 2

Weight of sample (kg) Weight of sample (kg)

Run Top Bottom Ratio Run Top Bottom Ratio

1 3.70 21.65 5.85 1 2.25 20.88 9.28
2 3.83 21.80 5.69 2 2.13 19.91 9.35
3 3.68 20.68 5.62 3 2.37 21.10 8.9
Average 3.74 21.38 5.72 Average 2.25 20.63 9.18
RSD 1.8% 2.3% 1.7% RSD 4.4% 2.5% 2.2%

Density (g cm−3) Density (g cm−3)

Run Top Bottom Ratio Run Top Bottom Ratio

1 1.85 2.55 1.38 1 1.95 2.34 1.2
2 1.89 2.61 1.38 2 1.98 2.34 1.19
3 1.89 2.60 1.38 3 1.95 2.32 1.19
Average 1.88 2.59 1.38 Average 1.96 2.34 1.19
RSD 1.0% 1.0% 0.0% RSD 0.7% 0.4% 0.4%

Table 3.  Metal concentration in pneumatic separation samples.

Element Unit A B C D E F

Cu % 21.3 9.9 25.0 8.5 29.3 6.5
Fe % 5.2 1.4 5.6 1.2 6.7 11.9
Ni % 0.5 0.1 0.5 0.1 0.6 0.4
Al % 2.2 2.8 2.1 3.1 1.7 2.3
Pb % 1.7 0.2 2.3 0.1 2.2 1.4
Sn % 1.3 0.1 1.7 0.1 1.7 1.2
Zn % 1.1 0.1 1.4 0.1 1.4 1.0
Cr ppm 3940.8 320.9 6491.8 582.5 8300.3 58.0
Ba ppm 3499.7 1761.0 1375.6 2049.7 1757.2 11757.8
Sb ppm 2804.1 2694.0 3015.4 2758.3 3140.5 2903.2
B ppm 1096.7 1491.8 613.3 1475.2 802.6 1289.7
Ti ppm 505.4 204.6 406.9 224.1 432.3 1116.8
Ga ppm 468.9 230.3 172.1 260.1 222.5 1181.2
Zr ppm 174.3 18.5 80.5 23.8 75.3 629.8
Sr ppm 133.6 184.4 92.6 181.6 114.4 119.1
Mn ppm 444.4 105.6 569.9 171.9 657.2 769.4
Co ppm 8.7 4.7 11.5 6.6 12.8 28.8
Au ppm 46.9 32.5 11.9 32.5 7.5 65.4
Bi ppm 12.9 7.5 8.9 6.4 7.6 47.8
Cd ppm 16.0 20.7 7.0 17.8 13.7 56.6
Li ppm 5.8 9.9 2.9 12.1 4.1 6.6
Hf ppm 5.0 0.6 2.3 0.8 4.6 16.2
Ce ppm 4.9 7.3 2.7 6.8 3.4 32.3
Pd ppm 4.2 0.9 4.0 1.0 4.5 8.9
Hg ppm 0.1 0.1 0.1 0.2 0.2 0.1
Pt ppb 21.3 5.9 15.4 6.8 21.1 32.7
Ta ppb 9.8 2.3 12.1 4.2 10.9 3.2

A: shredded PWB before separation; B: top fraction from condition 1; C: bottom fraction from condition 1; D: top fraction from condition 2; E: 
bottom fraction form condition 2; F: sample from dust extraction unit.
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Removal of certain mass fractions at an early stage of shred-
ding could reduce the energy consumption of the shredding 
process. The pneumatic jig’s capability for processing coarse 
particles makes it suitable as a pretreatment process to improve 
the overall economic and environmental performance of recy-
cling. The subsequent recovery process could be re-shred the 
dense fractions produced by pneumatic jig for better liberation 
and concentrate with techniques like vibratory separation 
(Habib et al., 2013). The results reveals high concentrations of 
boron (B), strontium (Sr), gold (Au), cadmium (Cd), and 
cerium (Ce) in the top fraction. This is because these metals, 
which exist as thin films or a layer of deposits in PWBs, 
become trapped in the fluff and fibrous material during han-
dling. The shredding mechanisms need to be reappraised to 
reduce the loss of precious metals. The following work will be 
carried out to improve performance of pneumatic separation of 
WEEE:

•• Due to the complex and heterogeneous nature of PWBs, 
multi-stage separation under different operation conditions 
could be adopted to improve the separation efficiency.

•• Particle size could be reduced to increase liberation of metals 
from non-metallic fractions.

•• The retention time of sample within the pneumatic jigging 
could be increased to enhance the concentration effect.

•• A filter could be installed on the top of separation chamber to 
prevent loss of valuable metals in fine particles.
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