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•ABSTRACT: Existing lower-bound shakedown solutions for pavement problems are generally 

obtained by assuming that materials obey associated flow rules, whereas plasticity of real 

materials is more inclined to a non-associated flow. In this paper, a numerical step-by-step 

approach is developed to estimate shakedown limits of pavements with Mohr-Coulomb 

materials. In particular, influences of a non-associated flow rule on the shakedown limits are 

examined by varying material dilation angle in the numerical calculations. It is found that the 

decrease of dilation angle will lead to accelerated reduction of pavement shakedown limits, and 

the reduction is most significant when the material friction angle is high. Furthermore, existing 

lower-bound shakedown solutions for pavements are extended, in an approximate manner, to 

account for the change of material dilation angle and the shakedown results obtained in this way 

agree well with those obtained through the numerical step-by-step approach. An example of 

pavement designs using shakedown theory is also presented. 

•Keywords: shakedown; pavements; non-associated flow rule; Mohr-Coulomb materials; 

lower-bound 

•1 INTRODUCTION 

•Current mechanistic-empirical design methods for flexible pavements are usually conducted by 

relating pavement life with elastic stress/strain at critical locations considering several principle 

failure modes. However, one of the failure modes, excessive rutting, is mainly caused by an 

accumulation of permanent deformation under repeated traffic loads. Therefore, a plastic design 

method using shakedown theory is considered more rational [1, 2]. The shakedown theory can 



•distinguish the long-term elastic-plastic responses of a pavement to different levels of traffic 

loads. If the load level is high, pavements may fail in a form of excessive rutting as a result of 

accumulated permanent deformation. Alternatively, if the load level is low, the pavement may 

deform plastically in the first number of load passes, then respond purely elastically to 

subsequent traffic loads. The latter phenomenon is called 'shakedown', and the load below 

which shakedown can occur is termed as 'shakedown limit'. In the design of flexible 

pavements, the shakedown limit can be calculated and checked against the design traffic loads 

to ensure very small permanent deformations of pavements throughout their service lives. 

•The shakedown limit can be determined by either numerical elastic-plastic analysis (e.g. [3, 4]) 

or two fundamental shakedown theorems. Melan's static (lower-bound) shakedown theorem [5] 

states that an elastic-perfectly plastic structure under cyclic or variable loads will shakedown if a 

time-independent residual stress field exists such that its superposition with load-induced elastic 

stress field does not exceed yield criterion anywhere in the structure. Koiter's kinematic (upper-

bound) shakedown theorem [6] states that shakedown cannot occur for an elastic-perfectly 

plastic structure subjected to cyclic or variable loads if the rate of plastic dissipation power is less 

than the work rate of external forces for any admissible plastic strain rate cycle. In the past few 

decades, solutions for shakedown limits of pavements were developed mainly based on these two 

fundamental shakedown theorems. Several different approaches based on Melan's static 

shakedown theorem were developed for pavements subjected to two-dimensional (2D) and three-

dimensional (3D) moving surface loads [1, 3, 7-19]. Furthermore, kinematic shakedown analyses 

were carried out by using Koiter's shakedown theorem for 2D and 3D pavement [20-25]. It 

should be noted that the static and kinematic shakedown solutions provide lower and upper 

bounds to the true shakedown limit of a pavement respectively. This is because the lower-bound 

shakedown theorem satisfies internal equilibrium equations and stress boundary conditions, 

while the kinematic shakedown theorem satisfies compatibility condition for plastic strain rate 

and boundary conditions for velocity. Nevertheless, some identical upper and lower 
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•bound solutions have been obtained. For instance, when a 2D Mohr-Coulomb half-space is 

subjected to a moving pressure, the lower-bound shakedown solutions (as obtained by Wang 

[3]) are identical to the upper-bound shakedown solutions (as obtained by Collins and Cliffe 

[21]). Although some converged shakedown limits have been obtained by using the static and 

kinematic shakedown theorems, they are calculated based on the assumption of an associated 

flow rule (i.e. the plastic strain rate is normal to the yield surface). It is well known that 

granular materials, such as soil and pavement materials, exhibit a non-associated plastic 

behaviour [26, 27]. Until now, very limited results have been reported on this topic. Boulbibane 

and Weichert [28] proposed a theoretical framework for shakedown analysis of soils with a 

non-associated plastic flow. It was reported by Nguyen [29] that this framework can be applied 

to shakedown analysis of footing problems. With the use of linear matching method, 

Boulbibane and Ponter were able to give 3D upper-bound shakedown solutions for Drucker-

Prager materials with zero dilation angle, but did not evaluate the influence of the change of 

dilation angle [22]. Numerical studies of Li [25] extended the 2D upper-bound shakedown 

solutions of Li and Yu [24] to the materials with non-associated plastic flow and suggested that 

the pavement upper-bound shakedown limit is reduced due to the use of non-associated flow 

rule. For practical pavement design, the influence of material plastic flow rule on lower-bound 

shakedown limits needs to be assessed. 

•In this paper, first, shakedown limits for 2D pavement problems will be captured by using a 

step-by-step numerical approach. Both associated and non-associated flow rules will be 

considered for pavement materials. Then a direct method will be developed based on the 

previous work of Yu and Wang [16] to estimate the lower-bound shakedown limits of pavements 

using a non-associated plastic flow rule. 

•3 



•2 PROBLEM DEFINITION 

•It is considered that a pavement is repeatedly subjected to a rolling long cylinder, as shown in 

Figure 1. This can be simplified as an idealised plane strain pavement model with a moving 

contact load P. The normal load distribution p (refer to Figure 2) can be assumed as: 

•p  p  0  •= − 
•1 (x' / ) 2 (x' ), •a − a ≤ ≤ a (1) 

•where a is half of contact length; p0 (= 2P/πa) is the maximum vertical stress located at x' = z' 

= 0. This load distribution is also known as 2D Hertz load distribution [1, 30]. 

•3 NUMERICAL APPROACH 

•In this section, a numerical step-by-step approach for pavement shakedown problem is 

presented and validated. Results including shakedown limits, residual stresses and plastic 

strains are discussed in detail. 

•3.1 Method description 

•3.1.1 Numerical approach 

•Shakedown solutions based on the lower-bound (static) shakedown theorem were obtained by 

assuming statically-admissible residual stress fields. It means the actual residual stress fields 

developed in pavements were not considered. In the present study, finite element (FE) elastic-

plastic analyses are carried out to obtain the actual residual stresses developed in pavement 

structures under repeated moving traffic loads. By using finite element software ABAQUS, 

shakedown limits of pavements can be obtained through a step-by-step approach: 

• (1) As illustrated in Figure 2, for a given pavement structure, the load moves on the 

pavement surface repeatedly from point B to point C. At the end of each load pass, the 

applied load is removed thoroughly to investigate stresses remaining in the pavement 

(known as residual stresses). 
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2. After a few numbers of load passes, a static load with the same magnitude of the 

moving load is applied in the middle on the pavement surface. If no yielding point can 

be found in the pavement (i.e. the total stress state of each point in the pavement does 

not violate the yield criterion), a steady state (termed as 'shakedown state') is achieved. 

In contrast, any yielding point would indicate that the applied load is above the 

shakedown limit of the pavement and the whole structure is in a non-shakedown state. 

1. Several numerical simulations with different load magnitudes are performed to

determine the shakedown limit of the pavement.

•It should be noted this numerical approach requires great computation efforts in order to 

obtain results with a reasonable accuracy. This problem has been solved to a great extent by 

using High Performance Computing (HPC) facilities in the University of Nottingham, UK. 

•Figure 1 Idealised pavement model Figure 2 Model sketch and boundary conditions and 

•2D Hertz load distribution 

•3.1.2 Model description 

•A pavement model is established using ABAQUS. During every load pass, the load is gradually 

applied at the start point, then translated in the horizontal direction at a constant speed, and 

finally removed at the end point. The loading process is controlled by a user subroutine DLOAD. 

The simulation is processed by means of 'automatic incrementation control' with a given 

maximum increment of 0.1. According to ABAQUS Analysis User's Guide [32], the stiffness 

matrix of the materials following associated plastic flow is automatically selected by the solver 

(symmetric or unsymmetric), while for non-associated cases, it is set to be unsymmetric 
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•compulsively. Figure 2 shows a sketch of a two-layered pavement used in this study. A restraint 

on horizontal movement is applied at two vertical boundaries, and a restraint on vertical 

movements is applied on the bottom boundary. In order to minimise the influence of two 

vertical boundaries on numerical results, no load is applied near the vertical boundaries. Eight-

noded, reduced-integrated, quadratic elements (CPE8R) are selected to avoid hour-glassing and 

interlocking problems. Material properties of each layer are described by linear elastic 

parameters (Young's modulus E and Poisson's ratio ν) and Mohr-Coulomb criterion 

parameters (cohesion c, friction angle 0 and dilation angle yi). The materials are assumed to be 

homogenous, isotropic, and elastic-perfectly plastic with the associated plastic flow (i.e. 0 = yi) 

or a non-associated plastic flow (i.e. 0 ≤ yi < 0). In this paper, subscript 'n' of E, ν, c, 0 and yi 

represents the nth layer. For single-layered pavement problems, identical materials are assigned 

to both layers. In addition, tension is positive in the following results. It should be noted that the 

Mohr-Coulomb model in ABAQUS uses a smooth plastic flow potential proposed by Menetrey 

and Willam [31] which is very close to the classical Mohr-Coulomb model with faced flow 

potential, especially when mean pressure is high [32]. 

•The Drucker-Prager model with corresponding parameters transformed from Mohr-

Coulomb parameters was also used to investigate the influence of material plasticity model. 

Results showed that these two models provide almost the same shakedown limits. For example, 

when 0 = = 200, the shakedown limits are 7.5c in the case of Mohr-Coulomb materials and 7.4c 

in the case of Drucker-Prager materials. Therefore, the Mohr-Coulomb model was selected in 

the following study. 

•3.1.3 Validation 

•Table 1 shows different model dimensions used for sensitivity study and their corresponding 

results. Model A was used by Wang and Yu [4] for homogenous half-space but required lots 

of computation efforts. From Model B and Model C, it can be seen that some reductions in 

height and length of the model only slightly change the shakedown limit while saving a lot of 
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•computation time. Therefore, model dimensions of 40a (length of loading area L) x 25a (depth 

H) are selected. As mentioned before, the no-loading areas were applied near vertical 

boundaries. Their influences were checked by Model D in which the moving load gradually 

entered through the left boundary and finally exited through the right boundary, and Model E 

in which the length of the no-loading area L' is increased from 3a to 10a. The results 

demonstrate the length of the no-loading area barely affects shakedown limits. However, for 

some two-layered cases, it was found that L' = 3a was not enough to prevent yielding near the 

vertical boundaries. Therefore, Model E is finally chosen. 

•Sensitivity studies on mesh density were also carried out to ensure that mesh distribution can 

obtain numerical results with a reasonable accuracy. High mesh density is applied in the first 

layer and near the interface between two layers due to high stress and strain gradient. As 

shown in Table 2 , the shakedown limit barely changes when the number of elements exceeds 

16000 for both single-layered and multi-layered model. Therefore, the mesh density in case 3 is 

selected. In this case, elements are distributed uniformly along 10a ≤ x ≤ 50a (the loading area) 

and small elements (0.25a x 0.1a) are applied in the region near the surface (z ≤ 2a). The mesh 

is also fine just beneath the interface, and it becomes coarser with increasing depth. 

•Table 1 Influence of model dimension (! = ψ = 200, v = 0.3) 

Theoretical Numerical Average elapsed time per 
Model No. L H L' 

shakedown limit shakedown limit load pass (s) 

A 78a 30a 3a 7.5c 13854 

B 40a 30a 3a 7.4c 3607 
C 40a 25a 3a 7.56c 7.4c 3576 

D 40a 25a 0 7.5c 3480 

E 40a 25a 10a 7.5c 3475 

•Table 2 Influence of mesh density 
Case Number of Theoretical 

No. Elements shakedown limit 

Numerical 

shakedown limit 

Average elapsed time per 

load pass (s) 

1 1500 7.2c 125 
2 2500 7.2c 320 

Single-layered 3 16000 
(4 = ψ = 20°, v = 0.3) 

4 18000 
5 21600 

7.56c 7.5c 

7.4c 

7.4c 

3475 

3603 
4714 

Multi-layered 2 2500 8.5c2 344 

(E1/E2=0.5, v =0.2, v2 =0.49, 3 16000 8.48c2 8.5c2 4279 

çb1=ψj=30°, 42=ψ2=0°, c1/c2=1) 6 20000 8.5c2 4561 

Table 3 Comparison of numerical shakedown limits 

Case No. Load Layer 4, (0) ψ (0) ν  E1/E2 c1/c2 Shakedown limit Difference 
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•distribution No. This study References (%) 
•4.0c[1, 3, 7] 

•1 Hertz \ 0 0 0.4 \ \ 4.0c 0 
•10.8c[1, 3, 13, 21] 

•2 Hertz \ 30 30 0.3 \ \ 10.6c 1.8 
•3 Trapezoidal*\ 0 0 0.4 \ \ 3.7c 3.8c[15]2.6 

•4 Trapezoidal*\ 15 15 0.3 \ \ 5.9c 6.2c[15]4.8 
•1st 40 40 0.3 5 [10] 

•5 Trapezoidal*5 11.6c2 11.7c2 0.8 
•2nd 0 0 0.4 
•1st 30 30 0.2 10 [17] 

•6 Hertz 1 3.3c2 3.2c2 3.0 
•2nd 0 0 0.49 

•*bIa=0.5 where a and b are the lengths of the lower and upper sides of trapezoid; Cases 1-4 are for single-layered pavements and cases 5-

6 are for two-layered pavements

•Shakedown limits obtained by the current approach are also compared with shakedown

solutions of other researchers. Those shakedown solutions were developed based on the

classical shakedown theorems and they all assumed that an associated plastic flow rule is

applied to pavement materials. Table 3 demonstrates that the differences between shakedown

limits of the current study and those in references are within 4.8%.

•3.2 Single-layered pavements 

•Table 4 presents numerical results for single-layered pavements and compares them with the 

shakedown limits of Wang [3]. If an associated flow rule (ϕ = ψ) is assumed, the shakedown limits 

are only slightly lower than those in Wang [3] with a maximum difference of 2.0%. However, if a 

non-associated flow rule (ψ < ϕ) is used in the numerical model, the difference can be as high as 

13.1%. Therefore, the effect of plastic flow rule cannot be neglected, especially when the friction 

angle is high. Also, Table 4 exhibits that the dimensionless shakedown limit (defined as the 

shakedown limit normalised by material cohesion 'c') accelerated reduces with decreasing 

dilation angle, and the maximum reduction occurs when the dilation angle ψ drops from 301/4 to 

0° (friction angle ϕ remains 30°). 

•Table 4 Material parameters and shakedown limits for single-layered pavements 

Case No. ϕ (°) ψ (°) ν Theoretical shakedown limit Numerical Shakedown limit Difference (%) 

1 30 30 0.3 10.82c 10.6c 2 

2 30 20 0.3 10.4c 3.8 
3 30 10 0.3 10.0c 7.6 

4 30 0 0.3 9.4c 13.1 

5 20 20 0.3 7.56c 7.5c 0.8 

6 20 10 0.3 7.4c 2.1 
7 20 0 0.3 7.2c 4.8 

8 15 15 0.3 6.58c 6.1c 7.3 

9 15 7.5 0.3 6.1c 7.3 

10 15 0 0.3 6.1c 7.3 
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•According to the lower bound shakedown theorem, residual stress field σijr (i and j denote x axis 

or z axis) plays an important role in helping structures reach the shakedown state. Ideally, 

elements at the same depth should experience the same loading history; therefore the resulting 

residual stress distribution should be independent of x axis [16]. Johnson [7] noted that axzr and azzr

should be zero for the 2D pavement problem due to the self-equilibrium condition. This was 

verified by Wang [3] by numerical approach. Previous researches [3, 4, 34] demonstrated that 

residual stresses in pavements under moving surface loads barely change after several load passes, 

no matter the load applied is at or above the shakedown limit. It coincides with the test report of 

Radovsky and Murashina [33] in which the measured residual stresses cease to increase after 12 

wheel passes. In consideration of the non-associated plastic flow, similar phenomenon is also 

observed (Figure 3). Lower load level results in smaller amounts of residual stresses. When the 

load magnitudes remain the same, the fully-developed residual stresses are also compared in 

Figure 4(a) for the case of ϕ = 30¡ and p0 = 10.6c. Wang [3] also noted that the actual horizontal 

residual stress field axxr should lie between two critical residual stress fields (referred to as 

'minimum larger root (MLR)' and 'maximum smaller root (MSR)') when the applied load is no 

larger than the shakedown limit. Figure 4(b) further compare those residual stresses with MLR 

and MSR when 0 ≤ z/a ≤ 1. It is evident that the numerical residual stresses are completely 

bracketed by MLR and MSR when the materials obeying the associated flow rule. It can also be 

observed that the use of smaller dilation angle drifts some residual stresses further away from the 

safe region bracketed by two curves. Therefore there are some critical depths below the pavement 

surface representing locations for unlimited increasing plastic strains (Figures 5(a), 6(a)). If the 

load magnitude is higher than the shakedown limit, the structure will eventually fail due to 

excessive cumulative permanent deformation. However, if the load magnitude is reduced to the 

shakedown limit, plastic strains will cease to accumulate after a few load passes (Figures 
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•5(b), 6(b)). This is because smaller load magnitude will result in wider safe region between 

two curves, so that the fully-developed horizontal residual stress field can be well contained. 

•Figure 3 Development of horizontal residual stress field 

•Figure 4 Influence of dilation angle on horizontal residual stress field when φ = 300, P0 = 10.6c 

•Figure 5 Development of plastic normal strains 

•(a) (b) 
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•Figure 6 Development of plastic shear strains 

•3.3 Multi-layered pavements 

•A two-layered pavement structure with h1 = 2a, c:1 = 30¡, ν1 = 0.2, E2 = ψ2 = 0¡, ν2 = 0.49 is 

taken as an example for analyses. Results are obtained by using materials with either an 

associated flow rule (Ø1 = ψ1 = 300) or a non-associated flow rule (Ø1 = 301/4 ψ1 = 00). A direct 

comparison between these two cases is made in Figure 7 for various stiffness ratios E1/E2. 

Shakedown limits calculated through lower-bound approach of Wang and Yu [17] are also 

presented in this figure as a dash line. In the present study, shakedown limit of any layer in a 

multi-layered pavement is normalised by the cohesion of the second layer c2. It is noteworthy 

that there exists an optimum stiffness ratio at around E1/E2 = 1.4 at which the shakedown limit 

is maximised. The turning point also indicates the change of pavement failure mode from 

second layer failure to first layer failure. As can be seen, numerical results for cases with 

associated flow rule agree well with the lower-bound shakedown limits. However, when the non-

associated flow rule is applied, numerical results are lower than the lower-bound shakedown 

solutions when E1/E2 ≥ 0.8. More results for multi-layered pavements with materials following 

associated flow rule can be found in Liu et al. [34]. 
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•Figure 7 Comparison of numerical and theoretical shakedown limits for layered pavements when φ1 = 300, φ2 = 00, 

•c1/c2 = 1 

•Residual stresses also develop in multi-layered pavements. Taking a two-layered pavement as 

an example, the fully-developed horizontal residual stress field exists not only in the first layer, 

but also at the top of the second layer, as shown in Figure 8(a). This means that the top of the 

second layer can also be critical. This agrees with the current pavement design approach (e.g. 

[35]) in which the top of soil subgrade is considered as one of the critical locations. Again, with 

the use of non-associated flow rule, some fully-developed residual stresses cannot reach the safe 

region bracketed by MLR and MSR. Therefore, shakedown limits of the non-associated cases 

are smaller than those using Ø1 = ψ1. Further studies show that for the pavement with Ø1 = 301/4 

ψ1 = 00, if the load is decreased from 6.7c2 to 5.5c2, the numerical residual stresses can totally lie 

within the safe region, as shown in Figure 8(b), and therefore the pavement will shake down to a 

steady state. 

•In sum, the numerical approach is a valid way to obtain shakedown limits of pavements with 

the assumptions of either an associated or a non-associated plastic flow rule. More numerical 

solutions considering different load cases, strength ratios and layer configurations will be 

presented in the following section in comparison with theoretical solutions. 
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• Figure 8 Comparison between FE calculated residual stress 

field and critical residual stress fields when φ1 = 30o, φ2 = ψ2 = 0¡, 

E1/E2 = 3 

•4 LOWER-BOUND SHAKEDOWN SOLUTIONS 

•The classical shakedown theorems follow the principle of maximum plastic work. Therefore, 

shakedown solutions using classical shakedown theorems were based on the assumption of 

associated flow rule. However, as explained in the previous section, ignorance of non-associated 

plastic flow may overestimate the real shakedown limits of pavements thus lead to an unsafe 

pavement design. The numerical approach developed in the previous section has been devoted 

to overcome this issue. Despite much effort, very limited results have been reported in this 

aspect due to computation cost. A direct method to address this issue would be more appealing 

for practitioners. For this purpose, lower-bound shakedown solutions of Yu and Wang [16] will 

be further developed in this section to obtain approximate shakedown limits for pavements 

assuming non-associated plastic flow. 

•4.1 Shakedown analyses 

•Shakedown solutions of Yu and Wang [16] were developed based on Melan's lower-

bound shakedown theorem. Assuming Mohr-Coulomb materials following associated 

flow rule, shakedown condition of the pavement problem can be written as[16]: 
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•

• f= xx + + 

≤ 

(σ r M) 2 N 0, (2) 

e e e 2 
•w h e r e  M  λ  σ  λ  σ  2  t an  φ  ( c  σ  t an  φ  •e •λ  )  N  4 ( 1  t a n  ) [ (  σ  )  ( c  σ  t a n  )  ]  ;  

•2 •= xx − + − ; = + 2 φ λ − − λ φ 
•e 

•zz zz xz zz 

•σxx is self-equilibrated residual stress field; )L is a scale parameter; e 

• r σ ij is the elastic stress field 

due to applied unit pressure p u ; f is Mohr-Coulomb yield function. This problem then can be 

solved by using a mathematical formulation developed in Yu and Wang [16]. 

•In consideration of non-associated plastic flow, the dilation angle ψ (0 ≤ ψ < φ) should be 

used. Davis [36], Drescher and Detounay [37], Sloan [38] suggested the use of reduced 

strength (φ* and c*) for the calculation of limit loads of structures in the case of materials 

obeying non-associated flow rule. And it has been used for stability analysis of plane strain 

footing problem (e.g. [37, 39-41]) in which: 

•tanφ*=ηtanφ, (3) 

•C* =ηC, (4) 

•COs/j COsØ 

•1−sin/jsinØ 

•By replacing φ and c in Eq. (2) with φ* and c* and using a similar solution procedure in Yu and

Wang [16], shakedown limits of pavements λ8dp0u with Mohr-Coulomb materials following

•non-associated flow rule (defined by φ, ψ, c) can be found by searching through every point i 

at each depth z = j in the half-space for the maximum value of )L in the following 

mathematical formulation: 

max 2, 

•f (cy ( 2 cy ) , 2 cy ) 
•r e e 

•xx 

•~ 0, •( ) ( •2 ) 
•c y  =  m i n  −  M  +  −  

•e * ) ( ) ( 

•z = j z = j 

•i i xx i i 

•* N or cy 2 cy = max − M − − N , 
•r e *  * 

•* 2 

•with M σ e σ 2 tan (c σ tan ), 
•e * = +               

•2 2 
•= ) − ) + η φ − ) φ N 4(1 tan )[( σ ) (c σ tan ) ] . 

•e 2 2 e 2 
•xx zz zz xz zz 

•η •. (5) 

•⎨

⎪

⎧

•⎪

⎩

•s.t. •cy r 
•x x  

•( 6 )  
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In the above formulation, max ( M 
− − − 

t N t ) 
i i 

z=j 

and min( M 
z j _ + _ 

* N * ) 
i i 

= 

are termed as 'maximum 

•smaller root (MSR)' and 'minimum larger root (MLR)' respectively. Any residual stress field 

lying on or within the region bracketed by the MSR and MLR is a necessary condition for this 

shakedown problem, because they are obtained by satisfying the equilibrium and boundary 

conditions only. The actual residual stress field in a pavement should also be related with 

material plastic deformation which is affected by loading history. It is also interesting to notice 

that (e.g. Figure 4(b) and Figure 8), the actual residual stresses within the plastic region are 

very close to the compressive (negative) MLR rather than MSR. This implies that the 

structure tends to make a minimum plastic work (i.e. as small plastic deformation as possible) 

subject to a certain level of load in order to achieve the shakedown state. Outside the plastic 

region, the actual residual stresses are almost zero; whereas the MLR are positive. This is 

because the assumption of yielding at all depths [16] yields some positive artificial residual 

stresses. In reality, actual stress states at some depths will not touch the yield surface, reflected 

as zero residual stresses. 

•4.2 Results and comparison 

•4.2.1 Single-layered pavements 

•A homogeneous half-space subjected to a moving 2D Hertz load is considered in this section 

and the shakedown limit is usually denoted as a dimensionless parameter k = λsdp0u/c. Figure 9 

compares dimensionless lower-bound shakedown limits with those obtained from numerical 

approach and upper-bound solutions of Li [25] for various values of friction angle and dilation 

angle. The results generally agree except the cases with high friction angle and low dilation 

angle. This kind of discrepancy is also noted by other researchers (e.g. [38, 41]) when using the 

modified Mohr-Coulomb parameters (φ* and c*) to solve limit state problems. 
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•Figure 9 Comparison of theoretical and numerical shakedown limits for single layered pavements 

•Table 5 Dimensionless lower-bound shakedown limit parameters 

φ yf = 0° yf = 5° yf = 10° yf = 15° yf = 20° yf = 25° yf = 30° yf = 35° yf = 40° yf = 45°

0° 4.00 

5° 4.64 4.66 

10° 5.34 5.42 5.45 

15° 6.08 6.25 6.36 6.40 

20° 6.84 7.14 7.36 7.51 7.56 

25° 7.58 8.03 8.43 8.73 8.93 9.00 

30° 8.25 8.90 9.50 10.02 10.44 10.72 10.82 

35° 8.81 9.67 10.51 11.31 12.03 12.62 13.02 13.16 

40° 9.21 10.28 11.39 12.51 13.60 14.60 15.44 16.02 16.24 

45° 9.41 10.68 12.05 13.51 15.03 16.53 17.96 19.19 20.06 20.39 

•More dimensionless shakedown limit parameters are shown in Table 5 for the problem of 

homogeneous Mohr-Coulomb half-space subjected to moving pressure. They can be 

expressed as an analytical form: 

k = 
σe 
xz 

η 
+ η σ e tan 

zz 
φ 

. (7) 

•If this fictitious material (Eqs. (3)-(5)) is also applied to the upper bound shakedown solution of

Collin and Cliffe [21] where a tangential velocity jump v cos φ is assumed, their solutions will

•give the same shakedown 

limits. 4.2.2 Multi-layered 

pavements 

•Comparisons between lower-bound shakedown limits and numerical results for layered 

pavements (with h1 = 2a) with various stiffness ratios also show good agreements in Figure 10. 

Materials of the first layer have a friction angle 0 = 30° and a dilation angle yf = 30° or 0°, while 

the second layer is Tresca material (i.e. 0 = yf = 0°). It should be noted: (1) shakedown limit of 
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•the pavement structure is the minimum one among shakedown limits of all layers, and therefore 

the turning point indicates the change of failure mode from one layer failure to another layer 

failure; (2) The change of first layer dilation angle only changes static shakedown limits of the 

first layer. When the first layer dilation angle is decreased from 30¡ to 00, lower-bound 

shakedown limits of the first layer are well reduced. Since theoretical shakedown limits of the 

second layer does not change, the turning points of non-associate cases are deviated from those of 

associated cases. Therefore, the shakedown limits for non-associated cases are smaller than those 

for associated cases when E1/E2 is relatively large (E1/E2 ≥ 0.8 in Figure 10), but remain the same 

when E1/E2 is small enough or c1/c2 is large enough. 

•Two more models with h1 = 3a and 5a were established to evaluate the effect of layer 

configuration on shakedown limits. As shown in Figure 11, the numerical shakedown limits 

show good agreements with lower-bound shakedown limits when an associated plastic flow 

rule is assumed. For non-associated cases, the numerical shakedown limits generally agree 

with the lower-bound shakedown limits when h1/a = 2 and h1/a = 3. When the first layer is 

relatively thick (i.e. h1/a = 5), the difference between theoretical and numerical solutions 

become obvious with decreasing dilation angle. Indeed, the increase of the first layer thickness 

leads to even more similar results to the homogeneous case. 

•In sum, when the dilation angle is at or above one third of the friction angle or the friction 

angle is relatively low, the numerical and theoretical results generally agree well. Noticeable 

discrepancy occurs when the friction angle is high while the dilation angle is very small in a 

homogeneous or homogenous-like structure. 
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•Theoretical results of 1st layer (ψ1 = 0¡ ) 

•Numerical results (ψ1 = 30°) 

Numerical results (ψ1 = 0°) 

•Theoretical results of 1st layer (ψ1 = 30¡ ) 

•Theoretical results of rd layer 

•Figure 10 Comparison of theoretical and numerical shakedown limits with varying stiffness ratio when 01 = 30°, 02 

•= ψ2 = 0°, c1/c2 = 1 

•0 5 10 15 20 25 30 

•Dilation angle ψ1 (°) 

•Figure 11 Comparison of theoretical and numerical shakedown limits in two-layered pavements with varying first 

layer thickness when 01 = 30°, 02 = ψ2 = 0°, E1/E2 = 3, c1/c2 = 1 

•4.2.3 Pavement design 

•Design of layered pavements can be carried out through a thickness chart such as Figure 12.

Given elastic and plastic parameters of materials (En, νn, 0n, ψn, cn), shakedown limits for

different first layer thicknesses can be determined from this chart and compared against the

design load. Finally, the thicknesses which can provide sufficient resistance to the maximum

design load (i.e. the shakedown limit is higher than the maximum design load) should be

selected. Compared with the results obtained using the assumption of φn = ψn, to sustain the

same traffic load, thicker pavement layers are required.

•12  
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• Figure 12 Contour of dimensionless shakedown limits as an example chart for the 

thickness design of a two-layered pavement when φ1 = 440, ψ1 = 25°, φ2 = ψ2 = 0¡, E1/E2 

= 3 

•5 CONCLUDING REMARKS 

•In this paper, a numerical step-by-step approach and a lower-bound (static) shakedown 

approach have been developed to obtain shakedown limits of single-layered and multi-layered 

pavements assuming either an associated or a non-associated flow rule. Some important 

findings are summarised as follows: 

1. The numerical approach presented in this paper is capable of obtaining shakedown limits of 

single-layered or multi-layered pavements with either an associated or a non-associated flow rule. 

2. Compared with associated cases, the use of a non-associated flow rule obviously affects the 

distribution of residual stress fields and therefore leads to a smaller shakedown limit. If the 

friction angle is small or the difference between friction angle and dilation angle is small, the 

variation of dilation angle will only slightly change the shakedown limit of the pavement. 

Otherwise, the induced difference can be as high as 20.7%. Therefore, the influence of non-

associated plastic flow on the shakedown limit cannot be neglected, especially for materials 

with zero dilation angles. 

3. The fully-developed residual stress field obtained from the numerical approach is bound by 

two critical residual stress fields (i.e. MLR and MSR) when the pavement is in the shakedown 

state. In both associated and non-associated cases, the fully-developed residual stress field is 
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•very close to MLR rather than MSR in the plastic region. This implies that a principle of 

minimum plastic work may be applied when the structure tries to reach a shakedown state. (4) 

Static shakedown solutions for pavements with materials obeying non-associated flow rule 

have been developed by assuming fictitious materials with reduced strength. The results agree 

with most shakedown limits obtained from the numerical approach and upper bound solutions 

of Li [24]. When the dilation angle is much smaller than the friction angle (e.g. φ = 30¡ and ψ = 

00), the present shakedown solutions may underestimate shakedown limits of pavements. 

Nevertheless, as a method to solve the pavement shakedown problem, the direct static 

•shakedown solutions can be very useful for conservative pavement design. 
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