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Abstract 11 

A series of Mn/γ-Al2O3 and MnMo/γ-Al2O3 catalysts were prepared by using Incipient Wetness 12 

Impregnation (IWI) method. The catalytic performance tests showed that the Mn3Mo1.25/γ-Al2O3 13 

demonstrated a higher SCR performance (NO conversion of around 96%) at a broad low 14 

temperature range (150 to 300°C). The characterization showed that the addition of Mo to the 15 

Mn/γ-Al2O3 catalysts could promote the dispersion of MnOx on the surface of γ-Al2O3. The 16 

adsorption of NO could form two different species, nitrites and nitrates on the surface of the 17 

catalyst. The presence of nitrites is beneficial to low temperature SCR. It is also found that the 18 

existence of Mo in the catalyst favours the formation of Mn3+, which plays a critical role in the 19 

adsorption of NH3 and therefore improves NH3 adsorption capacity of the MnOx/γ-Al2O3 catalysts. 20 

The low temperature SCR of the Mn3Mo1.25/γ-Al2O3 catalyst was found to mainly follow L-H 21 

mechanism, but E-R mechanism also plays a role to some extent. Moreover, it is also found that 22 

the addition of Mo not only mitigates the deactivation of catalysts, but also broadens the effective 23 

temperature range of the SCR catalyst. 24 

Keywords：Low temperature SCR; MnMo/γ-Al2O3; Mo addition; Promotion effects; Mechanism  25 
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1. Introduction 26 

The emission of nitrogen oxides (NOx) from combustion processes is associated with a series of 27 

severe environmental problems, such as acid rain and ozone depletion, has become an issue of 28 

great concern for decades [1-3]. To address this problem, the selective catalytic reduction (SCR) 29 

of NOx by NH3 has been applied to treat flue gas from stationary and mobile sources [4, 5]. At 30 

coal-fired power stations, V2O5-WO3/TiO2 is the most commonly used SCR catalyst. However, 31 

the high operating temperature window of 300 - 400°C is associated with a variety of problems [6, 32 

7], such as the possible oxidation of SO2 and the high energy consumption [8, 9]. Therefore, there 33 

is a need for the development of low temperature SCR catalysts, which has attracted a wide 34 

attention in recent years [10, 11]. 35 

The manganese-based catalyst is a good alternative to vanadium-based SCR catalysts, which has 36 

demonstrated high catalytic activity and selectivity at low temperature [9, 12-20]. Mn-based oxides 37 

catalysts, such as MnOx-CeO2/meso-TiO2[21], MnO2-(Co3O4)/TiO2[22] and nano-flaky MnOx 38 

supported on carbon nanotubes [16], have outstanding SCR activity at low temperatures. The 39 

addition of transition and/or rare earth metals, such as Fe, Ce and Sb etc, has been found to have 40 

positive effects on the performance of these Mn-based catalysts [20, 23-26]. However, their 41 

operating temperature window was narrow. The development of novel SCR catalysts, which are 42 

highly efficient at different temperature levels for different applications is highly desirable but 43 

remains very challenging [14]. 44 

Previous studies have shown that Mo can promote the distribution of active constituents on the 45 

support and subsequently enhances the activity of the catalyst [27]. Moreover, most researchers 46 

believed that low temperature SCR reaction follows Eley-Rideal (E-R) mechanism [28, 29]. 47 

However, to date, very little work has been carried out on the addition of molybdenum to 48 

manganese-based catalysts (MnMo/γ-Al2O3) to improve its low temperature SCR performance 49 

[30].  50 
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In this study, Mo was doped on the Mn/γ-Al2O3 catalysts via Incipient Wetness Impregnation (IWI) 51 

method aiming at improving its low temperature SCR performance. Systematic characterisation 52 

and testing were carried out to show the effects of Mo addition on catalytic performance of the 53 

MnxMoy/γ-Al2O3. Moreover, the mechanism of the SCR process over the Mo-modified catalyst at 54 

low temperature was investigated. 55 

2 Experimental 56 

2.1 Preparation of catalysts  57 

In this research, a series of Mn-based catalysts with different Mo and Mn loadings supported on 58 

γ-Al2O3 were prepared via IWI method (binary metal catalysts were prepared with a two-step IWI 59 

method)  60 

Chemicals of AR grade, such as Mn(NO3)2•4H2O and (NH4)6Mo7O24•4H2O, were acquired from 61 

Sinopharm Chemical Reagent Co., Ltd and used as precursors for the preparation of the catalysts. 62 

To prepare a MnxMoy/γ-Al2O3 catalyst, a controlled amount of (NH4)6Mo7O24•4H2O was loaded 63 

on γ-Al2O3 via IWI method, followed by drying at 120°C for 24h and calcination at 520°C for 12h. 64 

The sample prepared was then impregnated again with certain quantity of the Mn precursor, 65 

followed by drying at 120°C for 24h and calcination at 520°C for 12h. The detailed procedure for 66 

the preparation of these catalysts was described elsewhere in our previous research [31, 32]. 67 

In this study, the Mnx/γ-Al2O3 catalysts means x wt% of Mn in the catalyst, while the MnxMoy/γ-68 

Al2O3 suggests y wt% of Mo in the catalyst. 69 

2.2 Characterization of catalysts 70 

The specific area of samples prepared in this study was characterised by N2 adsorption/desorption 71 

at -196 °C using a Micromeritics ASAP 2020, the procedure of which is described elsewhere in 72 

literature [31]. The crystal phases of the catalysts were analysed by using an X-Ray Diffraction 73 

(XRD, Bruker D8 Advance) with Cu Kα radiation. Oxidation states of metal species in the 74 

catalysts were also analysed using an X-Ray Photoelectron Spectroscopy (XPS Axis Ultra DLD 75 
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Multifunctional) [33]. The C1s peak at 284.8eV was used as the standard for calibration. The 76 

element compositions of catalysts were analysed by X-Ray Fluorescence (XRF, Bruker s8 TIGER). 77 

Morphology, nanostructures and elemental distribution of catalysts were examined using 78 

Transmission Electron Microscopy (TEM, FEI Tecnai G2F20). The H2-temperature programmed 79 

reduction (H2-TPR) was performed to investigate the redox of the samples. Ammonia (NH3) 80 

Temperature Programmed Desorption (NH3-TPD) method was also carried out to show the 81 

quantity and strength of acidic sites on the surface of the catalysts, which was carried out in a 82 

Micromeritics AutoChem II 2920 with a heating rate of 10°C /min and NH3 adsorption for 30min 83 

at a flowrate of 30mL/min. NH3 adsorptions on the surface of catalysts were carried out on a 84 

Fourier Transform Infrared Spectroscopy (FTIR, Bruker vertex 70). NO-TPD was performed in a 85 

specially designed reactor with gas composition measured by a flue gas analyser (Vario Plus, MRU, 86 

Germany). 87 

2.3 Measurement of catalytic activity 88 

The prepared sample was loaded into a fixed-bed reactor and exposed to a simulated flue gas 89 

containing NOx (500 ppm), NH3 (500 ppm), O2 (3vol%), and N2. The gas hourly space velocity 90 

(GHSV) adopted in this study was 3 5000·h-1. Prior to each test, NOx concentration at the inlet 91 

([NOx]in) was measured to confirm the initial concentration and to minimise experimental errors. 92 

The concentration of NOx at the outlet ([NOx]out) was continuously monitored by the Flue Gas 93 

Analyser (MRU Vario Plus and Testo 350, Germany). The NOx removal efficiency is therefore 94 

determined by following equation:  95 

  𝑁𝑂𝑥 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
[𝑁𝑂𝑥]𝑖𝑛 − [𝑁𝑂𝑥]𝑜𝑢𝑡 

[𝑁𝑂𝑥]𝑖𝑛
 × 100%   (1) 96 

3 Results and discussion 97 

3.1. Catalytic performance 98 

Low temperature catalytic activity of the Mnx/γ-Al2O3 and MnxMoy/γ-Al2O3 catalysts was tested 99 

in a downflow fixed-bed reactor. NOx removal efficiency of the four catalysts is illustrated in Fig. 100 
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1(a). In Fig. 1(b), Mn3/γ-Al2O3 showed outstanding low temperature NH3-SCR activities, but the 101 

optimal operation temperature was at 250˚C. In order to further improve the low temperature NH3-102 

SCR activity of the Mnx/γ-Al2O3 catalysts, Mo was added to modify the Mnx/γ-Al2O3 catalysts. In 103 

Fig. 1(a), γ-Al2O3 and Moy/γ-Al2O3 did not show any SCR activity in a broad temperature range. 104 

It is obvious that the NO conversion of Mn3/γ-Al2O3 was below 90% at 150°C, above 90% when 105 

temperature was raised to 200 and 250°C, but deteriorated when temperature was raised to higher 106 

levels. However, the impregnation of Mo significantly improved the low temperature catalytic 107 

performance of the Mn3Mo1.25/γ-Al2O3 catalyst, which showed a remarkable promoting effect at 108 

150°C (NO conversion of 96%), and expanded the effective temperature window to 150-300°C. It 109 

was found that at higher Mo loadings, the optimal SCR temperature window started to shift to high 110 

temperature levels as shown in Fig. 1(c), which suggests that Mo is a good moderator for the 111 

adjustment of effective temperature of SCR reaction. Therefore, it can be concluded that the 112 

addition of Mo not only promotes the SCR activity of the Mnx/γ-Al2O3 catalyst, but also adjusts 113 

the effective temperature range of the catalyst. 114 

The effect of H2O and SO2 on the activity of Mn3Mo1.25/γ-Al2O3 catalysts is in Fig. 1(d). When 115 

100ppm SO2 and 5% H2O were introduced into the reactant gas mixture, the NO conversion of the 116 

Mn3Mo1.25/γ-Al2O3 dropped to 81% after 2h, which is similar as what is reported by other 117 

researchers [34-36]. However, when the supply of SO2 and H2O was stopped, the NO conversion 118 

increased to about 91%. The decrease of NO conversion could be responsible for the deposit of 119 

sulphate on the catalyst surface[24]. The results indicated that the Mn3Mo1.25/γ-Al2O3 has 120 

resistance to SO2 and H2O. In Fig. 1(d), the durability of Mn3Mo1.25/γ-Al2O3 and Mn3Mo1.25/γ-121 

Al2O3 was also conducted at 150ºC. The durability performance of the Mn3Mo1.25/γ-Al2O3 was 122 

much better than that of Mn3/γ-Al2O3. NO conversion of Mn3Mo1.25/γ-Al2O3 decreased slightly to 123 

95% after 20h, which indicated that Mo enhanced the durability of Mnx/γ-Al2O3 catalysts. 124 
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 127 

 128 

Fig.1 NO conversion over different catalysts under different gas atmosphere. Reaction 129 

condition: (a), (b), (c), (d), [NH3] = [NO] = 500ppm, O2=3%, N2 balance, GHSV=35 000h-1. 130 

(d), SO2=100ppm, H2O=5%, Temperature 150°C. 131 

3.2. Characterization of the catalysts 132 

3.2.1. Effects of Mo addition on Mn dispersion 133 

Structural and morphological properties of the catalysts were investigated by BET and XRD 134 

analyses. As shown in Table. 1, the specific surface area of the Mn3Mo1.25/γ-Al2O3 catalyst is larger 135 

than that of the Mn3/γ-Al2O3 catalyst, which provides more active sites for low temperature NH3-136 

SCR reaction. In comparison with pure γ-Al2O3, the surface area of the γ-Al2O3 loaded with Mo 137 
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decreased slightly. When the Mo loading was below 5 wt %, the surface area of catalysts increased 138 

with the increase in Mo loading, which means that the addition of Mo contributes to the dispersion 139 

of active component on the support. However, further increase in Mo loading content prevents this 140 

trend. It is clear from Table 1 that when Mo loading was greater than 5 wt %, surface areas of the 141 

catalysts decreased with the increase in Mo loading. The low temperature SCR activity dropped 142 

with the increase in Mo loading. Therefore, 1.25 wt % of Mo loading was found to be the optimal 143 

that not only enhanced the dispersion of Mn on the surface of the catalysts, but also promoted the 144 

surface area to certain extent. 145 

  146 
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Table.1 The surface properties of the catalysts 147 

Catalyst BET surface area(m2/g) Pore volume(cm3/g) Pore size(Å) 

γ-Al2O3 242.2 0.48 79. 7 

Mn2/γ-Al2O3 190.02 0.47 99.36 

Mn3/γ-Al2O3 216.4 0.45 82.7 

Mn4/γ-Al2O3 164.90 0.46 112.33 

Mn6/γ-Al2O3 172.18 0.40 88.08 

Mn2Mo1/γ-Al2O3 194.45 0.44 90.86 

Mn2Mo1.25/γ-Al2O3 207.61 0.46 89.08 

Mn2Mo2.5/γ-Al2O3 209.65 0.45 86.38 

Mn2Mo5/γ-Al2O3 209.91 0.42 81.16 

Mn2Mo7.5/γ-Al2O3 209.53 0.42 80.42 

Mn2Mo10/γ-Al2O3 189.67 0.37 78.93 

Mn3Mo1.25/γ-Al2O3 225.7 0.46 80.7 

Mn4Mo1.25/γ-Al2O3 219.70 0.45 88.11 

Mn6Mo1.25/γ-Al2O3 192.38 0.41 85.81 

Mo1/γ-Al2O3 221.93 0.48 86.69 

Mo1.25/γ-Al2O3 221.18 0.52 94.70 

Mo2.5/γ-Al2O3 223.33 0.46 82.94 

Mo5/γ-Al2O3 227.67 0.45 78.85 

Mo7.5/γ-Al2O3 220.37 0.41 75.49 

Mo10/γ-Al2O3 211.06 0.40 75.00 

XRD spectrum of the Mn3Mo1.25/γ-Al2O3, Mn3/γ-Al2O3, Mo1.25/γ-Al2O3 and γ-Al2O3 are shown in 148 

Fig 2 (a). It is clear that the XRD patterns showed four different compounds: γ-Al2O3 (JCPDS 04-149 

0880), β-MnO2 (JCPDS 24-0735), α-Mn2O3 (JCPDS 24-0508), while the MoOx did not exist, 150 

which was due to its low content. Pijun Gong’s et al. [37] claimed that β-MnO2 has the worst SCR 151 

activity in among different MnO2 species, while α-Mn2O3 was found to demonstrate high SCR 152 

activity and selectivity by many researchers[38, 39]. Except for γ-Al2O3, the intensity of diffraction 153 

peaks of Mn compounds was weak. However, in Fig 2(b), when Mn loading varied from 0 to 6 154 

wt%, the diffraction peaks of α-Mn2O3, MnO, β-MnO2, especially that of α-Mn2O3, started to 155 
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appear when Mn loading raised to 3 wt%, and the peaks intensity became higher with the increase 156 

in Mn loadings, which means bulk MnOx species began to form and accumulated on the surface 157 

of the catalyst. However, bulk MnOx species occupied great amount of surface space but 158 

performed poor low temperature SCR activity[40]. While doping Mo first on the support, the 159 

intensity of diffraction peaks intensity of Mn species decreased, as shown in Fig 2 (a) and (b). It 160 

can be concluded that Mo species could improve the dispersion of MnOx species on the support 161 

surface, prevent the formation of large MnOx bulks, and strengthen the interaction between MnOx 162 

and the support. 163 

 164 
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Fig.2 XRD patterns of catalysts. a. Mn2/γ-Al2O3, b. Mn2Mo1.25/γ-Al2O3, c. Mn3/γ-Al2O3, d. 166 

Mn3Mo1.25/γ-Al2O3, e. Mn4/γ-Al2O3, f. Mn4Mo1.25/γ-Al2O3, g. Mn6/γ-Al2O3, h. Mn6Mo1.25/γ-167 

Al2O3 168 

3.2.2. XPS, XRF and TEM-EDX 169 

The XPS of Mn 2p (a), Mo 3d (b) are shown in Fig. 3. Different MnOx species have specific and 170 

unique spectrums. In Fig. 3(a), Mn3p3/2 peaks consist of three MnOx species, Mn4+ (641.5-171 

641.7eV), Mn3+ (541.5-541.7eV) and satellite[41]. The area ratio, respectively, represent the 172 

relative amount of species on the surface. A significant decrease in area ratio of Mn4+/Mn3+ from 173 

1.26 to 1.08 was observed as a result of Mo addition, which is consistent with the results of XRD 174 

analysis. It can be seen from Table 2 that the Mn3Mo1.25/γ-Al2O3 catalyst had a lower Mn/Al atomic 175 

ratio. Moreover, XRF and TEM/EDX tests were carried out to show the existence of different 176 

species in the catalysts. In Table 3, the mass percentage of Mn, Mo, Al and O is consistent with 177 

these species during the preparation of catalysts. Thus, it can be concluded that the Mn was well 178 

loaded on the support. In Fig. 4(a) and (b), Mn3Mo1.25/γ-Al2O3 is of a more uniform morphology 179 

and structure as compared with Mn3/γ-Al2O3. No aggradation of MnOx was formed on the surface 180 

of Mo3Mo1.25/γ-Al2O3, which means MnOx species have a better dispersion on the surface of 181 

Mo3Mo1.25/γ-Al2O3. The surface Mn content had a significant increase after the doping Mo, as 182 

shown in Fig. 4(c) and (d). It implied that the addition of Mo strengthens the interactions between 183 

MnOx species and the γ-Al2O3, promotes the dispersion of MnOx on the surface of support. In Fig. 184 

3(b), it can be seen that Mo was loaded on the catalysts surface in the form of MoO3, which was 185 

proved by Mo 3d XPS peak at 232.6 eV. In addition, it is speculated that Mo might just act as an 186 

accelerant responsible for the formation of active components, itself state does not alter on the 187 

surface of the support. 188 
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 189 

 190 

Fig.3 XPS spectra of MnOx/γ-Al2O3 catalysts before and after Mo addition 191 

Table.2. Binding energy values and surface atomic ratio between Mn 2p for MnOx/ γ-Al2O3 192 

catalysts before and after modified by Mo addition 193 

Catalyst 

Binding Energy(eV) PWHH Mn4+/Mn3+ Mn/Al 

atomic 

ratio 

(PP) 

Mo/Al 

atomic 

ratio 

(PP) 
Mn 2p3/2 

Mn3Mo1.25/γ-Al2O3 
Mn4+ 642.97 2.8 

1.08 0.046 0.018 
Mn3+ 641.56 2.4 

Mn3/γ-Al2O3 
Mn4+ 642.84 2.7 

1.26 0.062 0 
Mn3+ 641.46 2.0 

Table.3. The composition (wt.%) of catalysts measured by X-ray fluorescence (XRF) 194 
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Catalyst Mn Mo Al 
Mn/Al atomic 

ratio  
Mo/Al atomic 

ratio  

Mn3Mo1.25/γ-Al2O3 3.17 1.33 49.7 0.0313 0.0075 

Mn3/γ-Al2O3 3.2 0 50.7 0.0310 0 

  

  

Fig.4. TEM micrographs(a and b) and EDX (c and d) spectra of Mn3/γ-Al2O3 (b and d) and 195 

Mn3Mo1.25/γ-Al2O3 (a and c) 196 

3.2.3. H2-TPR 197 

The H2-TPR results of the γ-Al2O3, Mo1.25/γ-Al2O3, Mn3/γ-Al2O3, Mn3Mo1.25/γ-Al2O3 are shown 198 

in Fig. 5. There are four distinct reduction peaks, τ1, τ2, τ3, τ4, which are corresponding to the 199 

reduction of MnO2 to Mn2O3, Mn2O3 to Mn3O4, Mn3O4 to MnO and MoO3 to MoO2 200 
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respectively[42]. Additionally, the curve of γ-Al2O3 did not change significantly except a 201 

noticeable drift at the high temperatures. 202 

 203 

Fig.5 H2-TPR profiles over Mo modified MnOx/γ-Al2O3 catalysts 204 

Comparing Mn3Mo1.25/γ-Al2O3 with Mn3/γ-Al2O3, the temperature of τ2, τ3 decreased, which 205 

suggests that Mn2O3 has a stronger interaction with the support in Mn3Mo1.25/γ-Al2O3. The 206 

intensity of τ2 and τ3 also increased. Based on observations, it is speculated that the Mo in catalysts 207 

promotes the formation of Mn2O3, which is consistent with the results of XRD and XPS analyses. 208 

Normally, only the NH3 being adsorbed on the Lewis acid site of Mn3+ shows low temperature 209 

SCR activity and can activate the ammonia to -NH2 [5]. The -NH2 takes part in the SCR reaction 210 

which suggests that the more Mn2O3 the catalyst has, the more Mn3+ Lewis acid sites are formed, 211 

which subsequently promotes low temperature SCR, while the MnO2 plays a less important role 212 

in the low temperature SCR reaction. In contrast, Mn2O3 dominated the selective catalytic 213 

reduction performance at low temperature, which agreed well with the theory proposed by De 214 

Fang[43]. Therefore, it could be concluded that the addition of Mo could promote low temperature 215 

SCR activity of the Mn/ γ-Al2O3 catalyst by enabling the formation of more Lewis acid sites. 216 

3.2.4. NH3-TPD and FTIR 217 
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The amount and strength of surface acid sites of Mn3/γ-Al2O3 catalyst before and after Mo 218 

addition was investigated using NH3-TPD, which is shown in Fig. 6. There are three distinct peaks, 219 

which could be divided into weak, medium and strong acid sites, respectively. The temperature 220 

range of τ1, τ2 and τ3 is 150-250°C, 250-400°C and 400-500°C respectively. The Mn3Mo1.25/γ-221 

Al2O3 had higher intensity at all peaks, which suggests more medium and strong acid sites existed.  222 

  223 

Fig.6. NH3-TPD profiles of Mn3/γ-Al2O3 catalysts before and after modified by Mo addition 224 

 225 

Fig. 7. NH3-TPD profiles over Mn2/γ-Al2O3 catalysts with different Mo loadings  226 
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Moreover, catalytic activity of the Mnx/γ-Al2O3 with different Mo loadings was investigated as 227 

shown in Fig. 7. The strong and medium acid sites of catalyst increased significantly with the 228 

increase in Mo loadings. It is also found that a higher Mo loading led to a higher catalytic 229 

temperature of the catalysts in Fig. 1(c). Therefore, the low Mo content (1.25 wt%) favoured the 230 

low temperature SCR. 231 

 232 

Fig. 8. FTIR spectra of Mn3/γ-Al2O3 and Mn3Mo1.25/γ-Al2O3 treated in flowing 500ppm NH3 233 

at 100°C until saturation and then purged by N2. 234 

Fig. 8 shows the FTIR spectra of NH3 adsorption over Mn3/γ-Al2O3 and Mn3Mo1.25/γ-Al2O3 235 

catalysts at 100°C. For Mn3Mo1.25/γ-Al2O3, two strong bands at 1266 and 1465 cm-1 and two 236 

relatively weaker bands at 1616 and 1681 cm-1 were observed. The bands at 1230, 1251, 1266, 237 

1616 cm-1 can be assigned to bending vibrations of N-H bonds in the NH3 linked to Lewis acidic 238 

sites[44]. The bands at 1397cm-1 were almost same, resulted from over NH3 adsorption on γ-239 

Al2O3[45]. The bands at 1459 and 1479cm-1 were observed due to NH3 adsorbed on Brönsted 240 

acidic sites. What’s more, an amide(-NH2) species also was observed at 1510cm-1. The bands at 241 

1616cm-1 (assigned to Lewis acidic sites) and 1681cm-1 (assigned to Brönsted acidic sites mainly) 242 

are mainly came from NH3 adsorption on γ-Al2O3. In previous report[46], molybdenyl species 243 
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were unsaturated on the catalyst surface and were deranged easily by adsorption of ammonia. In 244 

Fig. 8, it can be seen that Lewis and Brönsted acidic sites at 1266 and 1465 cm-1 were significantly 245 

enhanced after the modification of Mo. This confirms what was found in NH3-TPD analysis. 246 

3.2.5. NO-TPD 247 

Fig. 9 shows the NO-TPD profiles of the Mn3/γ-Al2O3 catalyst before and after Mo addition. Two 248 

desorption peaks can be observed in Fig. 9, which contained a broad peak in the low temperature 249 

region (LT-peak) and a strong peak at higher temperature region (HT-peak). The nitroso species 250 

formed from the adsorbed NO at LT-peak will react with ammonia [45]. In contrast, the nitro 251 

compounds formed from the NO adsorbed at HT-peak only decomposed at high temperature and 252 

reacted with –NH2[47]. Therefore, the area ratio between LT-peak and HT-peak could be utilized 253 

to evaluate the activity of SCR catalyst and investigate the mechanism of catalytic process. In Fig. 254 

9, after the addition of Mo, there is a shift in LT-peak and HT-peak toward lower temperature 255 

region and the height of peak decreased, which indicates that the Mn3Mo1.25/γ-Al2O3 had a lower 256 

SCR activity temperature. In addition, the area ratio between LT-peak and HT-peak increased from 257 

4.6 to 5.13, which means that more nitroso species formed on the Mn3Mo1.25/γ-Al2O3 so that higher 258 

low temperature SCR activity. 259 

  260 

Fig. 9. NO-TPD profiles of the Mn3/γ-Al2O3 and Mn3Mo1.25/γ-Al2O3 261 
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 262 

Fig. 10. NO-TPD profiles of the Mn2Mox/γ-Al2O3  263 

Fig. 10 shows that the LT-peak of Mn catalyst shifted to lower temperature region with the Mo 264 

loading increased to 2.5 wt% and a new desorption peak  formed below 200˚C. With the increase 265 

in Mo loading to 10 wt%, the center of the new peak shifted to below 100˚C. Meanwhile, the 266 

intensity of HT-peaks weakened gradually and disappeared when the Mo loading was 7.5 wt%. 267 

This suggests that the addition of Mo had a significant influence on the adsorption of NO. 268 

3.2.6. Mechanism of low temperature SCR over Mo-modified Mn-based catalyst 269 
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II: The adsorption of NH3 (500ppm) + O2 (3%) at 25°C for 1h, switched to the adsorption 275 

of NO (500ppm) + O2 (3%) at 25°C for 1h, and then purged with N2 until outlet 276 

concentration of NO became below 5ppm, followed by performing TPD process at 10°C 277 

/min; 278 

III: The adsorption of NO (500ppm) +O2 (3%) at 25°C for 1h, switched to the adsorption 279 

of NH3 (500ppm) + O2 (3%) at 25°C for 1h, and then purged with N2 until outlet 280 

concentration of NO became below 5ppm, followed by performing TPD Process at 10°C 281 

/min; 282 

IV: The adsorption of NO (500ppm) +O2 (3%) at 25°C for 1h, and then purged with N2 283 

until outlet concentration of NO became below 5ppm, followed by performing TPD 284 

Process at 10°C /min. 285 

In Fig. 11, Curve III coincided with Curve IV resulted from the adsorption of NO on the fresh 286 

catalyst. However, Curve I shifted as compared with Curves III and IV when NH3 and NO were 287 

simultaneously introduced, which indicates that NH3 adsorbs on certain sites competitively with 288 

NO. Curve II shifted up significantly in the first 25 min, and then shifted down to the level of curve 289 

III and IV. It can therefore be concluded that some of the adsorption sites are occupied randomly 290 

by NH3 owing to NH3 preferentially adsorbed on the catalyst. According to the calculation, the 291 

adsorption capacity of Curve I was larger than that of Curve II, which is attributed to gas phase 292 

NH3 being competitively adsorbed with  NO on the catalyst surface. Therefore, the adsorption sites 293 

of the catalysts could be classified into four types: Type 1, adsorbs NH3 preferentially; Type 2, 294 

adsorbs NO preferentially; Type 3, adsorbs NH3 competitively, and Type 4, random adsorption 295 

sites, on which both NH3 and NO can be adsorbed depending on their molecular movement. 296 

As shown in Fig. 12, TPD Curves i and ii did not show high temperature desorption peak of NO 297 

and NO2. TPD Curves iii and iv are similar, but low temperature desorption peaks of curve iii for 298 

NO are weak and high temperature desorption peaks also shifted. Compared Curve i with iii, TPD 299 

results did not show high temperature desorption peaks, which indicated that bidentate nitrate and 300 

bridge nitrate were not easy to form on the surface treated by NH3[5]. It is speculated that O2 will 301 
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accelerate the formation of these stable NO complexes, which only react with NH3 at high 302 

temperature and are responsible for the deactivation of SCR catalysts. 303 

 304 

Fig. 11 NO adsorption over the Mn3Mo1.25/γ-Al2O3 catalyst 305 

 306 

Fig. 12 TPD profiles of the NO adsorption over the Mn3Mo1.25/γ-Al2O3 catalyst 307 

It is generally believed that SCR reaction starts with the adsorption of NH3. But the mechanisms 308 

of low temperature SCR for catalysts with different active components and support are different. 309 

Marban et al. [48] suggested that there are two different SCR mechanisms associated with different 310 

NH3 species. In Fig. 12, NO-TPD peaks disappeared in Curves i and ii, which is attributed to the 311 

reaction between NO and ad-NH3 on the catalyst surface. As shown in Fig. 13, the Mn3Mo1.25/γ-312 
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order to compare, a similar test without Process III was taken into consideration, which is also 316 

shown in Fig. 13 (dashed line). The amount of NOx being adsorbed at low temperature around 317 

250˚C decreased, even disappeared, and high temperature species were also reduced to some 318 

extent, which directly proves that low temperature SCR proceeds between the adsorbed NH3 319 

species and the adsorbed NO species via Langmuir-Hinshelwood (L-H) mechanism. 320 

 321 

Fig. 13 TPD profiles of NO adsorption over the Mn3Mo1.25/γ-Al2O3 catalyst, Process I: TPD 322 

from 25-150°C; Process II: N2 purging for 60min; Process III: adsorbed NO reacted with 323 

NH3; Process IV: TPD from 150°C-630°C 324 

In this study, the addition of Mo was found to improve NH3 adsorption capacity of the catalyst. 325 

With the increase in Mo loadings, the amount of surface acid sites increased, which was vital to 326 

SCR reaction. In Fig. 14, when in the presence of gas phase O2, the adsorption peaks of NO and 327 

NO2 decreased. Therefore, it can be concluded that the addition of Mo could reduce NO adsorption 328 

on the catalysts surface but did not result in a lower low temperature SCR activity. Instead, the 329 

low temperature SCR efficiency of the Mn3Mo1.25/γ-Al2O3 was much higher than that of the Mn3/γ-330 

Al2O3 catalyst. Additionally, in Fig.12, Curve II showed a small desorption peak at 100°C as 331 

compared with Curve III. This means that the NOx being desorbed reacted with the NH3 that is 332 

adsorbed on the catalyst when the temperature was raised. Therefore, it is illustrated that low 333 

temperature SCR reaction could proceed via Eley-Rideal (E-R) path. 334 
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 335 

Fig. 14 Effect of O2 on the NO adsorption over the Mn3/γ-Al2O3 and Mn3Mo1.25/ γ-Al2O3 336 

catalyst 337 

It is clear that the Mn3Mo1.25/γ-Al2O3 catalyst performed outstanding low temperature SCR activity 338 

as a result of Mo addition. It can be concluded that the addition of Mo improves the properties of 339 

the catalysts in several aspects. Firstly, the addition of Mo species to the catalyst inhibits the 340 

growth of MnOx clusters, therefore leads to the good dispersion of MnOx on the γ-Al2O3 surface. 341 

Secondly, the addition of Mo enhances the formation of Mn2O3 on the catalyst, which accelerates 342 

the formation of intermediates, whereafter the -NH3 is transformed into -NH2 via H-abstraction. 343 

Thirdly, the addition of Mo on the catalysts mitigates the deactivation of the catalysts. In Fig. 13, 344 

NO adsorbed species at HT-Peak region were very difficult to react with NH3 at 150˚C. The reason 345 

is that these NO formed some complexes (bridged and bidentate nitrates) that are thermally stable. 346 

However, the addition of Mo could inhibit the transformation of nitrites into nitrates thus slow 347 

down the self-deactivation of the catalysts. 348 

Therefore, the low temperature SCR reaction is composed of 4 steps as shown in Fig. 15: Step 1, 349 

the adsorption of NH3 and NO on the surface of the catalysts; Step 2, the H-abstraction of adsorbed 350 

NH3, resulting in the formation of -NH2 species as well as the formation of reactive nitrites from 351 

the adsorbed NO species; Step3, the -NH2 species reacted with nitrites or gas phase NO via L-H 352 

and E-R mechanism, forming intermediate products -NH2NO, and  Step4, -NH2NO decomposed 353 

into N2 and H2O. 354 
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 355 

Fig. 15 Low temperature SCR reaction mechanism model 356 

4. Conclusions 357 

In this study, the Mn3Mo1.25/γ-Al2O3 catalyst achieved a high NO conversion of around 96% at 358 

150 -300°C. It is found that the addition of Mo to Mn-based SCR catalyst could not only inhibit 359 

the growth of MnOx bulks, favour the formation of Mn3+ state and promote the NH3 adsorption 360 

capacity of the catalyst, but also act as a moderator to adjust the effective operating temperature 361 

window of the SCR reaction, which could be achieved by adjusting Mo loading. Moreover, the 362 

addition of Mo was found to mitigate the deactivation of the catalysts. The study on SCR 363 

mechanism showed that the low temperature SCR starts from the adsorption of NH3 on Mn3+ sites. 364 

The low temperature SCR followed mainly E-R mechanism, but L-H mechanism also plays a role 365 

to some extent. 366 
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