
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

One-Domain-One-Input: Adaptive Random 

Testing by Orthogonal Recursive Bisection 

with Restriction 

 

Hilary Ackah-Arthur, Jinfu Chen, Dave Towey,  

Michael Omari, Jiaxiang Xi, and Rubing Huang 



 

 

Faculty of Science and Engineering, University of Nottingham Ningbo 

China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China. 

 

First published 2019 

 

This work is made available under the terms of the Creative Commons 

Attribution 4.0 International License: 

http://creativecommons.org/licenses/by/4.0   

 

The work is licenced to the University of Nottingham Ningbo China 
under the Global University Publication Licence: 
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence.pdf 
  

 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf


TR-2018-159 

 

1 

Abstract—One goal of software testing may be the identification 

or generation of a series of test cases that can detect a fault with as 

few test executions as possible. Motivated by insights from 

research into failure-causing regions of input domains, the 

even-spreading (even distribution) of tests across the input 

domain has been identified as a useful heuristic to more quickly 

find failures. This finding has encouraged a shift in focus from 

traditional random testing (RT) to its enhancement, adaptive 

random testing (ART), which retains the randomness of test input 

selection, but also attempts to maintain a more evenly distributed 

spread of test inputs across the input domain. Given that there are 

different ways to achieve the even distribution, several different 

ART methods and approaches have been proposed. This paper 

presents a new ART method, called ART-ORB, which explores 

the advantages of repeated geometric bisection of the input 

domain, combined with restriction regions, to evenly spread test 

inputs. Experimental results show a better performance in terms 

of fewer test executions than RT to find failures. Compared with 

other ART methods, ART-ORB has comparable performance (in 

terms of required test executions), but incurs lower test input 

selection overheads, especially in higher dimensional input space. 

It is recommended that ART-ORB be used in testing situations 

involving expensive test input execution.  

 

Index Terms—Random testing, adaptive random testing, 

partition testing, orthogonal recursive bisection, restricted 

random testing.  

I. INTRODUCTION 

n software testing, exhaustive testing (the testing of all 

possible input combinations) is almost never possible, due to 

the large and complex nature of most software systems. The 

selection of appropriate test inputs—ones more likely to reveal 

failures or problems in the software—is therefore critical for 

the effective evaluation of the software‘s quality. Much 

research has been conducted into diverse testing techniques that 
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could improve the failure detection capability of test inputs [1],  

[2], [3]. Random testing (RT) [4] is a simple and fundamental 

technique that generates test inputs by simply randomly 

selecting them from the entire input domain (the set of all 

possible inputs) [4]. RT has been successfully applied in 

industry, detecting software failures [5], [6], [7]. However, a 

criticism of RT has been that, because it does not use any 

information of the specifications or the program under test in 

selecting the test inputs, its failure detection effectiveness can 

be limited [8].  

It has been observed that the failure-causing inputs (program 

inputs that can reveal failures) of most programs form 

contiguous regions in the input domain [9], [10], [11]. 

Motivated by this observation, Chen et al. [12] proposed the 

adaptive random testing (ART) approach to enhance the failure 

detection effectiveness of RT. In addition to selecting test 

inputs randomly, ART employs a mechanism to evenly spread 

the inputs over the input domain. Several ART methods have 

been proposed that employ different strategies to ensure the 

random and even spread of test inputs [13], [14], [15], [16], 

[17]. Compared with RT, most of these ART methods provide 

improved failure detection effectiveness, in terms of 

F-measure—the number of test inputs executed to find a failure 

[18], [19]. Many also include mechanisms to reduce the 

computational overheads incurred due to the additional 

even-spreading. 

Two frequently used strategies employed in ART are 

partitioning and excluding. Both strategies sample the input 

domain when performing their testing processes, but differ in 

the procedures and assumptions they employ: Partitioning 

considers only the sampling rate of each sub-domain [16], 

while excluding only considers the sampling rate of the 

non-excluded regions [14]. However, most ART methods that 

use partition or exclusion strategies tend to require fewer test 

input executions before detecting failures. 

This paper proposes a new ART method that aims to provide 

faster failure detection performance (compared with both RT 

and other ART methods) while maintaining a more acceptable 

level of computational overheads. The method, called ART by 

orthogonal recursive bisection (ART-ORB), integrates both 

partition and exclusion strategies. ART-ORB selects test inputs 

from outside of restricted regions, and uses pairs of 

non-failure-revealing tests within a domain to partition the 

domain geometrically. Section III presents an in-depth 

description of the method. 

This paper makes the following contributions: 

Hilary Ackah-Arthur, Member, IEEE CS, Jinfu Chen*, Member, IEEE, Dave Towey, Member, IEEE, 
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 We propose a new ART method that uses repeated 

geometric bisection of the input domain combined with 

use of restricted regions, to better spread test inputs.  

 We present an algorithm and a binary tree data structure to 

provide a detailed process description of the proposed 

ART method.  

 We conduct an investigation of the test input distributions 

of the proposed ART method. Using two commonly used 

metrics, we compute the distribution of generated test 

inputs and compare them with those of other testing 

methods.  
 Using simulations and experiments with 16 error-seeded 

programs, we validate the failure finding performance of 

the proposed method, and compare its performance with 

RT and other, similar ART approaches. 

The rest of this paper is structured as follows: Section II 

describes the background of the study and the related ART 

methods. Section III presents a detailed description of the 

proposed ART method, including the core algorithm. The 

simulation and experimental results are presented in Section 

IV. These results are discussed in Section V. Some of the 

potential threats to the validity of this study are examined in 

Section VI. Finally, Section VII concludes the paper.  

II. BACKGROUND AND RELATED STUDIES 

A. Background 

1) Random Testing 

Random Testing (RT) [4] is a fundamental and useful 

technique for testing software. RT involves selecting inputs in a 

random manner from the input domain until a stopping 

condition—such as detection of a failure, complete execution 

of a test suite, or the passage of a specified amount of time—is 

reached. It can efficiently generate large numbers of candidate 

tests, and need not have human influence or bias in the test case 

generation process [4]. This random generation may have the 

advantage of revealing failures that cannot be detected by 

deterministic approaches like branch testing [8] or domain 

testing [9]. The relative ease with which RT can usually be 

implemented, combined with the ability to calculate reliability 

estimates [4], make RT an attractive testing option that has been 

successfully applied in many real-world applications [5], [6], 

[7]. However, because it does not make use of additional 

available information from the program being tested [8], RT‘s 

failure detection effectiveness may be limited.  

Empirical studies have shown that failure regions (portions 

of the input domain which, when selected as program input, 

reveal failures), tend to cluster into contiguous regions, 

especially for programs with numerical input domains [9], [10], 

[11]. Based on this observation, it is possible to make a simple 

improvement to RT, using generic information about the 

typical failure patterns seen in many programs. 

 

2) Failure Pattern 

Chan et al. [20] identified three categories of failure patterns: 

point, strip and block. An illustration of these failure patterns in 

a two-dimensional input domain is shown in Fig. 1. 

 

 
Fig. 1.  Classifications of patterns of failure-causing inputs: (a) point pattern, 

(b) strip pattern, and (c) block pattern. The outer boundaries of each subfigure 
represent the borders of the two-dimensional input domain, and the filled 

regions represent the failure patterns (clusters of failure-causing inputs). 

 

The point pattern may be characterized by multiple 

stand-alone points or small-sized regions scattered across the 

input domain. Strip patterns are narrow and elongated. A 

typical example of this failure pattern is White and Cohen‘s [9] 

domain errors. The main characteristic of the block pattern is 

that the failure-causing inputs are localized in either a single or 

a few contiguous, compact regions of the program‘s input 

space, with no obvious elongation in any dimension. Chan et al. 

[20] noted that point pattern may sometimes be spread in a 

regular manner throughout the input domain. They also 

explained that strip and block failure patterns were likely to be 

more common than point patterns. Examples 1, 2, and 3 show 

sample pseudo-code program snippets containing specific 

errors that lead to the three failure pattern types. 

 
Example 1: A program fault that results in block failure pattern. 

INTEGER X, Y, Z 
INPUT X, Y 

IF (X > 0 AND X < 10 AND Y > 0 AND Y < 10) 

 Z = X  /* correct statement: Z = 2 * X   */  

ELSE 

 Z = 2 * Y  

OUTPUT Z 
 

Example 2: A program fault that results in strip failure pattern. 

INTEGER X, Y, Z 
INPUT X; Y 

IF (Y <= 0)  /* correct statement: IF (Y <= 1) */ 

 Z = X – 2 * Y 
ELSE 

 Z = X + 2 * Y  

OUTPUT Z 
 

Example 3: A program fault that results in point failure pattern. 

INTEGER X, Y, Z 
INPUT X, Y; 

IF (X mod 4 = 0 AND Y mod 4 = 0) 

Z = X – Y  /* correct statement: Z = X + Y */  
ELSE 

Z = X * Y 

OUTPUT Z 

 

Intuitively, if the failure pattern is of block or strip type, then 

selection of test inputs close to each other would be less likely 

to quickly find the failure region quickly, in terms of the 

F-measure: A wide-spread and even distribution of test input 

execution should be faster. Consequently, after execution of a 

test that has not revealed a failure, choosing a next test input 

that is farther away from all the previously executed tests 

should be more likely to reveal failure. Inspired by these failure 

patterns observations, Chen et al. [12] proposed Adaptive 

Random Testing (ART), an improvement on the 

failure-detection capability of RT. 
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3) Adaptive Random Testing 

ART is essentially a random testing method, but with a 

mechanism that uses information about the location of 

previously executed tests to widely spread test inputs over the 

input domain. Previous empirical studies [21], [15], [22] and 

experimental analyses [12], [23] have shown that ART can 

significantly outperform RT in terms of the F-measure, 

especially when the failure patterns are of block type. In some 

studies, approximately 50% fewer tests have been required to 

detect the first failure than RT. However, the overheads 

associated with the ART test generation process can be 

substantial, and may outweigh the advantages of executing 

fewer tests.  

Research into ART methods that can maintain reductions in 

required test executions to find failures, but also minimize 

associated overheads, has yielded a number of ART 

implementations. These can be grouped according to several 

strategies, including: ‗distance strategy‘ spreads test inputs by 

ensuring that each next test is far from all executed tests; 

'exclusion strategy' uses exclusion regions around executed 

inputs to restrict test selection to other parts of the input 

domain; and 'partition strategy' divides the input domain into 

several sub-domains and distributes the selection of test inputs 

among them.  

This paper proposes a new ART method that is based on 

partitioning, but that also employs exclusion to achieve the 

even spread of test inputs across the input domain.  

 

4) Orthogonal Recursive Bisection (ORB) Strategy 

Two traditional objectives of a good partitioning scheme 

may be: splitting data evenly among partitions; and ensuring 

efficient access to non-local data. The Orthogonal Recursive 

Bisection ORB strategy [24] is a domain decomposition 

approach that has been used to define mutual interactions 

among discrete entities in scientific simulations (such as 

molecules, charges, astrophysical bodies, etc.). It has also been 

used to distribute a large cardiac model data set to a distributed 

memory supercomputer [25]. ORB recursively subdivides a 

computational space into two domains with the equal numbers 

of particles, or the same calculation costs. It forms a balanced 

binary tree by geometrically splitting the domains (uniformly 

or non-uniformly) each time the process splits the tree. The 

direction of the division is chosen arbitrarily or alternates 

orthogonally (x, y, z, x,..., for a 3-dimensional, 3D, space), to 

form a cascade of sub-domains. In the example in Fig. 2, a 3D 

input space is split on the x-axis into two sub-domains. For each 

sub-domain, the split is next performed on the y-axis, yielding 

four sub-domains. The third split is applied to each of these four 

sub-domains on the z-axis, resulting in eight sub-domains. This 

iterative splitting along the x, y, and z axes produces a binary 

tree whose number of leaves equals the current number of 

partitions. The eight sub-domains represent the leaves of the 

binary tree. 
ORB is relatively simple to implement and can be quite 

efficient. It requires an algorithm to determine the bisection 

point at each level. For incremental and non-uniform 

distributions of sub-domains, the approach picks the largest 

sub-domain each time and divides again. However, the aspect 

ratio of a sub-domain could become large, due to the direction 

of splitting (alternating among the axes), and can result in a  

 
Fig. 2.  Decomposition of a 3D domain using Orthogonal Recursive Bisection.  

 

sub-optimal interaction list in some applications [24], [25]. 

This problem can be solved by ensuring that the geometric split 

is always along the longest dimension. The bisection process is 

repeated until the desired number of (sub-)domains is obtained. 

ORB results in compact and localized sub-domains [26]. 
In this study, we modify the basic ORB algorithm and apply 

it in an ART implementation called ART-ORB to enhance the 

even spread of tests within the input domain. ART-ORB 

non-uniformly and incrementally partitions a given input 

domain by splitting the longest dimension of the largest domain 

each time. The domain-splitting mechanism ensures some 

distance between selected test inputs in different sub-domains, 

thereby enhancing their even spread. To further enhance the 

spread, and reduce the possibility of selecting tests close to each 

other within any sub-domain, ART-ORB also incorporates an 

exclusion strategy. 

B. Related Studies 

Adaptive Random Testing (ART) is a family of RT-based 

testing methods that aim to find failures faster by evenly 

spreading test inputs over the input domain. Several ART 

methods have been developed based on various strategies, 

using, for example, distance, exclusion, or partitioning. An 

early ART algorithm using the distance strategy is 

Fixed-Size-Candidate-Set ART (FSCS-ART) [12]. Using a 

uniform distribution, FSCS-ART generates a set of random test 

inputs (referred to as the candidate set), and computes their 

distances to all previous tests (the executed set). The element 

from the candidate set that is furthest from the executed tests is 

then chosen as the next test input. The underlying distance 

strategy of FSCS-ART has been used in several ART 

implementations [27], [28], [29]. 

An exclusion strategy restricts test case selection to certain 

areas of the input domain. Several exclusion strategies exist, 

with the original being Restriction-based ART (RART), also 

known as Restricted Random Testing (RRT) [30]. RRT makes 

use of exclusion regions drawn around previously executed 

tests, and restricts generation of the next test input to being 

from outside of these exclusion regions. For two-dimensional 

(2D) input domains, the exclusion regions are typically circles 

which ensure that a minimum distance exists between all 

generated tests (equal to the radius of the exclusion region). The 

size of each exclusion region is related to both the size of the 

entire input domain, and the number of previously executed 



TR-2018-159 

 

4 

tests [30]. For a 2D input domain with target exclusion area At 

and N previously executed tests, each exclusion region has a 

radius (r) of: 

        (1) 

The target exclusion area At is the portion of the input 

domain area A that we attempt to exclude from test generation. 

It is determined by the target exclusion ratio, R [31]: At = AR.  

ART methods that use a partitioning strategy are inspired by 

partition testing [32], which involves test case generation 

methods that divide the input domain into a number of 

partitions and select test inputs from within each partition. 

These ART methods can be categorized according to how they 

select tests from the partitions. 

Two partition-based ART methods that draw tests randomly 

from within partitions are ART by Random Partition 

(ART-RP), and ART by Bisection (ART-B) [13]. Neither of 

these methods requires distance computations for the test 

selection. ART-RP uses the executed tests to iteratively 

partition the input domain, generating the next test from the 

largest of the partitions. Although random selection of test 

inputs from the largest partition enhances the even spread of the 

tests, there is a chance that the selected input may be close to a 

previously executed one. Similar to ART-RP, our proposed 

ART-ORB also randomly selects the next test from the largest 

sub-domain, using the previously executed tests to partition the 

domain. However, while ART-RP partitions a 2D domain into 

four sub-domains, ART-ORB partitions it into two. Also, 

ART-B iteratively bisects the largest dimension of the input 

domain to create equally-sized partitions: It randomly generates 

a test from each partition, and bisects all partitions as soon as 

they all contain tests. The failure detection effectiveness of 

ART-B reduces over time: Because there is no mechanism in 

place to generate tests from empty partitions, eventually, test 

inputs will be next to each other. As the number of partitions 

increases, test inputs subsequently selected from two empty 

regions next to each other may have similar characteristics. 

ART-ORB incrementally partitions each domain into two 

non-uniform sub-domains, only requiring reassignment of two 

test inputs. ART-B, in contrast, periodically partitions all 

domains into uniform sub-domains, incurring the overhead of 

multiple test input reassignments. Because neither ART-RP nor 

ART-B involves distance computations or comparisons, they 

have lower time overheads compared to other ART approaches. 

However, they also have lower failure-detection capability. 

Although both methods have some similarity to ART-ORB, 

they differ in their test selection, and partitioning method.  

A second category of partition-based ART approaches 

involves applying a basic ART method (FSCS-ART [12] or 

RRT [30], for example) to select test inputs from within the 

partitions. ART with divide-and-conquer (ART-DC) [27] is one 

such method. It divides each dimension of the input domain 

into smaller, equal-sized, sub-domains when a predefined 

number (the threshold) of tests have been executed. Test inputs 

are then selected from these sub-domains using the original 

ART algorithm [12]. ART-DC has similar failure detection 

effectiveness to both FSCS-ART and RRT, and its 

computational complexity depends on the value of the 

threshold and the ART algorithm applied. Because of the 

overheads from fully applying the original ART algorithm in 

each of the sub-domains, the computational complexity can be 

comparatively high, especially for high threshold values. 

Although it also incrementally partitions the input domain, 

ART-DC is quite different from ART-ORB, both in terms of its 

partitioning approach, and test case selection in the partitions.  

Another partition-based ART approach is two-point 

partitioning ART (ART-TPP) [28], which augments the ART by 

balancing approach [29] by applying a different test case 

selection criterion and using the midpoint of the test inputs to 

further partition the domain. ART-TPP selects the largest 

partition and, if there is no executed test there already, it 

randomly generates a test input. If the partition already contains 

an executed test, then a candidate set of random test inputs is 

generated, and the one furthest from the executed test is 

selected as the next test input. The partition is then divided 

through the midpoint of these last two test inputs. ART-TPP has 

some similarity to ART-ORB, as it also bisects through the 

midpoint of two tests within a partition and selects the next test 

from within the largest partition. However, it differs in its test 

case selection process and the number of partitions generated. 

While ART-ORB restricts regions as part of the selection 

strategy, ART-TPP computes distances to candidate test cases. 

Also, ART-TPP divides all dimensions of a domain while  

 

TABLE I 

COMMON CHARACTERISTICS OF ART METHODS 

No. Characteristics ART-RP ART-B ART-DC ART-TPP ART-ORB 

1 Random selection of test inputs within sub-regions     
   

2 Employs FSCS strategy to select test inputs within sub-regions 
  

    
 

3 Employs RRT strategy to select test inputs within sub-regions 
  

  
 

  

4 Distance computation 
  

      

5 Generates test inputs from largest sub-region   
  

    

6 Employs location of test inputs to partition sub-regions   
  

    

7 Bisects using the longest dimension of a sub-region 
 

  
  

  

8 Partitions sub-regions into equal sizes 
 

    
  

9 Partitions each sub-region at a time   
  

    

10 Partitions domains after a predefined number of test input selections 
 

    
  

11 Partitions a sub-region into two in each partitioning process  
 

  
  

  

 

)()( NArRadius t
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ART-ORB divides only one dimension for each test selection 

iteration. Although ART-TPP has comparable stability and 

failure detection capability to other partition-based ART 

methods [13], its associated candidate selection and distance 

calculations can become computationally expensive. The 

partitioning of each region into four sub-regions, and the 

checking and reassigning of previous test inputs to their 

respective sub-regions within the sub-domains increases the 

ART-TPP overheads. 

Table I summarizes the similarities and differences among 

the described partition-based ART methods and ART-ORB. 

Since ART-DC uses either FSCS or RRT when selecting tests 

within sub-regions of the input domain, Characteristics 2 and 3 

are both selected for ART-DC in the table. 

The partitioning strategy has been used in many variations of 

ART [33], [22], [21]. A possible drawback of this strategy, 

however, is that it can incur high overheads, which can be 

wasteful, especially for strategies that divide the input domain 

from the very start of the testing (when faults may be less likely 

to be detected). Consideration of the overheads involved with 

partitioning is therefore very important when developing 

partition-based ART strategies. It has also been shown that 

employing restriction in test input generation generally 

provides better failure detection effectiveness than the use of 

candidate selection [14].  

This paper presents a new ART method that employs 

Orthogonal Recursive Bisection [24] as a partitioning strategy 

to significantly reduce overheads, and applies RRT [30] as an 

exclusion strategy in the test input generation to increase the 

failure detection effectiveness.  

III. METHOD 

The proposed ART-ORB method attempts to evenly spread 

test inputs throughout the input domain through a combination 

of partitioning and use of exclusion regions.  

The first step is to randomly select a test input (T1) from the 

entire input domain and check whether or not it reveals a 

failure. If T1 does not reveal a failure, then, assuming a 2D 

input domain, a circular exclusion zone of radius r1 is defined 

around T1 according to (1). (Higher dimensional input domains 

are dealt with similarly, but the exclusion zone is a 

corresponding hypersphere, and the radius is calculated 

accordingly.) ART-ORB then randomly generates the second 

test input, T2, from outside of this exclusion zone. T2 is 

executed to determine whether or not it reveals a failure: if it 

does not, then the entire input domain is partitioned into two 

sub-domains (regions), and the largest sub-domain is then 

identified. Using the area A3 of this largest sub-domain, an 

exclusion zone of radius r3 is created around the executed test 

input in the sub-domain, and the next test input (T3) is 

generated from outside this exclusion zone (but within the 

sub-domain). If T3 does not reveal a failure, then this 

sub-domain is also divided into two further sub-regions. 

ART-ORB continues by repeatedly selecting the next test from 

each successive largest region within the input domain and 

performing the exclusion and division operations until a 

generated test input reveals a failure. 

When partitioning a region, ART-ORB uses the ORB 

strategy [24] with non-uniform partitioning (producing 

sub-regions of unequal sizes). ART-ORB uses the positions of 

the two test inputs in the region and the longest dimension of 

that region. The mid-point between the two test inputs is 

identified, and the region is split using a line perpendicular to 

the longest dimension through this point. This results in the two 

test inputs being separated, one at either side of the dividing 

line; one in each new sub-region. Because the dividing line‘s 

position is determined by the positions of the two test inputs, 

the resulting sub-regions are unlikely to have the same size. If 

D represents the input domain and TS represents a set of 

previously executed tests, then the process orthogonally divides 

the input domain into sub-domains {D1, D2, …, Ds} such that 

 𝑫𝑠1 i = D (where s denotes the number of sub-domains after 

each division). Because input domain division takes place only 

after a test has been executed, the number of sub-domains after 

each division process is equal to the total number of executed 

test cases (s = |TS|).  

The circular exclusion zone (in 2D) is chosen because 

previous research has shown this to provide the best RRT 

failure-finding performance [14], [34]. The size of the 

exclusion zone is partly determined by the target exclusion ratio 

(R) [31]. For example, in a 2D region, with a total area of 150, if 

R = 60%, ART-ORB will define an exclusion zone of area 

150×0.6 = 90, centered on the single executed test in that 

region. The exclusion zone radius is calculated based on the 

dimensions of the input domain, using a formula for n 

dimensions: 

 
d

dd
N

ARd
CrRadius

2/2
2

)(










 

           

 (2) 

In (2), d is the dimension of the input domain, A is the area of 

the current region/partition, N is the number of previously 

executed tests, R is the target exclusion ratio and [d/2] is the 

integer value of d/2. The result of Cd-2×d/2 represents the 

formula coefficient for the dimension d, and Cd-2 represents the 

formula coefficient for the d-2 dimension: For example,  the 

radius formula for the 4D input domain [14] has a formula 

coefficient of 2 since the formula coefficient C2 (that is C4-2, 

where d=4)  for 2D (as shown in (1)) is equal to 1. Chan et al. 

[14] provide a fuller description of various radius formulas, 

with formulas for n-dimensions also having been explained 

previously [35]. 
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Fig. 3.  Outline of ART by Orthogonal Recursive Bisection (ART-ORB). (a) 

Generation of the second test case. (b) Generation of the third test case. (c) 

Generation of the fourth test case. (d) Twelve generated test cases within the 
input domain. 

 

A detailed example of the ART-ORB process is illustrated in 

Fig. 3. Here, ART-ORB randomly selects the first test input T1 

from the input domain and defines an exclusion zone around it. 

Fig. 3(a) shows an exclusion zone defined around the first 

non-failure-revealing test case T1, and the next test (t) is 

randomly selected from outside this zone. When attempting to 

generate t, if a candidate is randomly selected from within the 

exclusion zone (such as k1, shown with a star symbol), it is 

discarded. If neither T1 nor T2 are failure-revealing, then the 

region is partitioned using a line perpendicular to the longest 

dimension through the mid-point of T1 and T2, as illustrated in 

Fig. 3(b). In the next steps, to generate the next test t (as 3rd and 

4th tests), ART-ORB works within the largest region of the 

input domain (Figs. 3(b) and 3(c)), discarding test candidates k2 

and k3, which were selected randomly but fell within the 

exclusion zones. Fig. 3(d) shows a possible distribution of test 

cases within the entire input domain after twelve test inputs 

have been selected.  

A binary tree representation for the ART-ORB partitioning 

process shown in Fig. 3 is presented in Fig. 4. The nodes in the 

tree represent the regions within the input domain, and the 

percentage value in each node is the percentage of the total 

input domain area in that region at a particular stage of the 

partitioning process. The root of the binary tree D represents the 

entire input domain with a percentage area of 100%. The leaf 

nodes in Fig. 4 (highlighted with thick green circles) represent 

the current completely partitioned regions (corresponding to all 

regions in Fig. 3(d)). The sum of all current regions in the 

domain is equal to the complete input domain size, and thus the 

sum of the percentage area values in all the leaf nodes must be 

100%. Because ART-ORB only allows one test per region, a 

test input generated from a particular region is assigned an 

identifier corresponding to that region: The test T9 (Fig. 3(d)), 

for example, is in the current region D9. 

At any stage of the partition process, the leaf node with the 

largest percentage size in the tree is partitioned, irrespective of 

its level in the tree. For example, the node in the tree that is 

divided after the root D has been partitioned is D1, because it 

has a larger proportion of the input domain (54.1%) than D2 

(45.9%). The numbers beneath parent nodes in Fig. 4 indicate 

the partitioning sequence. If the partitioning were to continue 

beyond the current twelve regions, the next node (region) to be 

partitioned would be D5, because its area is the largest. As this 

illustrates, it is possible for a node at a lower level in the tree to 

be partitioned before other nodes at higher levels—the nodes‘ 

levels do not influence the partition process. 

Conventional partitioning-based testing strategies normally 

perform partitioning prior to the selection of any test cases. 

Although ART-ORB involves the notion of partitioning, it 

differs from conventional strategies in that the process is done 

progressively, and in real-time. 

Because ART-ORB selects a new test input from the largest 

partition each time, and even within that specific partition, an 

exclusion region is defined around the previously executed test 

in it, ART-ORB can therefore be considered to use a ―double 

exclusion principle‖ to generate the wide and even spread of 

test inputs. 

 

A. Algorithm Description 

We provide a formal description of the proposed ART-ORB 

method in Algorithm 1. 

At each partitioning iteration, the largest subdomain is 

partitioned using a line perpendicular to the longest dimension 

through the mid-point of the two test inputs in the region. Each 

next test input is generated in the current region, outside of the 

exclusion zone around the previously executed input in the 

region [30], [14], [31]. The variable curRegion represents the 

current rectangular region, defined by its lower-left point and 

upper-right point coordinates. 

The first test input is generated randomly from the entire 

input domain (line 4). In line 14, a test input (or point) in the 

current region is generated using RRT [30] with only one 

previously executed test input in the region. Any current region 

curRegion selected from regionList at any stage will contain 

one previously executed test input. The function 

findMaxRegion(regionList) (line 11) returns the index of the 

largest region in regionList. Because the exclusion zone size is
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Fig. 4.  Binary tree representation of the ART-ORB process. 

proportional to the size of each region (refer to (2)), as the 

regions are recursively divided, the size of the exclusion region 

defined around the test input will also decrease. 

 

Algorithm 1 ART by Orthogonal Recursive Bisection (ART-ORB) 

Input: (1) D[]  // where D[] represents the input domain. 
            (2) R  // exclusion ratio. 
Output: TS ={T1; T2; _ _ _ ; Tn}  // set of test cases 

 

  1: Construct regionList = {};  // To store a list of regions or (sub-)domains. 
  2: Construct TS = {};   //To store executed test cases. 
  3: Set curRegion = D[];  // Assign the input domain to curRegion. curRegion 

represents the current region needed to be bisected recursively. 
  4: tempT = generateRandPoint(curRegion); // Generate test case randomly 
from the entire input domain. 

  5: TS = TS ∪ {tempT}; 
  6: if tempT finds failure then 

  7:      break; 
  8: end if 
  9: Add curRegion to regionList; 
10: while (stopping criteria not reached) do 

11:       pIndex = findMaxRegion(regionList); //find the region with the largest 
size in regionList, and pIndex is the index of region for the next 
partition. 

12:       curRegion = regionList.get(pIndex); 
13:       T1= the existing test input in curRegion; 
14:       T2=generateRandExPoint(curRegion., T1, R);  // Generate a new test 

input by restricting region around T1 using exclusion ratio R within 
the current region. 

15:       TS = TS ∪  {T2}; 
16:       if T2 finds failure then      
17:              break; 
18:       end if  
19:  regionList.remove(pIndex); //remove the max-sized region from 

regionList 
20:   Calculate the midpoint (median) of T1 and T2, divide curRegion 

orthogonally into two new sub-regions via this midpoint and using 
longest dimension of curRegion, and then add them into 
regionList; 

21:        Locate T1 and T2 to their corresponding sub-regions; 
22: end while 

23: return TS ; 

 

 

B. Computational Efficiency 

The computational overhead of ART-ORB is analytically 

comparable to that of other ART methods. ART-ORB 

combines partitioning with an exclusion strategy. It does not 

employ any candidate selection, or require distance calculations 

to all previously executed test inputs in each selection process. 

Assuming the size of the test case set is N. ART-ORB 

partitions a region of the input domain and applies an exclusion 

zone in the largest region around the executed test there. The 

time required for ART-ORB to identify the largest region (ie. 

findMaxRegion()) varies from 0 to N, therefore the complexity 

is O(N/2). The original restriction algorithm selects the N
th

 test 

input from the entire input domain with a complexity of 

O(NlogN)—each test input generation requires that the 

distances from each candidate test to all N previously executed 

tests be calculated. However, the ART-ORB algorithm only 

requires distance calculations associated with candidate tests 

from within the current region and the single executed test in 

that region; therefore using a constant time k. As a result, 

generating a new test input has a complexity of O(k(logN)). 

Hence, the worst-case time complexity of selecting N test cases 

using ART-ORB is O(NlogN).  

Unlike many other ART methods that use partitioning (e.g., 

ART-DC [27], ART-TPP [28], ART-RP [13], and ART-B 

[13]), ART-ORB is very efficient as it only reassigns the two 

executed test inputs in the divided sub-region after each 

partitioning.  

IV. EMPIRICAL STUDIES AND ANALYSIS 

A. Setup of the Empirical Studies 

Because ART methods are enhancement to RT, our focus 

when evaluating the failure detection capability of ART-ORB 

is on its improvement over RT. ART-ORB presents a new 

partition-based ART strategy that aims to improve failure 

detection effectiveness and efficiency. Our empirical analysis 

had three phases. 
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Firstly, we performed simulations to evaluate ART-ORB‘s 

ability to evenly spread test cases throughout the input domain, 

or to analyze how close together the generated test cases are, 

compared to RT.  

Secondly, we performed a series of simulations using 

different failure patterns and varying failure rates, to investigate 

the impact of different failure regions on the failure detection 

effectiveness of ART-ORB, again comparing with RT. Since 

all ART methods share the aim of improving on RT, we also 

determined how the performance of ART-ORB compares with 

some similar ART methods (ART-RP, ART-B, ART-DC, and 

ART-TPP). We performed a series of simulations in a 2D input 

space to ascertain: (1) the failure detection effectiveness 

performance of ART-ORB compared with RT and the other 

ART methods; and (2) the efficiency of the proposed method, 

compared with the other ART methods (the ART test input 

selection process typically incurs increased time costs).  

Lastly, we performed experiments with 16 real, previously 

published, fault-seeded programs [12], [35], [28] to further 

validate the results obtained in the simulations. The programs 

were selected due to their varying dimensions and failure rates. 

 

1) Research Questions 

Our empirical study was guided by the following research 

questions:  

RQ1: How evenly spread is the distribution of test cases 

generated by the ART-ORB method? 

RQ2: Does ART-ORB perform better than RT for all failure 

patterns, in terms of the F-ratio?  

RQ3: How does ART-ORB compare with other partition-based 

ART methods, in terms of the F-ratio, E-measure, Fm-time, and 

Execution  time?  

RQ4: What is the statistical significance of the ART-ORB 

performance compared to other ART methods, in terms of 

E-measure? 

Although ART-ORB‘s use of the exclusion strategy with 

minimum distance computations significantly reduces the test 

generation costs, it may also potentially lead to a situation 

where several inputs are close to one another instead of being 

evenly distributed, due to boundary effect [36]. This could have 

a negative impact on the failure detection ability of the method. 

The first research question (RQ1) was designed to empirically 

evaluate the extent of this potential undesirable effect, if any. 

This is also vital for determining ART-ORB‘s ability to 

distribute test inputs, as it has been shown that more evenly 

distributed tests have higher failure detection [37]. The second 

research question (RQ2) was designed to establish the extent to 

which ART-ORB improves on ordinary RT, for different 

failure patterns. The third and fourth research questions (RQ3 

and RQ4), were designed to compare ART-ORB to similar 

ART methods, to help identify situations in which ART-ORB 

should be applied instead of the other ART methods.  

 

2) Experimental Environment 

The environment used to conduct the simulations and 

experiments was the Windows 10 Professional (64 bits) OS, 

running on Intel Core i3 Duo processors, with a speed of 3.70 

GHz each, and memory of 4 GB. We implemented all 

algorithms in Java and ran them on the Eclipse neon platform 

with JDK 1.7. We employed the Spyder utility within the 

Anaconda platform for generating the charts and used the R 

language platform for the statistical analysis.  

 

3) Test Distribution Metrics 

We adopted two diversity metrics [37] to measure how 

well-spread the distribution of test inputs generated by 

ART-ORB was. These two metrics, Discrepancy and 

Dispersion, are commonly used for measuring the 

equidistribution of sample points. Discrepancy indicates 

whether or not different regions inside the input domain D have 

similar densities of tests:  

                     (3) 

where D1, D2, D3, . . . , Dm are m randomly defined rectangular 

sub-domains of the input domain D, and |Di| is the size of Di. T 

is the set of all selected test cases from D, and Ti is a subset of T 

from sub-domain Di, such that |Ti| = |T ∩ Di|. The value of m 

cannot be too small; otherwise, a reliable approximation of the 

discrepancy may not be possible. Similarly, m cannot be too 

large either, because the computational overhead increases as 

the value of m increases. To balance the overheads and 

accuracy, we set m to be 1000, which is consistent with 

previous studies [37], [38]. 

Dispersion indicates whether or not there is a large empty 

region (containing no tests) in the input domain D, and is 

reflected by the maximum distance that any test input has from 

its nearest neighbor: 

                (4) 

where dist(u,v) denotes the Euclidean distance between two 

points u and v, (u, N) refers to u‘s nearest neighbor in set N, 

and T ={t1, t2, . . . , tn} is the set of all test cases. 

Discrepancy and Dispersion have been used previously [37], 

[38], [39] to measure the test case distributions of various ART 

algorithms, and have provided evidence of the existence of a 

strong correlation between the even spread of test inputs and 

the failure detection effectiveness. Intuitively speaking, smaller 

Discrepancy and Dispersion values indicate more evenly 

distributed sets of generated test inputs.  

 

4) Failure Region Definition 

In order to simulate the testing of faulty programs in different 

situations, we defined a 2D input domain and created randomly 

located failure regions of the required patterns and sizes (based 

on the predefined failure rates). We applied the different testing 

methods in this input domain to generate test inputs.  

The block pattern failure region was obtained by randomly 

defining a square region that provided the failure rate required 

within the input domain. The strip failure pattern was obtained 

by randomly choosing two points each on adjacent borders of 

the domain, and connecting them to form a strip representing 

the failure region. We then adjusted the width of the strip by 

varying moving the points to achieve the desired size of the 

failure region. The point failure pattern was created by 

randomly choosing 50 circular and non-overlapping regions 

from within the input domain. Suppose each of the 50 point 

failure regions is denoted as Pi, where i = 1, 2, 3, … , 50, and 
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 denotes the size of the input domain. We defined the size 

of each Pi as , where ρi is randomly 

chosen from [0, 1) based on a uniform distribution. We avoided 

points that were close to the corners of the input domain to 

prevent excessively wide strips. Similar to previous ART 

studies, we set the failure rates (θ) at 0.01, 0.005, 0.002 and 

0.001, for each failure pattern. 

When applying a testing method to generate test inputs in the 

simulations, if a generated input fell inside the failure region, 

then the testing method was considered to have detected a 

failure. The test input generation process was repeated until a 

failure was detected. 

 

5) Effectiveness and Efficiency Measure Criteria 

Chen and Yu [40] refer to elements of an input domain that 

do not produce correct outputs as failure-causing inputs. The 

failure rate (θ) is obtained by dividing the number of 

failure-causing inputs by the total number of inputs in the input 

domain.  

The F-measure [18] is defined as the (expected) number of 

test cases executed before detecting the first failure. The failure 

detection effectiveness of a testing strategy can be reflected by 

the F-measure because lower F-measure means the testing 

strategy is more effective, as fewer test cases are needed to 

detect the first failure. In practice, a test process may be 

terminated whenever a failure is detected and resumed only 

after the detected fault is fixed. Hence, the F-measure is also 

realistic from a practical point of view. For an input domain 

with size |D| and number of failure-causing inputs represented 

by m; the failure rate (θ) is calculated as m/|D|. The F-measure 

value for random test case selection (with replacement) is equal 

to 1/θ, or equivalently |D|/m. We also adopt the ART F-ratio 

(FART/FRT), which is the ratio of ART‘s F-measure (FART) to 

RT‘s F-measure (FRT), to compare ART‘s and RT‘s 

failure-finding performance. For example, if RT executes 100 

test cases before detecting the first failure, and an ART method 

executes 20 before detecting a failure, then the ART method 

requires 20/100=0.2=20% of RT‘s test cases to detect the first 

failure. The F-ratio is computed as: 

                                               (5) 

Smaller F-ratio values for an ART method indicate better 

(faster) failure detection effectiveness.  

We also used the E-measure (Em) to evaluate the failure 

detection effectiveness of our method. The E-measure is the 

(expected) total number of distinct failures detected by a 

specific number of generated test cases. A testing approach is 

considered more to be more effective in detecting failure if it 

has a lower F-measure, a lower F-ratio, and a higher E-measure.  

To examine the significance of the performance differences 

between ART-ORB and other ART methods, we computed 

both p-value (probability value) and effect size (at the 5% 

significance level)[41] for the E-measure results. The p-value 

determines whether the difference between two ART methods 

is statistically significant. To measure the p-value, we used the 

unpaired two-tailed Mann-Whitney-Wilcoxon test [41]. A 

p-value less than 0.05 means that there is a significant 

difference between the two methods being compared. The 

effect size (ES) measure indicates the probability of one 

method being better than another. To measure the ES, we used 

the non-parametric Vargha and Delaney effect size measure 

[42]. An ES value for any two methods X and Y indicates the 

probability that X is better than Y. In this study, we used R 

language [43] to obtain the p-value and ES value for pairs of 

ART methods. 

We employed two efficiency metrics to compare the time 

costs of ART-ORB with other ART methods. These metrics 

are:  Fm-time (the time required to detect the first failure); and 

Execution time (the time required to execute a specific number 

of test cases). The efficiency of a testing approach is more 

intuitively reflected by these measures as a lower Fm-time 

indicates that less time is required to detect the first failure, and 

a lower execution  time indicates that less time is required to 

execute a set of test cases.  

 

6) Experimental Parameters 

We conducted a comparative analysis of our ART algorithm 

against RT, ART-RP, ART-B, ART-DC, and ART-TPP. 

ART-DC has two different implementations that achieve 

similar results: RRT-DC and FSCS-DC. In this study, we 

applied the RRT-DC version, and refer to it as ART-DC. We set 

the threshold (λ) of ART-DC to 50: Higher thresholds (such as 

λ =100) may provide better failure detection effectiveness, but 

also increase the computational overheads; lower threshold 

(such as λ =4 or λ =10), on the other hand, increase the chance 

of pure random generation of test cases, thus defeating the goal 

of even spreading [27]. In ART-TPP, as in previous work [28], 

we set the candidate set size, k, to 3. 

In the simulations, as in previous studies [14], [44], we 

varied the target exclusion ratios for both ART-DC and 

ART-ORB between 1% and 150%, and used the best result 

each time. We extended the target exclusion ratio range up to 

220% for the experiment with fault-seeded programs. The 

F-measure results in the simulations were averaged over 5000 

runs, while the results from the experiments with real programs 

were averaged over 3000 runs—this was due to the 

significantly longer amount of time required for the real 

program execution and they are also consistent with previous 

studies [12], [14], [35]. For the E-measure, Fm-time, and 

Execution time results, we repeated both simulations and 

experiments 200 times. The choice of this repeated run was due 

to the time constraints in executing some of the subject 

programs. For example, the average time taken by ART-RP to 

execute each run of 4000 test cases for the calGCD program 

was as much as 19 hours. Additionally, we used as many as 16 

subject programs with varying input dimensions in the 

experiments. Thus, the choice of 200 repetitions strikes a 

balance between generalization and statistical analysis [41]. 

 

B. Simulations 

A major advantage of the use of simulations to evaluate a 

testing method is that they can provide a more complete picture 

of the performance under various scenarios. We conducted a 

series of simulations to address the research questions defined 

in Section IV-A-1. This section presents and discusses these 

simulations‘ results.  
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1) Test Input Distribution of ART-ORB 

We conducted a series of simulations, in input domains of 

1D to 4D, to investigate both the Discrepancy and Dispersion of 

ART-ORB compared to RT and other ART methods. To avoid 

bias, the exclusion ratio for both ART-ORB and ART-DC was 

set to 75%. In the simulations, we generated 100, 1000, and 

10000 sets of test inputs for each testing method and input 

domain, and calculated the Discrepancy and Dispersion values 

using the formulas (3) and (4) from Section IV-A-1. Table II 

presents the simulation result, with the best values (the lowest 

values) highlighted. 

It can be observed from Table II that the Discrepancy values 

of ART-ORB are lower than RT for all cases, and that they 

generally increase with the increasing dimensions of the input 

domain. Although the other ART methods generally have lower 

Discrepancies values than RT, they are not all lower in all 

cases. For example, the other ART methods had higher 

Discrepancy results than RT for 1000 tests in 4D input 

domains. ART-ORB has lower Discrepancy values than all 

other testing methods, both RT and ART, especially for the 1D 

and 2D input domains.  

As expected, Table II also shows that ART-ORB performs 

better in terms of the Dispersion metric than RT, and again, 

increasing as the dimension increases. Compared with the other 

ART methods, ART-ORB usually has lower, or among the 

lowest, Dispersion values. The only time when RT had a better 

Dispersion result than ART-ORB was for 100 tests in the 3D 

input domain—in this case, the dispersions of the other ART 

methods were also higher than that of RT. Table II also shows 

that the Dispersion results for all testing methods increases as 

the dimension increases.  When the dimension of input domain 

is low, ART methods evenly spread test cases and therefore 

have lower dispersion values. With the increase of dimension, 

the test cases they select show a certain degree of uneven 

distribution resulting in larger dispersion values. Hence, the 

reason for their higher dispersion as dimension increases. 

Surprisingly, this phenomenon is observed for RT. Our 

investigations show similar observations in other studies [37], 

[38].  
 

TABLE II 

DISCREPANCY AND DISPERSION RESULTS FOR EACH METHOD AND DIMENSION FOR DIFFERENT NUMBERS OF TEST INPUTS 

Number of test inputs Testing Strategy 
Discrepancy Dispersion 

1D 2D 3D 4D 1D 2D 3D 4D 

100 

RT 0.064924 0.110079 0.080605 0.076196 0.024296 0.146948 0.232739 0.411993 

ART-RP 0.038009 0.036375 0.04085 0.049667 0.017792 0.12096 0.265197 0.382913 

ART-B 0.031748 0.078038 0.059664 0.021465 0.020372 0.118384 0.252942 0.353152 

ART-DC 0.034188 0.034128 0.035375 0.036382 0.015507 0.123422 0.300325 0.401826 

ART-TPP 0.030378 0.032806 0.041056 0.042993 0.018208 0.132635 0.293382 0.339824 

ART-ORB 0.029091 0.023167 0.041947 0.043958 0.014654 0.136443 0.268746 0.404833 

 
 

  

1000 

RT 0.021063 0.016977 0.015908 0.016411 0.00281 0.049948 0.142325 0.243003 

ART-RP 0.007591 0.007574 0.019485 0.018483 0.001947 0.042786 0.137002 0.229629 

ART-B 0.00444 0.01549 0.0216 0.021132 0.002464 0.045012 0.145932 0.237007 

ART-DC 0.019588 0.004642 0.017609 0.020325 0.002883 0.047424 0.151221 0.221336 

ART-TPP 0.009262 0.010459 0.006511 0.021547 0.002335 0.050908 0.139035 0.269923 

ART-ORB 0.008654 0.009616 0.006662 0.012181 0.00148 0.043875 0.132397 0.226125 

 
 

  

10000 

RT 0.002889 0.005012 0.005939 0.008203 0.000489 0.020114 0.102807 0.149492 

ART-RP 0.002812 0.003826 0.007169 0.005706 0.000195 0.016112 0.0702 0.143263 

ART-B 0.002 0.005408 0.004584 0.010245 0.000271 0.015831 0.07305 0.133702 

ART-DC 0.003189 0.00405 0.002133 0.001015 0.000314 0.017366 0.066335 0.135845 

ART-TPP 0.002094 0.004671 0.006738 0.013356 0.000286 0.017208 0.066119 0.141453 

ART-ORB 0.000917 0.001114 0.003977 0.006171 0.000161 0.014128 0.058487 0.135359 

TABLE III 
F-MEASURE AND F-RATIO COMPARISONS FOR ART BY ORTHOGONAL RECURSIVE BISECTION FOR DIFFERENT FAILURE PATTERNS 

 

Failure 

Rate (θ) 

  Block Pattern Strip Pattern Point Pattern 

Expected 

F-measure 

(FRT) 

Mean 

F-measure 

of ART 

(FART) 

(FART/FRT) (%) 

Mean 

F-measure 

of ART 

(FART) 

(FART/FRT) (%) 

Mean 

F-measure 

of ART 

(FART) 

(FART/FRT) (%) 

0.01 100 69.5 69.5% 89.0 89.0% 95.6 95.6% 

0.005 200 138.9 69.5% 182.2 91.1% 192.4 96.2% 

0.002 500 351.1 70.2% 468.0 93.6% 481.9 96.4% 

0.001 1000 701.5 70.2% 943.6 94.4% 965.3 96.5% 
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2) Failure Detection Effectiveness 

We performed simulations using three failure pattern types 

(block, strip, and point), with different failure rates, averaging 

results over 5000 executions. These simulations were 

categorized into three main parts. 

Firstly, we compared the F-measure performances for 

ART-ORB with the expected F-measure values for RT, for the 

three failure patterns. For each test run, we calculated the  

average F-measure value, and the F-ratio for each failure rate 

and failure pattern. Table III presents these results. 

Table III shows that ART-ORB has a best improvement of 

30.5% over RT for the block failure pattern, and 11% for the 

strip pattern. As expected, ART-ORB‘s spreading of test cases 

evenly over the input domain did not result in a significant 

improvement in failure detection for the point pattern, with the 

best improvement of only 4.4%. 

Secondly, we compared the ART-ORB F-ratio performance 

to those of the other ART methods considered in this study, 

again using the block, strip, and point failure patterns. Table IV 

shows these results. 

Table IV shows that, for non-point patterns, the ART failure 

detection performance generally increases as the failure rate 

increases. An increase in failure rate increases the probability 

that a failure-revealing test will be selected as the next input; 

therefore the increase in performances of the ART methods. As 

a result, the lowest F-ratio results were obtained for the highest 

failure rate (0.01) for most non-point failure patterns. 

Table IV also shows that ART-ORB slightly outperforms the 

other ART methods for all failure rates, when the block failure 

pattern is used. The F-ratio results obtained for strip failure 

pattern also showed a slightly better performance for 

ART-ORB for half of the failure rates, and a comparable 

performance for the others (0.002 and 0.001). As expected, 

none of the ART methods showed much improvement over RT 

for the point failure pattern—some even had a worse 

performance. Although ART-ORB had a better performance 

than the other ART methods for point failure pattern, it also had 

a less significant improvement over RT, with the maximum 

improvement being 4.4%. 

 
TABLE IV 

F-RATIO RESULTS OF ART METHODS FOR THE BLOCK, STRIP, AND POINT 

FAILURE PATTERNS AVERAGED OVER 5000 TEST RUNS 

Failure 

Rate (θ) 

(%) FART/FRT 

ART-RP ART-B 
ART-DC 

(λ=50) 
ART-TPP ART-ORB 

Block 

pattern      

0.01 76.0% 75.1% 78.7% 79.5% 69.5% 

0.005 77.5% 73.8% 79.0% 77.5% 69.5% 

0.002 80.9% 73.1% 79.9% 76.2% 70.2% 

0.001 80.1% 73.8% 80.1% 76.6% 70.2% 

Strip 

pattern      

0.01 92.0% 91.7% 90.1% 94.3% 89.0% 

0.005 93.3% 94.6% 92.2% 95.0% 91.1% 

0.002 95.0% 93.7% 93.4% 95.7% 93.6% 

0.001 94.2% 95.5% 95.2% 96.6% 94.4% 

Point 

pattern      

0.01 102.9% 98.8% 96.8% 100.8% 95.6% 

0.005 103.9% 100.0% 98.3% 102.1% 96.2% 

0.002 100.0% 100.6% 97.0% 98.6% 96.4% 

0.001 100.3% 99.7% 97.8% 100.0% 96.5% 

 

In the third set of simulations, although the proposed method 

showed relatively better failure finding effectiveness 

(F-measure) than the other previous ART methods, for almost 

all failure rates, we further investigated this effectiveness for a 

fixed number of test cases (E-measure). 

   
(a)                   (b)                 (c) 

 

  
(d)                      (e)                 (f) 

Fig. 5.  E-measure comparisons of ART methods using the block, strip, and point failure patterns, for failure rates (θ) of 0.01 and 0.001. 
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We performed simulations for each failure pattern using 

failure rates of 0.01 and 0.001. For each E-measure simulation, 

we generated a fixed test set (n) of 4000 test cases and averaged 

the results over 200 runs. The results are presented in Fig. 5. 

Fig. 5 indicates that the ART-ORB E-measure performance 

is comparable to that most of the other ART methods, for all 

failure patterns. An exception is ART-DC, which has better 

performance, especially for higher failure rates. This is due to 

the relatively large threshold (λ=50) considered in this study. 

Larger thresholds increase the probability of fault detection; 

however, larger thresholds come with higher computational 

costs. 

 

3) Failure Detection and Computational Efficiency 

The time required for a testing method to detect failure can 

be a good determinant of its efficiency. Generally, testing 

proceeds by repeatedly generating test cases until a failure is 

detected. Therefore, the time required to detect the first failure 

(Fm-time) may be a good indicator of a method‘s 

failure-detecting efficiency. To evaluate this for our proposed 

method, we compared ART-ORB with the other ART methods 

in terms of the Fm-time. Fig. 6 shows the Fm-time results for all 

failure patterns, using failure rates of 0.01 and 0.001, averaged 

over 200 results. As the results show, ART-ORB requires far 

less time to detect the first failure, outperforming the other 

methods for all failure patterns and failure rates, especially for 

the lower failure rates.  

The failure-detection speed alone does not provide a 

complete representation of the efficiency of a testing method. 

The average time required to execute a fixed number of test 

cases (Execution time) is also indicative of the method‘s 

efficiency. We therefore further investigated ART-ORB by 

comparing its execution time with those of the other ART 

methods. For this, we generated 4000 test cases, repeating the 

simulation 200 times. Fig. 7 presents boxplots that summarize 

the execution time results for each ART method, for all failure 

patterns, using failure rates of 0.01, 0.005, 0.002, and 0.001. 

For all failure patterns, ART-ORB provides the lowest (best) 

execution time. It can also be seen that ART-DC again has the 

worst execution time. 

 

 

   
                                 (a)                 (b)                (c) 

 

   
(d)                (e)                (f) 

Fig. 6.  Fm-time comparison of ART methods using the block, strip, and point failure patterns, for failure rates (θ) of 0.01 and 0.001. 

 

 

 

 

   
  (a)                                                                (b)                                                                (c) 

Fig. 7.  Execution time results for the block, strip, and point failure patterns, using failure rates of 0.01, 0.005, 0.002, and 0.001. 
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C. Experiments with Fault-seeded Programs 

The results from the simulations indicate that our proposed 

method outperforms RT and compares well with ART-RP, 

ART-B, ART-DC, and ART-TPP, in terms of failure detection 

effectiveness. The simulation results also show that the time 

taken by ART-ORB is less than the other ART methods. In 

order to further validate these results, we performed several 

similar experiments with a number of real-life benchmark 

programs.  

The experiments involved 16 fault-seeded programs that 

were implemented in Java, with varying dimensions and input 

domains. Table V gives details about these programs, including 

their dimensions, inputs types, input domains, the number of 

each fault type used, and the failure rates.  

The first 12 programs are published, fault-seeded programs 

[45], [46], that are commonly used in ART research [12], [14], 

[35]. They involve numerical calculations, and range in length 

from 30 to 200 lines of code. They have varying dimensions, 

and some have varying program input types. We converted 

these 12 published programs that were originally written in C 

and C++, to Java.  

 

TABLE V 
SUBJECT PROGRAMS ORDERED BY DIMENSION 

Program 

Name 

Dimension 

(d) 
Input Type 

Input domain Types of Faults Failure 

Rate From To SDL RSR AOR CR SVR ROR 

airy 1 double (−5000.0) 5000.0   
 

1 
  

0.000716 

erfcc 1 double (−30000.0) 30000.0   1 1 1 1 0.000574 

probks 1 double (−50000.0) 50000.0   1 1 1 1 0.000387 

bessj0 1 double (−300000.0) 300000.0   2 1 1 1 0.001373 

tanh 1 double (−500.0) 500.0   1 1 1 1 0.001817 

bessj 2 int, double (2.0,−1000.0) (300.0, 15000.0)   2 1 
 

1 0.001298 

gammq 2 double, double (0.0, 0.0) (1700.0, 40.0)   
 

1 
 

3 0.000830 

sncndn 2 double, double (−5000.0, −5000.0) (5000.0, 5000.0)   
 

1 4 
 

0.001623 

golden 3 
double, double, 

double 

(−100.0, −100.0, 

−100.0) 
(60.0, 60.0, 60.0)   

 
1 1 3 0.000550 

plgndr 3 int, int, double (10.0, 0.0, 0.0) (500.0, 11.0, 1.0)   1 2 
 

2 0.000368 

cel 4 
double, double, 
double, double 

(0.001, 0.001, 
0.001, 0.001) 

(1.0, 300.0, 10000.0, 
1000.0) 

  1 1 
 

1 0.000332 

el2 4 
double, double, 

double, double 
(0.0, 0.0, 0.0, 0.0) 

(250.0, 250.0, 250.0, 

250.0) 
  1 3 2 3 0.000690 

calDay 5 int, int, int, int, int (1, 1, 1, 1, 1800) (12, 31, 12, 31, 2200) 1  
    

0.000632 

triangle 6 int, int, int, int, int, int 
(-25, -25, -25, -25,     

-25, -25) 

(25, 25, 25, 25, 25, 

25) 
  

 
1 

  
0.000713 

line 8 
int, int, int, int, int, int, 

int, int 
(-10, -10, -10, -10,     
-10, -10, -10, -10) 

(10, 10, 10, 10, 10, 
10, 10, 10) 

  
   

1 0.000303 

calGCD 10 
int, int, int, int, int, int, 

int, int, int, int 
(1, 1, 1, 1, 1, 1, 1, 1, 

1, 1) 

(1000, 1000, 1000, 

1000, 1000, 1000, 
1000, 1000, 1000, 

1000) 

  1 
   

0.000984 
 

 

The remaining four subject programs all have higher 

dimensionality, were downloaded from other sources [47], 

[48], and were implemented in Java. All four have integer-only 

input parameters (input domains). The calDay and line 

programs were obtained from Ferrer et al. [47]. The calDay test 

program computes the days of the week, while the line program 

checks if two rectangles overlap. The triangle program is a 

classification program (for acute-, obtuse-, and right-angled 

triangles) whose implementation is based on a programming 

exercise [48]. The calGCD program computes the greatest 

common divisor of ten integer values. 

All 16 programs had faults seeded in using different types of 

common mutant operations [49], including: statement deletion 

(SDL), return statement replacement (RSR), arithmetic 

operator replacement (AOR), constant replacement (CR), 

scalar variable replacement (SVR), and relational operator 

replacement (ROR). The failure rates of the subject programs 

range approximately from 0.0003 to 0.002. The failure rate for 

the calGCD program was not documented in the literature; 

therefore we estimated it by performing random testing with a 

large number of test inputs (1,000,000,000).  

 

 
TABLE VI 

FAILURE PATTERNS OF THE 16 SUBJECT PROGRAMS 

Subject Program Failure Pattern Characteristics 

airy A block in the center of the input domain 

erfcc A block in the center of the input domain 

probks A block in the center of the input domain 

bessj0 A block in the center of the input domain 

tanh A block in the center of the input domain 

bessj Strip 

gammq A long narrow strip 

sncndn Points scattered over the entire input domain 

golden Points scattered around a very large hyperplane 

plgndr Strips near the edge of the input domain 

cel  One failure region (strip) along the entire edge of the 

input domain 

el2 Strips near the edges of the input domain 

calDay A combination of strips and points, but with the strips 
only in some dimensions.  

triangle Points scattered over the entire input domain 

line Point-like patterns scattered over different regions of 
the input domain 

calGCD Points scattered over the entire input domain 
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Previous researches [50], [51], and analysis reported the 

failure pattern types of the first 12 subject program. The failure 

patterns of the remaining four programs were not available in 

the literature. We therefore identified their failure patterns by 

executing RT and recording a large numbers of generated test 

inputs that cause failure in the programs. Plotting all dimension 

may produce an output that is complicated and may be 

impossible to properly analyze the failure patterns, hence, we 

chose to plot their values in 3D and at different angles (see 

figures in Appendix). Although their plots were in parts (three 

dimensions at a time), the results provided a good estimate of 

their failure patterns. The characteristics of the failure patterns 

in the 16 programs are described in the Table VI. 

In the experiments, all subject programs were tested by each 

testing method, with failures being recorded as detected when 

the output for the faulty program (the mutant) and the original 

(correct) version were different. 

 

1) Failure Detection Effectiveness 

Similar to the simulations, we performed experiments to 

determine the improvement of ART-ORB‘s failure detection 

ability over RT‘s. We applied both methods to test each subject 

program, recording their average F-measure from 3000 

repetitions, and calculating the F-ratio values. These results are 

shown in Table VII. The table also includes the exclusion ratios 

R used by ART-ORB which provided the best results for each 

subject program. 

The results in Table VII clearly show that ART-ORB has 

better failure detection effectiveness than RT for all subject 

programs. For airy, erfcc, probks, bessj0, and tanh, ART-ORB 

strongly outperformed RT, with improvements ranging 

between 42% and 45%. For the bessj, gammq, plgndr, el2, and 

calDay, ART-ORB had between 7.8% and 38.2% improvement 

over RT. There was only small improvement over RT for 

sncndn, golden, cel, triangle, line, and calGCD (between 1.2% 

and 5.3%). We observed that ART-ORB generally provided 

better results for high exclusion ratios. 

 
TABLE VII 

F-MEASURE AND F-RATIO RESULTS FOR ART-ORB AND RT FOR EACH SUBJECT 

PROGRAM, AND BEST R FOR ART-ORB 

Subject 

Program 

Mean 

F-measure 

of RT 

(FRT) 

Mean 

F-measure of 

ART-ORB 

(FART) 

F-ratio of 

ART-ORB 

(FART/FRT) 

(%) 

Best R for 

ART-ORB 

(%) 

airy 1504.4 827.6 55.0% 50% 

erfcc 1905.7 1073.1 56.3% 80% 

probks 2567.5 1490.0 58.0% 70% 

bessj0 781.3 445.5 57.0% 60% 

tanh 572.9 322.4 56.3% 80% 

bessj 755.5 467.1 61.8% 150% 

gammq 1210.8 1082.4 89.4% 110% 

sncndn 624.3 609.9 97.7% 120% 

golden 1834.8 1761.3 96.0% 100% 

plgndr 2767.7 1910.0 69.0% 140% 

cel  3123.2 3086.7 98.8% 140% 

el2 1438.7 1101.7 76.6% 220% 

calDay 86.3 79.6 92.2% 140% 

triangle 1418.3 1368.0 96.5% 220% 

line 3252.8 3081.8 94.7% 170% 

calGCD 1047.3 991.4 94.7% 190% 

 

To further validate the simulation results obtained from the 

comparison of ART-ORB with other ART methods, we also 

applied the other ART methods to the subject programs, 

calculating their F-measure and F-ratio values. Fig. 8 presents 

the F-ratio comparison of ART-ORB to the other ART methods 

for each subject program.  

The results in Fig. 8 show that ART-ORB consistently uses 

amongst the fewest test cases to detect the first failure: It 

generally outperforms the other ART methods for 10 of the 16 

fault-seeded programs, and has comparable performance for the 

other six. Although ART-ORB showed less significant 

improvement over RT for sncndn, golden, cel, triangle, line, 

and calGCD, its performances was similar to the other ART 

methods in the study. 

 

 
Fig. 8.  F-ratio comparison for the ART methods. 

 

We also compared ART-ORB with the other ART methods 

in terms of the E-measure, using a test set of 4000, and 

averaging the result over 200 repetitions. Fig. 9 shows these 

results. 

The E-measure results in Fig. 9 show that ART-ORB has 

comparable performance to the other ART methods. However, 

the ART-ORB performance varies in magnitude for each 

subject program. The results also show that ART-ORB 

E-measure performance improves slightly as higher 

dimensional programs are used. ART-DC has better E-measure 

performance for all the 1D programs, but its performance 

becomes comparable to the other ART methods in the higher 

dimensional programs. 

In order to further analyze the significance of the differences 

in E-measure, we calculated the p-value and effect size (ES) 

[41] for pair-wise comparisons between the individual ART 

methods. We generated 800 E-measure results for each subject 

program using test sets of size 1000, 2000, 3000, and 4000. The 

results are presented in Table VIII, where the column labeled 

―Preferred‖ identifies which ART method of the pair, based on 

ES, has better performance. 

The results for most subject programs show that there is no 

significant E-measure difference between ART-ORB and 

ART-RP, ART-B, or ART-TPP (the p-value is greater than 

0.05). However, there is a significant E-measure difference 

between ART-ORB and ART-DC for most programs (the 

p-value is less than 0.05). The E-measure ES values indicate
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(p) 

Fig. 9. E-measure comparison of ART methods for each subject program using 
a set of 4000 tests. 

 

that ART-ORB is generally better than ART-RP in terms of 

probability of detecting more failures (the ES values for most 

programs is greater than 0.5, with few programs having ES 

values close to 0.5). The comparison of ES values between 

ART-ORB and either ART-B or ART-TPP shows similar 

failure detection probabilities (there is a similar number of ES 

values above and below 0.5 for all programs). ART-DC has a 

higher probability of detecting failures than ART-ORB (the ES 

values are below 0.5 for most programs). However, for higher 

dimensional programs (d≥4), the failure detection performance 

of ART-DC becomes worse than ART-ORB, in most cases. 

The table also shows that ART-ORB is preferred to the other 

methods in high dimensional situations (it has better ES 

performance for almost all the programs with higher 

dimensional input space). 

 

 

TABLE VIII 

COMPARISON OF PAIRS OF ART METHODS FOR EACH SUBJECT PROGRAM USING P-VALUE AND EFFECT SIZE FOR 800 E-MEASURE VALUES 

Subject 

Program

s 

ART-ORB and ART-RP ART-ORB and ART-B ART-ORB and ART-DC ART-ORB and ART-TPP 

P-value ES 
Prefer

red 
P-value ES 

Prefer

red 
P-value ES 

Prefer

red 
P-value ES 

Prefer

red 

airy 0.971619 0.500495 
ART-

ORB 
0.531013 0.491352 

ART-

B 

3.22E-20

* 
0.369814 

ART-

DC 
0.785059 0.496231 

ART-

TPP 

erfcc 0.642482 0.506331 
ART-

ORB 
0.416547 0.51098 

ART-

ORB 

2.88E-09
* 

0.417089 
ART-

DC 
0.676117 0.505682 

ART-

ORB 

probks 0.068810 0.524184 
ART-

ORB 
0.488026 0.509203 

ART-

ORB 

2.37E-07

* 
0.429026 

ART-

DC 
0.945897 0.499102 

ART-

TPP 

bessj0 0.125268 0.521848 
ART-

ORB 
0.933170 0.501195 

ART-

ORB 

1.12E-24

* 
0.353025 

ART-

DC 
0.699894 0.505490 

ART-

ORB 

tanh 0.644019 0.506617 
ART-

ORB 
0.480267 0.489913 

ART-

B 

6.71E-52
* 

0.282084 
ART-

DC 
0.637029 0.493245 

ART-

TPP 

bessj 
0.001900

* 
0.544320 

ART-

ORB 
0.986666 0.499761 

ART-

B 

2.42E-17

* 
0.378625 

ART-

DC 
0.072443 0.525616 

ART-

ORB 

gammq 0.626420 0.493118 
ART-

RP 
0.184588 0.518748 

ART-

ORB 

0.001376
* 

0.454592 
ART-

DC 
0.084432 0.524374 

ART-

ORB 

sncndn 0.452202 0.489228 
ART-

RP 
0.068236 0.473864 

ART-

B 
0.292013 0.484895 

ART-

DC 
0.494232 0.490203 

ART-

TPP 

golden 0.353127 0.487076 
ART-

RP 
0.083454 0.475838 

ART-

B 

0.000974

* 
0.453942 

ART-

DC 
0.870945 0.497738 

ART-

TPP 

plgndr 
4.10E-09

* 
0.579108 

ART-

ORB 
0.931361 0.501166 

ART-

ORB 
0.075820 0.475825 

ART-

DC 
0.056164 0.473977 

ART-

TPP 

cel 0.061232 0.524688 
ART-

ORB 
0.27752 0.485499 

ART-

B 
0.373224 0.511796 

ART-

ORB 
0.463055 0.509727 

ART-

ORB 

el2 
1.56E-29

* 
0.659459 

ART-

ORB 

2.48E-21

* 
0.634256 

ART-

ORB 

1.65E-10

* 
0.590543 

ART-

ORB 

4.33E-18

* 
0.622742 

ART-

ORB 

calDay 
8.91 

E-05* 
0.556563 

ART-

ORB 

0.031725
* 

0.531005 
ART-

ORB 
0.209173 0.518129 

ART-

ORB 

0.003829
* 

0.541745 
ART-

ORB 

triangle 0.157980 0.519853 
ART-

ORB 
0.258723 0.515906 

ART-

ORB 
0.178200 0.518957 

ART-

ORB 
0.168949 0.519377 

ART-

ORB 

line 
8.93 

E-40* 
0.682969 

ART-

ORB 

3.61 

E-42* 
0.688481 

ART-

ORB 

7.43 

E-43* 
0.689995 

ART-

ORB 

2.13 

E-30* 
0.659302 

ART-

ORB 

calGCD 
0.022253

* 
0.467473 

ART-

RP 
0.060388 0.473306 

ART-

B 
0.255103 0.483816 

ART-

DC 
0.418101 0.511512 

ART-

ORB 

*  denotes statistically significant difference (p<0.05) 

 

2) Failure Detection and Computational Efficiency 

We evaluated the failure detection efficiency of ART-ORB 

by comparing the time taken detect the first failure (Fm-time) to 

those of other ART methods (as done in the simulation process). 

We tested each subject program and recorded the Fm-time 

averaged over 200 iterations. We performed the same 

experiment for all the ART methods and compared their 

Fm-time results: Fig. 10 presents the boxplot representations of 

the Fm-time results for each subject program. 

 

 

 
    (a) 
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   (n)                    (o)                                                                (p) 

Fig. 10.  Fm-time comparison of ART methods for each subject program. 
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It can be seen from Fig. 10 that ART-ORB uses far less time 

to detect the first failure for almost all subject programs: 

ART-ORB provides better failure detection efficiency for 12 of 

the 16 real-life programs, and comparable time to other 

methods for four of the five 1D programs. The results also show 

that the Fm-time of ART-RP increases as higher dimensional 

programs are used. Conversely, the Fm-time results of 

ART-DC decreases with increasing program dimension. These 

results are in broad agreement with those obtained in the 

simulations (Fig. 6). 

The time required to execute a number of test cases 

(Execution time) was also compared across the ART methods. 

We tested each subject program using each of the ART 

methods using a set of 4000 tests, repeating 200 times and 

averaging results. Fig. 11 presents this execution time 

comparison. 

Fig. 11 shows that, generally, ART-ORB has better 

execution time than the other ART methods for almost all 

subject programs. Similar to the failure detection efficiency, 

ART-ORB‘s execution time is comparable to other ART 

methods for 1D subject programs, but is better in all other 

dimensions. A difference in efficiency can also be observed for 

varying dimensions of subject programs: When these subject 

programs are used, both ART-RP and ART-DC have similar 

characteristics as in the Fm-time experiment—that is, ART-DC 

has the worst execution time for lower dimensional programs 

while ART–RP has the worst for higher dimensional programs. 

 

  
(a) 

     
(b)                  (c)                   (d) 

 

     
(e)                  (f)                        (g) 

 

     
  (h)                   (i)                   (j) 
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  (k)                   (l)                    (m) 

 

     
   (n)                   (o)                            (p) 
Fig. 11.  Execution time comparison for the ART methods for each subject program using a set of 4000 tests. 

 

V. DISCUSSION 

In this paper, we have presented a new ART method 

(ART-ORB) that dynamically spreads test cases by 

incrementally and orthogonally bisecting regions of the input 

domain. The method is based on the intuition that combining a 

partitioning strategy (with acceptable overheads) with an 

exclusion strategy should enable a more even spread of test 

inputs over the input domain. This is partly motivated through 

the review of ART methods that employ partitioning, as 

described in Section II. We have empirically evaluated the 

performance of the proposed ART method based on four 

research questions posed in this paper. This section now 

provides a discussion of the results obtained in response to the 

research questions. 

RQ1: In our initial investigation, we used both Discrepancy 

and Dispersion metrics to evaluate the potential of ART-ORB 

to distribute test inputs evenly over the input domain.  

The Discrepancy results show that ART-ORB can distribute 

test more evenly than RT, for all input domain dimensions. The 

Dispersion results also indicate that, compared with RT, 

smaller empty regions exist among tests generated by 

ART-ORB, for almost all input domain dimensions. This 

reflects a better even spreading of tests. For both metric, the 

ART-ORB results are comparable to other ART methods, with 

generally very small values in all cases. Thus, we can conclude 

that ART-ORB does provide an effective strategy for evenly 

distributing test inputs.  

The more evenly spread distribution of test is achieved 

through ART-ORB‘s use of a restriction zones around a 

previous test within a region to enhance the diversity [52] of 

selected tests. Furthermore, the partitioning of a region through 

the midpoint of two generated tests makes it less likely for tests 

to be very close to the border of each region. This also limits 

how close test inputs within different regions of the input 

domain can be to each other. 

RQ2: Previous studies [12], [53] have shown that for 

non-point failure patterns, evenly spread test cases have a 

higher probability of detecting the first failure faster. ART, 

which is based on this observation, therefore requires fewer test 

executions than RT to detect the first (for non-point failure 

patterns). This is consistent with our empirical results (Table 

III). ART-ORB was also shown to execute more tests to find 

the first failure in the case of point failure patterns than for 

non-point patterns. These results provide strong evidence that 

ART-ORB outperforms RT for all failure patterns and failure 

rates, most significantly outperforming when the failure pattern 

is of block type.  

The results of the experiments with real programs (Table 

VII) are consistent with the simulation results (Table III). It has 

been suggested that ART-ORB can obtain better failure 

detection effectiveness for airy, erfcc, probks, bessj0, and tanh 

partly because their failure patterns are of block type. Similarly, 

since bessj, plgndr, and el2 have been identified to have strip 

type failure patterns [18], this may explain why the improved 

performances of ART-ORB over RT are less pronounced 

compared to programs with block patterns. Both gammq and 

calDay show similar improved performances, as they have 

been identified to have strip failure patterns. The marginal 

improvement of ART-ORB over RT for sncndn and golden, is 

also arguably related to these programs having point failure 

patterns [19], [30]. The experiments, has shown that the failure 

patterns for triangle, line, and calGCD (see figures in 

Appendix) are similar to the point patterns discussed in Section 

II.A.2, and therefore, their failure detection efficiency were not 

expected to improve [20]. The cel program also shows some 

small improvement although its failure pattern is non-point 

[18]. Previous study has attributed this performance to the 

shape and nature of its input domain [30]—that is, there are 
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significant variations in the dimensional magnitudes of its input 

domain. However, its performance may improve for extremely 

high target exclusion (R), as seen in some other studies [14]. 

For all the subject programs used in the experiment, ART-ORB 

outperformed RT in terms of the F-measure. 

RQ3: Comparing the failure detection improvements of 

ART-ORB to those of other ART methods, ART-ORB showed 

more improvement in most failure patterns than ART-RP, 

ART-B, ART-DC, and ART-TPP. Similarly, as shown in Fig. 

8, ART-ORB outperformed the other ART methods for most of 

the fault-seeded programs. These improvements may be 

attributed to ART-ORB‘s ability to more evenly spread tests 

over the input domain.  

Regarding ART-ORB‘s potential for finding multiple 

failures (E-measure), the empirical results indicate that it is 

comparable to the other ART methods: For all failure rates and 

failure patterns used in the simulation, ART-ORB performed 

similarly to the other ART methods, except ART-DC. 

Comparable E-measure performances were also observed in the 

experiments with fault-seeded programs. Although the 

ART-DC E-measure performance of was better in the 

simulations (especially for higher failure rates), the 

experimental results also indicate that ART-DC only has better 

performance for input domains with lower dimensions. 

The Fm-time results obtained in both the simulations and 

experiments provide show that ART-ORB outperforms the 

other ART methods in terms of failure detection efficiency. 

ART-ORB‘s lower time cost for detecting the first failure is 

attributed to its much reduced computational overheads: it does 

not have candidate selections; distance calculations for all but 

one executed test are not necessary; repartitioning is only one 

dimension of one subregion at a time; and 

reassignment/reclassification of previous tests to new regions 

only involves two tests for each new partition. ART-ORB has 

reduced distance computations compared to ART-TPP and 

ART-DC; and reduced test reassignments compared to 

ART-RP, ART-B, and ART-DC. In addition, the ART-ORB 

partitioning process is done progressively, and in real-time, and 

hence the time cost of detecting the first failure is proportional 

to the number of previously executed tests. This is a major 

advantage in practice, since the testing process may often 

terminate one a failure has been detected. 

ART-ORB also has lower execution time than the other ART 

methods for all failure rates and patterns. These observations 

were consistent across both simulations and experiments. The 

lower execution time indicates that ART-ORB is more 

computationally efficient, taking less time to execute tests. 

ART-ORB‘s efficiency is attributed to its minimized 

computational overheads. 

RQ4: The findings from the statistical evaluation of the 

E-measure results generally indicate that ART-ORB has similar 

failure detection ability to the other ART methods, except 

ART-DC, which had better failure detection probability, 

possibly due to the relatively large threshold (λ=50) used in our 

study. Larger thresholds increase the probability of fault 

detection, but also incur higher computational costs—ART-DC 

has higher execution time than ART-ORB in terms of both 

Fm-time and Execution time. On the other hand, some 

interesting observations were made when higher dimensional 

subject programs (d≥5) were used. As seen from the statistical 

analysis of the E-measure results in Table VIII, the 

performance of ART-DC tends to decrease for higher 

dimensional programs. ART-ORB, in contrast, was observed to 

outperform all the other ART methods for almost all higher 

dimensional programs. This observation was also evident in the 

comparison of the E-measure results shown in Fig. 9. This 

provides evidence that ART-ORB is also more effective for 

testing higher dimensional programs. 

VI. THREATS TO VALIDITY 

We have proposed and analyzed a new partition-based ART 

method, ART-ORB, that aims to improve on RT‘s failure 

detection effectiveness and efficiency. Evaluation of threats to 

the validity of a study is very important, and this section 

discusses the potential threats to the validity of this study. 

The ART-ORB algorithm ensures an even spread of tests 

within the input domain through the combination of 

bisection-partitioning and an exclusion zone implementation. A 

potential threat to the validity of our study is that it may be 

possible for two test inputs from different regions of the input 

domain to fall very close to each other. Our investigation into 

the impact of this possible threat (RQ1) involved evaluating the 

distribution of tests generated by ART-ORB, and showed that 

the effect of this potential threat on the method‘s performance 

is not significant: The possibility of it happening is very small.  

A common threat to the validity of any empirical study 

relates to the generalization of the results obtained to other 

situations. This study has shown that ART-ORB is applicable 

to both lower and higher dimensional programs with varying 

input domain sizes. The evaluations in this study employed a 

set of 16 real-life programs with input domains of up to 10 

dimensions (higher dimensional programs require very high 

system configurations to run due to their time and space 

complexity). In addition, some subject programs with the same 

dimensionality were identified to have similar failure pattern 

types—the 1D programs‘ patterns, for example, were all 

characterized as block type. Although the choice of subject 

programs for this study may not fully represent a generalization 

of the proposed method‘s applicability, it does serve the 

purpose of introducing and evaluating ART-ORB. 

Furthermore, the simplicity of the approach (especially the 

incremental partitioning of the input space and selection of tests 

from within the regions of the input domain) make it applicable 

to other types of programs, including very large ones. In our 

future work, we will apply ART-ORB to programs with input 

domains beyond those used in this study, including of higher 

dimensions, larger input domains, and involving other 

programming constructs. Such application will, we anticipate, 

further validate the approach, and support more generalization 

of the conclusions. 

The choice of other ART algorithms used in the comparisons 

may also represent a threat to the validity of this study. In both 

the simulations and experiments, we compared ART-ORB with 

four partition-based ART algorithms: ART-RP, ART-B, 

ART-DC, and ART-TPP. Since the four compared ART 

implementations are common variations of the basic ART 

algorithms [13], [27], [28], they are suitable candidates for the 

comparisons. Nonetheless, our future work will include 
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evaluation against other ART methods, based on notions other 

than partitioning, which we anticipate will further improve the 

method‘s validity. 

VII. CONCLUSION 

In this paper, we have introduced an innovative, new test 

case generation method (ART-ORB) aimed at reducing the 

number of test cases executed before detecting the first failure 

(compared to pure RT), and providing selection overheads that 

are comparable to previous ART methods. The method 

integrates the concepts of both partition testing and exclusion.  

The method involves sequentially bisecting the largest 

region within the entire input domain into further sub-regions. 

This partitioning process is activated whenever two previously 

executed tests are found within a single region. The process 

splits the region with a divisor orthogonal to the largest 

dimension of the region, through the midpoint of the previously 

executed tests (in that region). The method repeatedly divides 

the regions orthogonally and selects new inputs randomly from 

outside of a restricted zone in the region. This process has low 

overheads related to reassigning (two) tests in the region, and 

avoids computing distances between all previously executed 

tests. This results in an enhanced failure detection capability 

and reduced test input generation overheads.  

We performed a series of simulations to examine the 

method‘s test case distribution, compared to RT and other ART 

methods (ART-RP, ART-B, ART-DC, and ART-TPP). We 

also performed simulations using the different categories of 

failure pattern, and experimented with real-life, fault-seeded 

subject programs, again comparing the method with both RT 

and the other ART methods.  

The evaluation and empirical results indicate that the 

proposed approach is simple to implement, provides acceptable 

complexity, and a better even spread of test inputs because of 

its one-domain-one-input approach. Our evaluations have 

demonstrated that ART-ORB can distribute tests more evenly 

over the input domain than RT, and in a distribution 

comparable to other ART methods.  

ART-ORB performs better than RT in terms of ability to 

detect failure, using significantly fewer tests than RT. It also 

compares well with other ART methods in terms of failure 

detection effectiveness.  

In terms of efficiency of detecting failure, ART-ORB has 

demonstrated minimized execution overheads, and outperforms 

all the comparison ART methods in terms of both the time 

required to find a first failure, and the execution time. The 

significance of the overhead reductions was particularly 

evident in high dimensional input domains.   

In conclusion, we recommend that ART-ORB should be 

considered whenever RT may be used, especially in situations 

where test input execution is expensive. ART-ORB should also 

be preferred among other ART methods in situations where 

cost-efficient test input selection is required, especially in 

higher dimensional input space. Due to the simplicity of this 

approach, it will be of great interest to combine it with other 

ART strategies in the future, to further improve on its 

failure-detection effectiveness and efficiency. Our future work 

will include enhancing the failure detection effectiveness of the 

method by extending the exclusion to neighboring regions of a 

candidate test case or by applying probability test profiles to the 

algorithm.  
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APPENDIX 

The figures below are illustrates the distributions of failure 

causing inputs that are generated from the domains of the 

calDay, triangle, line and calGCD programs respectively. For 
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each program, 500 failure causing inputs are generated and 

plotted in 3D with three views angles. 

 

     
(a) 

   
(b) 

Fig.  A1. The distribution of failure-causing test inputs for the calDay program represented in 3D. a shows the distribution in the first three axes (X, Y, Z). b shows 

the distribution in the last three axes (Z, U, V). 

 

      
(a) 

 

 

     
(b) 

Fig.  A2. The distribution of failure-causing test inputs for the triangle program represented in 3D. a shows the distribution in the first three axes (X, Y, Z) . b shows 

the distribution in the last three axes (U, V, W).  
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(b) 

 

 

     
(c)  

Fig.  A3. The distribution of failure-causing test inputs for the line program represented in 3D. a shows the distribution in the first three axes (X, Y, Z) . b shows the 

distribution in the fourth to sixth axes (U, V, W). c shows the distribution in the last three axes (W, R, S). 

 

 

 

 
(a) 

 



TR-2018-159 

 

 

25 

       
(b) 
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(d) 

Fig.  A4. The distribution of failure-causing test inputs for the calGCD program represented in 3D. a shows the distribution in the first three axes (X, Y, Z) . b shows 
the distribution in the fourth to sixth axes (U, V, W). c shows the distribution in the seventh to ninth axes (R,S,T). d shows the distribution in the last three axes (S, 

T, O). 
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