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Abstract. This paper investigates the dynamics and performance of inerter-based vibration 

isolators. Force / displacement transmissibility and vibration power flow are obtained to 

evaluate the isolation performance. Both force and motion excitations are considered. It is 

demonstrated that the use of inerters can enhance vibration isolation performance by enlarging 

the frequency band of effective vibration isolation. It is found that adding inerters can 

introduce anti-resonances in the frequency-response curves and in the curves of the force and 

displacement transmissibility such that vibration transmission can be suppressed at interested 

excitation frequencies. It is found that the introduction of inerters enhances inertial coupling 

and thus have a large influence on the dynamic behaviour at high frequencies. It is shown that 

force and displacement transmissibility increases with the excitation frequency and tends to an 

asymptotic value as the excitation frequency increases. In the high-frequency range, it was 

shown that adding inerters can result in a lower level of input power. These findings provide a 

better understanding of the effects of introducing inerters to vibration isolation and 

demonstrate the performance benefits of inerter-based vibration isolators. 

1.  Introduction 

There has been a growing demand for high performance vibration control devices that change the 

vibration transmission behaviour of dynamical systems to meet specific requirements [1, 2]. One such 

device is the recently proposed passive mechanical element, the inerter, which can be used to provide 

inertial coupling such as to modify the dynamic behaviour [3]. The forces applied on the two terminals 

of the device are proportional to the relative accelerations of the two ends, i.e., 𝐹𝑏 = 𝑏(�̇�1 − �̇�2), 

where 𝐹𝑏  is the coupling inertial force, 𝑏  is a parameter named inertance, �̇�1  and �̇�2  are the 

accelerations of the two ends. Since its introduction, the inerter has been employed in the design of 

vehicle suspension systems and building vibration control systems, etc. [4-8].  

Although much work been conducted so as to improve the understanding of the effects of adding 

inerters to a dynamical system [9], the fundamental effects of the addition of inerters on vibration 

characteristics of dynamical systems still need further clarification. The performance of inerter-based 

vibration isolators has not been fully addressed.  

It should also been pointed out that the influence of incorporating inerters on power flow behaviour 

of dynamical systems has been ignored in the previous investigations. Instead of individual force and 

displacement transmission behaviour, vibration power flows combines the effects of force and velocity 

in a single quantity, and can better reflect the vibration input, transmission and dissipation in a 

dynamical systems. The fundamental concepts of vibration power flow were proposed in [10]. 

Thereafter, many different approaches have been proposed to reveal power flow characteristics of 
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passive and active vibration control systems [11-13]. In recent years, this dynamic analysis approach 

has been developed to investigate vibration power flow in nonlinear dynamical systems for the 

application of vibration control systems and energy harvesting devices [14-18]. It is thus beneficial to 

examine the effects of inerters from a vibration power flow perspective for enhanced designs of 

inerter-based vibration isolators. 

This paper aims to address the issues by investigating the influence of introducing inerters on 

vibration behaviour in terms of force and displacement transmissibility, as well as vibration power and 

energies. Both force and motion excitations will be considered. Moreover, vibration isolation 

performance in terms of both force and displacement transmissibility, and vibration power flow 

variables will be investigated and compared. Conclusions and suggestions for engineering applications 

are provided at the end of the paper. 

2.  Vibration isolation of force excitations 

2.1.  Force transmissibility 

As shown in Fig. 1, an inerter-based vibration isolator consists of a viscous damper of damping 

coefficient 𝑐, a linear spring of stiffness coefficient 𝑘, and an inerter of inertance 𝑏. The mass 𝑚 

representing a vibrating machine is subject to a harmonic force excitation of amplitude 𝑓0  and 

frequency 𝜔. It is assumed that the inerter is ideal with negligible mass. 

m 

k c b

x f0 cos ωt
Force-excited 

machine

Inerter-based 

vibration isolator

 

Figure 1. A schematic representation of an inerter-based vibration isolator for force excitation. 

 

The dynamic governing equation is  

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝑏�̈� = 𝑓0 cos 𝜔𝑡,                                                      (1) 

By introducing non-dimensional variables 

 𝑥0 =
𝑚𝑔

𝑘
,   𝜔0 = √

𝑘

𝑚
, 𝜏 = 𝜔0𝑡,   𝜉 =

𝑐

2𝑚𝜔0
,   𝑋 =

𝑥

𝑥0
, 𝐹0 =

𝑓0

𝑘𝑥0
,  Ω =

𝜔

𝜔0
 and 𝜆 =

𝑏

𝑚
,   

Eq. (1) can be written in a non-dimensional form: 

(1 + 𝜆)𝑋′′ + 2𝜉𝑋′ + 𝑋 = 𝐹0 cos Ω𝜏,                                                   (2) 

where the primes denote differentiation with respect to non-dimensional time 𝜏.  

The undamped natural frequency of the inerter-based isolation system is 

Ωn = √
1

1+𝜆
.                                                                  (3) 

Note that the undamped natural frequency of a conventional linear isolator (i.e., when 𝜆 = 0) is 1. 

Thus the addition of inerter reduces the natural frequency of the system. 
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Assuming that steady-state response of the mass is expressed by 𝑋 = 𝑋0 cos(Ω𝜏 − 𝜙), the steady-state 

response amplitude can be obtained to be 

𝑟 = 𝑋0 =
𝐹0

√[1−Ω2(1+𝜆)]2+(2𝜉𝛺)2
.                                                          (4)  

Fig. 2 plots the response amplitude of the isolation system against the excitation frequency. Four 

different values of inertance with 𝜆 = 0, 1, 2 and 5 are selected. The other parameters are set as 𝜉 =

0.01, 𝐹0 = 1. The highest resonant peak can be found when 𝜆 = 5. The figure shows that at high 

frequencies, the effect of inertance increases. 

 
Figure 2. Response amplitude of an inerter-based isolator subject to force excitation (𝜉 = 0.01, 𝐹0 = 1). 

 

The non-dimensional transmitted force to the ground 𝐹𝑡 is expressed as 

 𝐹𝑡 = 𝜆𝑋′′ + 2𝜉𝑋′ + 𝑋.                                                            (5) 

The force transmissibility 𝑇𝑅𝑓 is defined as the ratio of the amplitude of the transmitted force 𝐹𝑡 to 

that of the excitation force: 

𝑇𝑅𝑓 =
|𝐹𝑡|

𝐹0
=

√(2𝜉Ω)2+(1−𝜆Ω2)2

√[1−Ω2(1+𝜆)]2+(2𝜉Ω)2
.                                                     (6) 

As effective isolation of force transmission requires 𝑇𝑅𝑓 < 1, we have  

Ω > √
2

1+2𝜆
.                                                                       (7) 

Thus the lower limit of the excitation frequency Ω for effective attenuation of force transmission is 

√
2

1+2𝜆
. It should be noted that for a conventional isolator without inerter (i.e., 𝜆 = 0), the excitation 

frequency Ω should be larger than √2 so as to achieve 𝑇𝑅𝑓 < 1. With use of the inerter, the lower 

limit of Ω is reduced, and correspondingly the frequency band for effective vibration isolation is thus 

enlarged. As the inertance increases, the lower limit will shift to the low frequencies. 

For the undamped inerter-based vibration isolator to achieve a lower transmissibility than the case 

without using the inerter 𝜆 = 0, it requires 

𝑇𝑅𝑓 = |
1−𝜆Ω2

1−Ω2(1+𝜆)
| <

1

|1−Ω2|
,                                                          (8) 

Simplifying this expression, we have  

Ωlow = √1+𝜆−√1+𝜆2

𝜆
< 𝛺 < √1+𝜆+√1+𝜆2

𝜆
= Ωup.                                          (9) 

Thus in the frequency band between Ωlow and Ωup, the force transmissibility of the undamped inerter-

based vibration isolator is lower than that of a corresponding conventional isolator. Also, the 

expression of 𝑇𝑅𝑓 for the undamped inerter-based isolator suggests that there will be a zero when Ω =
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√1 𝜆⁄  and a pole at the natural frequency Ω = √1 (𝜆 + 1)⁄ . The former corresponds to an anti-peak in 

the force transmissibility curve.  

Note that in Eq. (6), the numerator and denominator are of the same order of Ω, as the non-

dimensional excitation frequency Ω tends to infinity, we have 

𝑇𝑅lim = lim
Ω→∞

𝑇𝑅 =
𝜆

1 + 𝜆
.                                                                          (10) 

Fig. 3 shows the force transmissibility characteristics of the system with 𝜉 = 0.01, 𝐹0 = 1. In the 

low-frequency range, the transmissibility curve of the inerter-based isolator and that of the 

conventional isolator merge with each other. It is also seen that the peak of the transmissibility curve 

shifts to the low frequencies. As suggested by expression (10), adding inerter can reduce force 

transmission in the frequency band between Ωlow and Ωup. A local minimum in 𝑇𝑅 can be identified 

in the frequency range, suggesting an appearance of anti-resonance. For an undamped isolator, the 

local minimum point is located at Ωanti = √1 𝜆⁄  and thus its value reduces as 𝜆 increases. When Ω is 

larger than Ωanti, 𝑇𝑅 increases with the excitation frequency and tends to an asymptotic value 𝑇𝑅lim. 

This is in contrast to the case with 𝜆 = 0, for which the transmissibility reduces at a rate of 20dB per 

decade. Also, as demonstrated in Eq. (10), the asymptotic value becomes larger as 𝜆 increases but will 

remain smaller than 1. 

 
Figure 3. Force transmissibility of an inerter-based isolator subject to force excitation (𝜉 = 0.01, 𝐹0 = 1).  

2.2.  Vibration power and energy 

It is of interest to examine vibrational power flow behaviour of the inerter-based vibration isolator. 

Note that over a cycle of oscillation, the changes in the potential energy stored in the spring and the 

kinetic energy of the system vanish. Therefore, the non-dimensional time-averaged input power equals 

the non-dimensional time-averaged dissipated power: 

�̅�𝑖𝑛 = �̅�𝑑 =
1

𝑇
∫ 2𝜉𝑋′2𝑇

0
d𝜏 = 𝜉𝑟2Ω2 =

𝜉𝐹0
2Ω2

[1−Ω2(1+𝜆)]2+(2𝜉Ω)2.                         (11) 

where �̅�𝑖𝑛 and �̅�𝑑 are time-averaged input and dissipated powers, respectively. The averaging time 𝑇 is 

taken as 2𝜋 Ω⁄ . In vibration isolation, the kinetic energy of the excited machine is of interest. As the 

velocity amplitude of the mass in the steady-state motion is 𝑟Ω, the non-dimensional maximum kinetic 

energy of the mass in the steady-state motion is  

𝐾𝑚𝑎𝑥 =
1

2
𝑟2Ω2 =

𝐹0
2Ω2

2{[1−Ω2(1+𝜆)]2+(2𝜉Ω)2}
.                                         (12) 

After some mathematical simplification, we can find that  
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�̅�𝑖𝑛 =
𝜉𝐹0

2

[1−Ω2(1+𝜆)]2 Ω2⁄ +(2𝜉)2 ≤
𝐹0

2

4𝜉
 and 𝐾𝑚𝑎𝑥 =

𝐹0
2Ω2

2{[1−Ω2(1+𝜆)]2+(2𝜉Ω)2}
≤

𝐹0
2

8𝜉2.             (13a, b) 

The peak value of �̅�𝑖𝑛  and 𝐾𝑚𝑎𝑥  is obtained when the system is excited at the undamped natural 

frequency Ω𝑛 = √1/(1 + 𝜆). Also, the addition of inerter does not alter the peak value of time-

averaged input power and the maximum kinetic energy. Fig. 4 shows the influence of adding inerter 

on the power flow behaviour of the system. Note that in the current paper, the power and energy 

variables are shown in a decibel scale with a reference of  10−12 . The parameters are set as 𝜉 =
0.01, 𝐹0 = 1 with 𝜆 varying from 0, 1, 2 and to 5. It shows that with increasing 𝜆, the peak in each �̅�𝑖𝑛 

and 𝐾𝑚𝑎𝑥 curve moves to the low frequencies. As suggested by Eq. (13a, b), the peak value of power 

flows remains unchanged. At low excitation frequencies, �̅�in and 𝐾max increase with 𝜆. In contrast, a 

larger inertance 𝜆 leads to lower input power and kinetic energy at high frequencies. It suggests that in 

terms of power flow, adding inerter benefits vibration isolation of high-frequency excitations.  

 
Figure 4. (a) Time-averaged input power and (b) maximum kinetic energy of the excited mass when subject to 

force excitations (𝜉 = 0.01, 𝐹0 = 1).  

3.  Vibration isolation of base excitations 

3.1.  Displacement transmissibility 

In some applications such as vehicles driven over uneven ground, the system is subject to base 

excitations and the role of isolators is to reduce the vibration transmission to the vehicle body. As 

shown in Fig. 5, an inerter-based vibration isolator a viscous damper of damping coefficient 𝑐, a linear 

spring of stiffness coefficient  𝑘 , and an inerter of inertance  𝑏 . Mass 𝑚  represents a machine, the 

response of which is expected to be suppressed by adding the isolator. There is a harmonic base 

excitation of amplitude 𝑦0 and frequency 𝜔. 

m 

k c b

x

y=y0 cos ωt

 Machine

Inerter-based 

vibration isolator

 
Figure 5. A schematic representation of an inerter-based vibration isolator for base excitation. 
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The dynamic governing equation is 

𝑚�̈� = −𝑐(�̇� − �̇�) − 𝑘(𝑥 − 𝑦) − 𝑏(�̈� − �̈�),                                        (14) 

where x denotes the response of the machine, 𝑦 = 𝑦0 cos 𝜔𝑡. Introducing non-dimensional parameters:  

𝑥0 =
𝑚𝑔

𝑘
,   𝜔0 = √

𝑘

𝑚
, 𝜏 = 𝜔0𝑡,   𝜉 =

𝑐

2𝑚𝜔0
,   𝑋 =

𝑥

𝑥0
, 𝑌 =

𝑦

𝑥0
,  𝑌0 =

𝑦0

𝑥0
,  Ω =

𝜔

𝜔0
 and 𝜆 =

𝑏

𝑚
,   

Eq. (14) is transformed into a non-dimensional form 

(1 + 𝜆)𝑋′′ + 2𝜉𝑋′ + 𝑋 = 𝜆𝑌′′ + 2𝜉𝑌′ + 𝑌 = (1 − 𝜆Ω2) 𝑌0 cos Ω𝜏 − 2𝜉Ω 𝑌0 sin Ω𝜏.    (15) 

where the primes denote differentiation with respect to non-dimensional time 𝜏. It may be assumed 

that the response of the mass is 𝑋 = 𝑋0 cos(Ω𝜏 − 𝜙). Inserting this expression back Eq. (15) and 

further simplifying, it can be found that  

  𝑟 = 𝑋0 =
 𝑌0√(1−𝜆Ω2)2+(2𝜉Ω)2

√[1−Ω2(1+𝜆)]2+(2𝜉𝛺)2
,                                                (16a, b) 

Note that the numerator and denominator are of the same order of excitation frequency Ω so that we 

have 

lim
Ω→∞

𝑟 =
𝜆 𝑌0

1+𝜆
.                                                                       (17) 

which shows that the response amplitude of the mass tends to a finite non-zero value as the excitation 

frequency tends to infinity. This behaviour is of contrast to that of a conventional isolation system. 

Also, for the undamped system (i.e., 𝜉 = 0), 𝑟 is zero when Ω = √1 𝜆⁄ . It suggests the existence of 

anti-resonance in the frequency-response curve. Note that for the undamped system without inerter, 

the natural frequency is Ω𝑛 = 1. Thus, anti-resonance may be introduced at Ω𝑛 = 1 by adding an 

inerter to greatly reduce the original peak value in the frequency-response curve.  

The displacement transmissibility 𝑇𝑅𝑑  is defined as the ratio of the response displacement 

amplitude of the base and that of the mass: 

𝑇𝑅𝑑 =
𝑋0

 𝑌0
=

√(1−𝜆Ω2)2+(2𝜉Ω)2

√[1−Ω2(1+𝜆)]2+(2𝜉𝛺)2
,                                               (18) 

the right-hand side of which is identical to Eq. (6) for the force excitation system. Therefore, the 

characteristics of 𝑇𝑅𝑑 with variations of 𝜆 and Ω will be the same to those of force transmissibility 

shown in the previous section.  

3.2.  Vibration power and energy 

As for the power flow behaviour of the system subject to base excitation, the mechanical energy of 

the system remains unchanged over a cycle of oscillation, so that the non-dimensional time-averaged 

input power �̅�𝑖𝑛 into the system equals the time-averaged dissipated power �̅�𝑑 by damping, i.e., 

�̅�𝑖𝑛 = �̅�𝑑 .                                                                        (19) 

As the non-dimensional damping force 𝐹𝑑 = 2𝜉(𝑋′ − 𝑌′)  and the corresponding non-dimensional 

velocity 𝑉𝑑 = (𝑋′ − 𝑌′), the non-dimensional time-averaged dissipated power:  

 

�̅�𝑑 =
1

𝑇
∫ 2𝜉(𝑋′ − 𝑌′)2𝑇

0
d𝜏 =

𝜉 𝑌0
2Ω6

[1−Ω2(1+𝜆)]2+(2𝜉Ω)2,                                 (20) 

 

The maximum kinetic of the mass in the steady-state motion corresponds to the maximum velocity: 

 𝐾𝑚𝑎𝑥 =
1

2
𝑋0

2Ω2 =
 𝑌0

2Ω2[(1−𝜆Ω2)
2

+(2𝜉Ω)2]

2[1−Ω2(1+𝜆)]2+2(2𝜉𝛺)2 .                                             (21) 

Based on these Eqs. (19-21), the influence of adding an inerter on power flows of the system is 

examined and the results are shown in Fig. 6. The system parameters are set as 𝜉 = 0.01,  𝑌0 = 1, 

while parameter 𝜆 varies from 0, to 1, 2 and then 5. Fig. 6(a) shows at low excitation frequencies, 

adding inerter has only a small influence on �̅�𝑖𝑛. A local peak can be found on each curve due to the 

anti-resonance introduced by the inerter. With the increase of 𝜆, the local peak shifts to the low-

frequencies. Fig. 6(b) shows the effects of adding inerter on displacement transmissibility are similar 
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to those on force transmissibility. There is an asymptotic value of 𝑇𝑅𝑑 as Ω tends to the infinity. Fig. 

6(c) shows that at high frequencies, the time-averaged input power reduces as 𝜆 increases. This figure 

also shows that the inerter has a larger influence on time-averaged input power at high excitation 

frequencies. Fig. 6(d) plots the variations of the maximum kinetic energy of the machine mass 𝑚. It 

shows that for the isolator with inerter, there is a local minimum point of 𝐾𝑚𝑎𝑥  created by anti-

resonance in the frequency-response. With an increasing 𝜆, the local minimum point moves to the low-

frequencies. At high excitation frequencies, the maximum kinetic energy increases with 𝜆. 

 
Figure 6. (a) Time-averaged input power and (b) maximum kinetic energy of an inerter-based vibration isolator 

subject to base excitations (𝜉 = 0.01,  𝑌0 = 1).  

4.  Conclusions 

This paper investigated the performance of inerter-based vibration isolators. Both force / displacement 

transmissibility as well as vibration power flow characteristics were studied. Vibration control of 

systems subject to both force excitation and motion excitation is examined. It was found that adding 

inerters can increase inertial coupling and thus have a large influence on performance of the inerter-

based isolators at high frequencies. It was also demonstrated that the addition of inerters can assist in 

enlarging the frequency band of effective vibration isolation. It is found that adding inerters provides 

anti-peaks in the frequency-response, the force and displacement transmissibility curves. This 

behaviour can be used to suppress peak vibration transmission at resonance by placing zeros. It was 

found that the introduction of inerters can results in asymptotic behaviour of force / displacement 

transmissibility with transmissibility tends to a fixed value when the excitation frequency tends to 

infinity. In the high-frequency range, it was shown that adding inerters can result in a lower time-

averaged input power. These findings provide a better understanding of the functionality of inerters 

and can assist in vibration isolation with use of such elements. 
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