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Abstract

Supercapattery is the generic name forbridsof supercapacitor andechargeablédattery.
Batteriesstore charge vidaradat processesnvohingreversible transfer ofocalisedor
zonedelocalised valence electrons. The former is governettid\ernst equationThe
latter leads to pseudocapacitan¢er Faradaic capacitangghichmaybe differentiated
from electric double layer capacitance wihectroscopi@ssistancesuch aslectron spin
resonance. Since capacitive storage is the basiaércapacitorshe combination of
capacitive and Nernstian mechanisms has dominated supercapattery restaceR018
coveringnanostructured and compoundetdetal oxides and sulfidesater-in-salt and
redox active electrolytes and bipolatacks ofmulti-cells.The technical achievements so far,
such as specific energy of 270 Wh/kg in aqueous electrolyte, and chaligoitarging for
over 5000 cycles, benchmark a challenging but promising future of supercapattery.
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1. Challenges to conventional electrochemical energy storage

Repladngfossil fuels byenewablesequiresenergy sbrage for whichelectrochemical

energy storage (EE&vices ara desirabldit because ofheir modular nature, commercial
choices and potentigt fossitcomparable energy capacitonthe last point oxidation of

lithium in electrochemical cellsauses aGibbs energy chand®G’.i= 8.56 kWh/kat 1000

°C) that is comparabldo that of coalcombustion(9.16 kWh/kg)n internal combust engines
(ICEs)1]. Representative commercial EES devices include rechargeable batteries (RBs) and
supercapacitorgSCs), whilst flow batteries are suitable for stationary and large scale storage
[2-4]. Although far betteiin energy efficiencyhan ICE$ca.20%, EES devices haweither
performed to expedtions. Laboratorytested lithiumair battery (LABand commecial

lithium-ion battery (LIB) can only store energy up to 1.0 and 0.3 kWh/kg, respectively,
pending further improvement in rate and durability.

Performance wise, RBs offeigher storage capacitthan SGwhichare howeverbetter in
power capabilityenergy efficiency, andycle life Thesecomplementary merits hae
encouragedievelopment of several hybrid devicascludinglithium-ion capacitors, redox
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capacitors and pseudocapacitofs]. These hybrid store chargdifferently from a
capacitor butthe word capacitoin thesenames hasled to misuse of capacitanceas a
performanceindicator[6]. For unambiguouglassification and comparisptihe generic
namesupercapattery(= supercapaitor + bdtery) was proposedn 2007, followed by
laboratory demonstratiortater [7,8]. In fact,combinationof capacitive and lithium storage
electrodeswas reported in earlier literaturegithoughthe term“lithium-ion capacitot (LIG
first appearedalsoin 2007[9-12]. Because dheir close relation with LI& research and
development ofLIG haveprogressed fast, along withther ion capacitor$13-15]. On the
contrary, supercapatteryarely appeared in the literaturbefore 2015 The recent growing
interestsare partly drivenby curiosity andexploration ofnew and improvedeES
mechanismsmaterialsand devices beyon8Cand RB [16-18]. The otherand more
fundamentalreasonis related to pseudocapacitantieat has been, unfortunately, mised
to account for thebehaviourof many new transition metal compoundat are capable of
Nernstian storage

2. Pseudocapacitance explained

All rechargeabl&ESJleviceswvork followingone or a combination aflectric double layer
(EDLxapacitive pseudocapacitivandbattery-like mechanismg4]. EDL storage is physical
at the electrode/electrolyte interface, whilshe latter two involve charge transfer reactions
on electrode and hence are both Faradaic in natuBattery-like or Nernstianstorageis
widelyknown toresult from reversibleelectrodereactionsthat arebroadlygoverned by the
Nernst equation It is featured bypeakshapedcyclic voltammograms (CVs) amgpotential
plateaw on galvanostatic chargiagischarging plots (GCDBseudocapacitand@r Faradaic
capacitane) presents featuresameasthose of EDtapacitancenamelyrectangular CVs
and linear GCD# hypothesi€xplains such differences liye transfer oflocalised and
partially orzonedelocalisedvalence electrondeadingto Nernstian and pseudocapacitive
responsesrespectivel\j19]. It agrees with density functional theory modellinfjoxygen
doped graphenef20,21]. According to the band mod¢R2], localised valence electrons
have a fixed electronic energy level, capending to a fixed potential for their transfer.
This in turn leadto peakshapedCVs, and plateateatured GCDs for Nernstian storageor
zonedelocalised valence electroas in semiconductorsnstead of full delocalation asin
metals andperfectmonolayer graphenkg theirvery closeslectronic energy levels are
merged to a sufficiently wide banéhto or from which electron transfer occursan
continuous range of potentials. THigpothesigeflects wellthe rectangular CVs and linear
GCDs for pseudocapacitive storage.

Althoughelectrochemicatharacteristicof pseudocapacitancand EDL capacitancae
recognised to be the sanjd,6,23-25], some authorsclaimeddifferentiation betweenthe
two based on snulationagainst equation (11) or (12) beld26-28],

i=av+ b2 (11)
i= m (12)

wherei andv are thecurrentandpotential scan rat®f the CV, respectivelyand a, b, m and
n are constantsk-or surface confined process b = 0, n = Ihut underdiffusion control, a =
0, n =1/2. Otherwise, the electrode reaction is under mixed confitokas assumedut
incorrectly,that the EDL currestresulted from surface confined changes and heneere
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proportional tov, whilst Faadaiccontributionswere diffusion controlled, showing kneaiity

of i on v”2, Obviously theseassumptionsontradict the basi&nowledgethat surface

confined processe®ither capacitive or Nernstiadpminatethe behaviour ofrelativelythin
electrode coatingsAlsq diffusion control could happen in relatively thick electrode coatings
into or from which transport of ions are necessary to maintain charge neutritypoth
capacitiveand Nernstianproceses

In fact,a Faradic process, either Nernstian or capacjtaleraysunpairsor pairselectrons in
the atomic or moleculaorbits, which in turn generatesr demolishes spins that can be
monitored by electron spin resonance (ESR) spectros¢@®y8d. Fig. ashowsthe C\$ of
polyaniline PAr). Whilstthe threepeak couple¢A1/C1, A2/C2 and A3/E8re well
explainedelsewhere[33,34] the capacitive responseare evidentoetween 0.1 and 0.5 V.
For comparisonFig. 1b presenta typicalcyclicesrogram of PAbetween-0.2 and 0.5 V
[30]. It can be seethat the ESR signahriedsimilarly aghe currents on the CMsetween
0.1 and 0.5 Wwhichis strong evidence of Faradalis-/chargingwith insignificantEDL
contribution, if any.Note that A1 on the esrograris at a more positive potential thailon
the CVsThis differenceas dueto the ESR signhkingproportional to the amount of charge
passed, instead of theharge flowrate, i.e. the current.

Ironically pseudocapaitanceis responsible for the syntlsés and test of é&arge number of
nanostructuredtransition metal compoundsspeciallynickel and cobalt based oxigleThese
materialstypically showedNernstianfeatureswith appreciable power capability araycling
durability, but were unfortunately interpretedby pseudocapacitanceith mideadindy high
capacitance valug81,33. Followingseveralcriticisms[4-6, 24,35], such Nernstian
materialshave beercoupkedwith EDL material supercapatterie$36-45].

3. Basics o$upercapattery andaly development

Aimingat mergingthe merits of SCand RB[4,5,18,24] supercapatteryengagswith both
capacitive andraradaignechanismg18,46]. Because capacitive storage can be EDL or
pseudocapacitive, and Faradatoragecan bepseudocapacitiver Nernstian, therds a
large number oEombinationoptions

Supercapattenypehaviour can result frormateriak, such as éat treatednickel hydroxide
films which exhibited fairly rectangulacCVsrom 0 to 0.35 V vsSCE, but presented large
current peaks at more positive potentidisaqueous KOH7]. Composites of manganese
oxides (MnQ@ 1.5 < ¥ 2) with carbon nanotubes (CNT®) graphenesan also store charges
in mixed mechanismgl8-50]. Further, engaging edctron transfer reactioaof soluble
species suchasiodide iors, with EDL capacitance of a porous carbon etmts is another
effective way to combine capacitive and Nernstian mechanj@#52-54].

The deviceapproachto supercapatteryconsiders the relatiopbetweenthe two electrodes
Firstly,the charges passing througlthe capacitivgQcap) and Nernstian@ya:) electrodes
must be equabs expressed bgquation (13)4] where Qspis the specific chargand Gy the
specific capacitance

0 « 0 & 8Y0 D (13)

yo @— (14)



Equation (14) is useful for designing supercapattery, disregarding whether the capacitive or
Nernstian eletrode is the positrode or negatrode.

Secondlyequalcurrents occur onboth electrodes at any timd-or reversible storage in thin
films, equation (15) governthe relation linking withthe Nernst equation (16for reduction
(charging on positrode, or discharging on negatrddg)

Q a o Q (15)

o o —il—, ® (16)

where G is the amount of the relevardr allredox species in the thin filnEquations (15)
and (16) were used to calculate the GCD plots in2gitp 2c[4]. In practical cases, charging
capacitive electrodes, either EDL or Faradaigighly reverdile and hence fashus in the
calculatiors, the charging rates of the cell are assumed to be such thatN\beastian
electrodecould respond in accordance with the Nernst equation (I6eseareindeed
achievable as showly theexperimentally recorde@CDsn Fig. 2do 2f[38,55,56.

4. Selected pgressedbetween2018 and 2019
4.1. Electrode materials

Snce 2018 supercapatteryresearch excludingon capacitors which are reviewed elsewhere
[13-15], has focused onovelnanostuctured and compoundedNernstianmaterials

[16,17 37-45]. For examplehydrothermaldoping40%sulfurinto FeCeOs produced
nanocaterpillarsand increasedhe capacitancao 1801 F/grom 779 F/g without dopingt

2 Alg. The CVs and GCDs were faidpacitive but the capacitive potentiakanged only

from 0 to 0.5 V vs. Ag/AgClupercapatteries made froran undopedFeCaO, negatrode
andthe sulfur-doped positrode performed very weit aqueous3 mol/LKOH. Theell
voltagewas1.45 Vachievingspecific energy and powef 140 Wh/kg and 1434 Y¥g,
respectively and over 500@is-/chargingcycleq16]. However,CVs and GCDs of the
supercapattery showed clear resistive distortiomjicatinghigher resistance of the undoped
negatrode. Also,energy efficiencestimated fromthe GCD at 2 A/graslower than 60%.

Nanosheets of MoSwvere hydrothermallygrown in the pores of a carbon nitride template
[17]. In aqueous 1 mol/L KQlthe composite showeblernstianCVs and GCHB®m 0.0 V to
0.5 V. Thespecific charge capacity reached over 500 Sigprisingly, a symmetrical
supercapattery wabuilt from this materia) leading tounreasonabldgests and results.

An interesting Nernstiapositrodewas made frormmanosheets of carbeooated LiVo(PQ)s
[45]. LeV2(PQ)s offers three valence states of V (lll, IV andcdirespondingo storage of
three Li"ions per formula at high positive potentiats 3.8 V vs Li/LWith anactivated
carbonnegatrodein mixed organic carbonasethe supercapatteryvas tested to 2.7 V to
ensure reversible lithium storage liV2(PQ)s/C. Thecell GCB3 presented two shoulders,
reflecting two steps of lithium storag&eportedspecific energand power were53 Wh/kg
and3 kW/kg respectivelyHoweverafter 2000cyclescapacity loss reached 35%,
apparentlybecauseaepeated lithiumion insertion and removal causexicroscopic fatigue
damage in the positrode



Carbon negatrodes are oftarhosenfor agueous electrolytesmposinghigh overpotentiad
for hydrogen &olution. Furthernano-pores ofactivated carbon permit proton or water
reduction to adsorbed hydrogen atoms or molecules, but restricirthecleation and
growth into bubblesThese adsorbed hydrogen species edsobe re-oxidisedandhence
increasecharge storage capacif$7,58]

More desirable negatrodes are based antige metak because of theiverynegative redox
potentialsand reversibleslectrodereactions[13-1555,56] The concern ownlendritic
depositionupon cyclingare addressed bgeveral approachespuch as pulsed charging for
both zinc and lithium depositiofp9,60]and using3Dstructured (porousgurrent collectos
(e.g. copper foanfor lithium deposition[61,62].

Transition metal oxides are usually ussdpositrode, butiron or tungsten oxideundergoes
reversible changeat negative potential§63-65]. The crystalline/amorphous core/shell
structured iron oxidewith oxygen vacanciesxhibited both capacitive and Nernstian
featuresin 1 mol/L LiOks showrin Fig. 3a and 3Ioecificcapacitanceof 701 F/gwas
claimedasaveragel from the GCD plotHowever thereported GClat 0.5 mA/cni wasnon-

linear, whilstthe equation used focapacitancecalculation,6 Ly actually gives resudt

for the inserted triangular dashed line in Fig. 3hus, the performancshould bebetter
representedby specific chargd-urther, the GCD is asymmetricalong the time axis
showinglonger timesfor chargngthan discharging suggesting £olumbic efficieay much
lower thanthat for a true capacite electrode.

Fig. 3c and 3domparethe CVs and GCDs of Wabid WO.4. Clearly the oxygen deficient
Ws014 performed better.In addition the crystdine Ws014 containedmore ion channels
than WGs. Consequentlythe specific capacitancecreasedrom 371 F/g for Weto 524 F/g
for WsOu4as derived fronfairly linear GCDsNote that against conventiorthe GCBin Fig.
3d start from discharging arttien charging.

4.2. Electrolytes

Aqueous electroltesmatchwell with many redox materialgl6-18, 3744], andsupport cells
to work at highvoltages(>12.4 Vwithout water decompositionFor exampleJead-acid
batteries usesulfuric acidas electrolyte and work a2.0 V.

An advanced approacto avoiding water decompositiois to use the so called water in salt
(WIS) electrolytesh whichall water molecules are bounded to, or surrounded closely by salt
ions,water decompositiormay not occuup to 3.0 [66-69]. However, because of the
minimum separation by a few layers of coordination and solvation water molecules, and
hence strong attractions between cations and anions, WIS electrolytes show high viscosity
and low conductivity. Addition of esolvens could improve the performance, baiso

narrow the potential window67,70.

Non-aqueous electrolytesncluding ionic liquidsyffer wider potential windowsor utilising
the verynegative potentials gffor instance/ithium metal or lithiated carborj9-11,13
15,4571-73]. In such casegheelectrolyte not only conduct iondut alsoparticipate in
redoxreaction e.g. lithiumion reduction or intercalatiorwhichcontributes directly tadis-
/chargingof the cell.



Similarly, redox electrolytes alé®lp enhance storagé supercapacitorgiaboth capacitive
and Nernstian mechanisniS1-54,74] Comparing with making new electrode materials,
dissolved redox species (DRS) in electrolyte offer a simpler and cheaper approach to
enhanced storage. A key issigehecyclingof electro-reactedDRSetween the positrode
and negatrode via diffusion. For examgtalideions(X) are theearlyDRS51,74] with a
reversibleelectroreactionof 3X = X% + 2e. Because botk and X are anionsthey should
be electrostatically attracted tpand trappednside the pores ofhe activated carbon
positrode. Howevergxidationof I occurs neathe equal potential of the positrode and
negatrodeat full discharge causingnsufficient electrostatic attraction and hencedox
cycling[52]. This understanding elains the current peaknear 0 V on theellCV in Fig. 4a
andagrees with the absence ahycurrent peaks on the CVs in Fig. 4b for the cell containing
Br whose oxidation potential is about 500 mV more positive than that.dfiy. 4shows
that simply discharginthe cellto 0.1 V(not 0 V) also eliminatel redox cycling53]. By doing
so, the celtepeated digchargingat 0.5 A/g to 4000 cycsawith only 4 %capacitancdoss.

4.3. Emerging mertnerging innovations

A particularrecert progresss the combination ofmore than twostoragemechanisms into
supercapattery. A ziAgromine supercapattery was studiecombiningEDL capacitive,
pseudocapacitive and Nernstiagtorage[54], although the claimed pseudocapacitive
storage was indct Nernstiarwith Br oxidation. This supercapatteryvas tested ta270
Wh/kg at 9300 W/kgwith 81% capacity retention after 5000 cycles.

The combination of a positrode of the polyaniline/nano carbon fibres (NCF) composite, a
NCF negatrode for lithiumtercalation and a polymer gel electrolytead led to a flexible
supercapattenthat offeredspecific energwpf 106.5 Wh/kg, and0.3%capacity retention
after 9000 cyclefr5].

Last but not the least, the sandwich configuration of supercapattery ¢apeércapacitor)
permitsto use bipolaelectrodesto seriallystack multicells[76]. A basic advantage is thifit
n cellsare tobe seriallyconnected, the number of electrodés2n for external connection,
but n+1 forbipolarstacking76]. This will reduce significantly the mass and volume of the
stack, andenefit toall gravimetric and volumetric propertiebnportantly, the bipolar

plates must be both liquid and gas proof. While the initial effosedtitanium foils as the
bipolar plags, it was shown thab0 mm thickcarbon black/polyethylene composite figm
could be sufficiently conductive (through the film plane) and-#penmeable, which also
helped the fabrication of pouch celigr stackind77]. The stack obipolarlyconnectedzn-

Br, cells performed satisfactorilyeachingO Wh/Land500 W/L with less than 1 % loss over
500dis/chargingcycles Graphite plates witlverticallygrown CNE on both sides were also
used to staclEDLcellsthat retained96.7% of the initial capagitafter 50000 cyclels8].

5.End remarks



Qupercapatteryis beingdevelopd amongst questions owhat should be defined for battery
and supercapacitgmparticularly in relation withhe confusionon pseudocapacitancet is
identified that electrode reactios caninvolve the transfer oéither localisedvalence
electrons governed by the Nernst equatiahich is the basis of batteriesr zone
delocalsed valence electrorisading to pseudocapacitive behaviotiming at merging the
merits of FaradaidNernstian and capacitivetoragemechanisms, igpercapatteryresearch
has progressedteadilysince 2018utilisingnanostructured and compounded metal oxides
and sulfidesapable ofNernstian storaggsaltin-water and redox active electrgties, and
bipolar stacksThere are undoubtedlfurther improvementsbhut, thanks to theknowledge
and technology advancements in batteries and supercapacitopgrsapatterywill become
more competitive angrromisingin the near future
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