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Abstract

Vibration suppression and noise control of mechanical equipment are

critical aspects of engineering and design, aiming to mitigate the adverse

effects of unwanted but inevitable vibrations and noise on human comfort,

structural integrity, and overall system performance. This study focused

on passive control methods that utilised isolators and absorbers to isolate

or dissipate vibrations. Vibration control faces several challenges, includ-

ing the need to address space constraints, low-frequency control, nonlinear

dynamic characteristics, and complex coupled system dynamics. Advances

in control techniques, manufacturing, and computational tools have facili-

tated significant progress in these fields. However, further research and de-

velopment about novel structural design and analysis methods are needed

to overcome challenges and achieve optimal control strategies for diverse

applications. This thesis has dedicated considerable efforts and endeavors

to address the aforementioned challenges.

The study began by proposing the application of linear and geomet-

rically nonlinear inerter-based resonator in locally resonant acoustic meta-

materials (LRAM) and their performance on the low-frequency wave at-

tenuation was evaluated. The LRAM was modeled as 1-D chain system

composed of mass-in-mass unit cells connected by springs, and the geomet-

rical nonlinearity was achieved by two lateral inerters linking the resonator

and lumped mass symmetrically with respect to the horizontal springs.

Compared with linear inerter-based LRAM, the proposed nonlinear inerter-

based structure had the property of a low-frequency bandgap with sufficient

width. The nonlinearity could extend the original material parameter re-

strictions, leading to lower-frequency bandgap.

Furthermore, a diatomic-chain LRAM structure with a negative-stiffness

mechanism was presented for enhanced suppression of vibration transmis-

sion. The bandgap properties were studied and shown to enhance perfor-
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mance benefits by introducing two extra bandgaps that exploit Bragg scat-

tering. With the application of negative-stiffness mechanism, the bandgap

shifted toward the lower frequency range, effective from zero frequency, thus

achieving ultralow frequency vibration control. The proposed implementa-

tion was shown to yield desirable bandgap properties, providing potential

benefits for vibration suppression.

A novel Flexnertia metastructure concept was subsequently proposed

to perform vibration suppression through coupling rotational inerter to

structural flexural motion. Theoretical analysis and experimental test of

the proposed structure with emphasis on dissipating structural flexural

motion was exhibited. The results were in good agreement, confirming

that the average overall response of the metastructure was significantly

reduced. The attenuation became most pronounced in the low-frequency

range where structures tend to suffer most due to high response around the

regime of the first flexural modes.

The study further explored a coupled structure based on a nonlin-

ear hysteresis friction damper subjected to harmonic forces for vibration

suppression. The forced response was well controlled by the normal force

applied to the friction damper, and the amplitude and frequency of the res-

onance peaks could be varied within a certain range by changing force mag-

nitude. The results indicated that the friction damper participates in the

energy dissipation in the frequency band around the resonance frequency,

thereby enabling high-amplitude vibration filtering. It confirmed that such

friction dampers have the potential to be designed to be adjustable and

meet different vibration control objectives.

Overall, the research results presented herein make a significant con-

tribution to the development of linear and nonlinear advanced mechanisms

for vibration control. Several novel configurations were demonstrated with

obvious dynamic advantages from the perspective of power flow and vibra-
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tion transfer. Further research endeavors were warranted to concentrate on

the nonlinear systems based on the excellent properties of acoustic meta-

materials, inerters and friction dampers.

Keywords: Vibration control; Locally resonant acoustic metamaterial;

Inerter; Hysteresis friction damper; Nonlinear; Vibration power flow.
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Chapter 1

Introduction

1.1 Engineering background

High-end equipment manufacturing is a strategic emerging industry that

China has vigorously cultivated and developed. The ‘fourteenth five-year

plan’, the plan ‘Made in China 2025’ and other Chinese national policies

have emphasised the importance of tackling key technologies in the field of

high-end equipment manufacturing. China’s transformation plan of raising

the country’s manufacturing power also puts forward higher requirements

for the level of mechanical design in the new era. According to the ‘Classi-

fication of Strategic Emerging Industries’ issued by the National Bureau of

Statistics of China (NBSPRC, 2018), high-end equipment manufacturing

industries encompass various sectors such as rail transit, aviation, intelli-

gent manufacturing, satellite and marine engineering equipment industries,

etc. The vibration and acoustic performance of these equipment play a cru-

cial role in their overall performance.

Mechanical vibration is inevitable in equipment operation, which may

1
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not only cause structural fatigue or even damage the mechanical structure,

but also affect the measurement accuracy of precision instruments (Wu

et al., 2016). Mechanical vibration is a significant source of noise, con-

tributing to the adverse impact it has on human daily work and life. The

presence of noise pollution in everyday life has severe consequences on the

well-being of individuals as a form of environmental contamination. The

physical, mental, and overall well-being of individuals are greatly affected

by this noise pollution, directly impacting their quality of life. For example,

the vibration and noise of vehicles such as trains and vehicles will reduce

the comfort of passengers, and even break the components, becoming a

security hazard.

The noise caused by the speeding train will also affect the residents

around the railway, ranging from irritability and reduced sleep quality, to

severe heart disease and hearing loss (Wu et al., 2007). Noise is also a

worldwide problem, and the European Environment Agency (EEA) (Peris

et al., 2020) provides an assessment of people exposed to high levels of

environmental noise and its associated health effects in Europe in 2020,

in line with new recommendations from the World Health Organisation

(WHO). The report identifies noise pollution as a growing environmental

problem, affecting one in five people in Europe (Fig. 1.1). Noise can dis-

rupt sleep and make it more difficult to study at school. It can also cause

or exacerbate many health problems. The report also documents actions

taken to manage and reduce noise exposure and reviews progress towards

policy goals. The assessment of the current state of environmental noise

exposure in Europe is based on the latest data collected under the Envi-

ronmental Noise Directive (END). The report also describes other relevant

issues, such as inequalities in environmental noise exposure and impacts
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on wildlife. Hence, it is of utmost importance to prioritize the study of

mechanical structure design for effective vibration control and thorough

evaluation of dynamic performance. By focusing on these aspects, the neg-

ative impacts of mechanical vibration and noise pollution can be mitigated,

thereby enhancing the overall performance of equipment and the well-being

of individuals in various environments.

Figure 1.1: Impacts of environmental noise in Europe, data collected by
EEA in 2020. (Peris et al., 2020).

New material technology is one of the main directions of scientific and

technological development in the 21st century. It marks a deeper expansion
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of human being’s understanding and application of material properties. It

plays a major role in promoting the progress of science and technology

and the development of the national economy. Together with the energy

technology and information technology, it is one of the three pillars of

modern science and technology, while the development of the energy and

information industry also depends to a large extent on the development

of materials. Therefore, countries with advanced industrial technology at-

tach great importance to the research and development of new materials.

Mechanical equipment is composed of materials, which themselves are com-

posed of atoms and molecules arranged in a certain pattern. Generally, the

macroscopic properties of materials such as mechanical, thermal, electro-

magnetic and optical properties are all determined by the microscopic atom

and molecule types and their arrangement. If the microscopic composition

and arrangement are determined, its mechanical, electromagnetic, thermal

and other parameters will be fixed.

Since the continuous development of science and technology forces re-

searchers to have higher and higher requirements for material performance,

new material design technologies and concepts are needed (NSFC and CAS,

2012). Due to the limitations of traditional materials in practical engi-

neering applications, artificial composite materials with special physical

properties have drawn increasing attention. In September 1999, a general

invitation was stated that the Defense Advanced Research Projects Agency

was seeking information regarding artificially constructed materials, named

‘metamaterial’, that exhibit qualitatively new responses not found in nature

(Ziolkowski, 2014). This invitation expressed Defense Advanced Research

Projects Agency’s interest in exploring the possibilities and potential of

metamaterials with unique properties and characteristics. Later in 2001,
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Walser explained at the workshop that the choice of name came from the

desire to achieve material performances ‘beyond’ the limitations of conven-

tional composites (Walser, 2001). The excellent properties of metamaterials

are considered resulting from the integration of artificial and external in-

homogeneity. This concept inspires engineers to get rid of the performance

restrictions of traditional materials to have more innovative ideas. In the

past 20 years, artificial composite materials have been used in the field of

dynamics to control the mechanical waves, some three-dimensional acoustic

metamaterials examples are shown in Fig. 1.2.

Figure 1.2: Real-world three-dimensional acoustic metamaterials (a) Sonic
crystals and (b) Pentamode materials (Haberman and Guild, 2016).

The growing demand for high-performance vibration suppression mech-

anisms has contributed to the proposal of a new type of passive mechanical

element called ‘inerter’, which has gained significant attention for its unique

functionality and potential applications in various dynamic systems. Unlike

traditional passive mechanical elements such as springs and dampers, the

inerter introduces a novel concept of providing a dynamic inertance force,

related to the the relative acceleration of the two terminals (Smith, 2002),

that can significantly impact the behavior of mechanical systems. Since its

introduction in 2001, the inerter was initially employed in the suspension

systems of Formula 1 racing cars (Fig. 1.3), and has subsequently become
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established commercially in suspension systems for high-performance mo-

tor vehicles as the third passive element, alongside the spring and damper

(Smith, 2020). One of the key advantages of the inerter is its ability to

provide a purely inertial force, which is independent of displacement or

velocity. This property allows for the decoupling of stiffness and damping

characteristics, enabling more precise control over system dynamics. By

incorporating inerter devices into mechanical systems (Papageorgiou et al.,

2009), engineers can tailor the dynamic response to specific requirements,

such as improving ride comfort, reducing vibrations, or enhancing energy

efficiency. Despite its promising potential, the practical implementation

and optimisation of inerter devices present ongoing challenges. Extensive

research and development efforts are underway to refine the design, char-

acterization, and application of inerter technology for various engineering

disciplines.

Figure 1.3: One version of Penske’s Formula One ball-screw inerter (Smith,
2020).

Meanwhile, most mechanical structures comprise multiple substruc-

tures interconnected through joints and they take a crucial role in the dy-

namic behaviour of the system (Bograd et al., 2011). Friction is generated

between the contact surfaces of the two jointed components, which affects

the dynamic performance of the overall coupled structure. Considering that

it can convert mechanical energy into thermal energy, effectively damping

vibrations and reducing their amplitudes, friction-based dampers (Fig. 1.4)
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are proposed (Pall et al., 1980) to utilise its energy dissipation mechanism

to mitigate unnecessary vibrations, suppress resonant frequencies, and en-

hance the stability and performance of dynamic systems. With their sim-

plicity, versatility, and cost-effectiveness, friction dampers continue to be

valuable tools in the field of vibration control, addressing vibration-related

challenges and improving the dynamics of diverse engineering applications.

Figure 1.4: Pall friction dampers (a) installed in X-bracing at Concordia
Library, Montreal, and (b) installed in single-diagonal brace at Boeing
Commercial Airplane Factory Everrett, USA (Tirca, 2015).

1.2 Research motivation

Vibration control is a critical area of research that has significant implica-

tions for various engineering fields. In recent years, a lot of researchers are

focusing on the exploration of various linear and nonlinear advanced mech-

anism for high-performance vibration control. The motivation for studying

and advancing vibration control arises from several key factors:

• Metamaterials: Overcoming Limitations of Traditional Materials

and Good Customizability

Traditional acoustic materials and structures often have limitations

in achieving desired acoustic properties. Locally resonant acoustic
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metamaterials offer an alternative approach to overcome these limi-

tations by leveraging the unique properties of engineered structures

and their resonant behavior, allowing for the manipulation of wave

propagation, absorption, and scattering characteristics. This opens

up new possibilities for designing materials and structures with tai-

lored acoustic properties, leading to improved vibration control and

energy management. By customising the unit cell design, e.g. in-

corporating nonlinearity, adjusting geometric parameters, and even

applying other high-performance mechanical element, it is potential

to develop acoustic metamaterials with advanced acoustic control ca-

pabilities.

• Inerter: Dynamic System Performance Enhancement and Decou-

pling of Stiffness and Damping

The inerter provides an additional degree of freedom in controlling dy-

namic systems by introducing a dynamic inertance force. This force

can be strategically utilised to improve the performance of mechani-

cal systems in terms of stability, response time, energy efficiency, and

overall dynamic behavior. The key advantages of the inerter is its

ability to decouple stiffness and damping characteristics. Unlike tra-

ditional mechanical elements such as springs and dampers, the inerter

provides a purely inertial force that is independent of displacement or

velocity. This decoupling property enables engineers to precisely con-

trol and tailor the dynamic response of systems, leading to improved

vibration isolation and system stability. By further understanding

and harnessing this decoupling effect, researchers aim to develop ad-

vanced control strategies and design methodologies for a wide range

of applications.
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• Friction damper: Enhanced Energy Dissipation, Efficiency and

Nonlinear Behavior

Friction dampers offer the advantage of converting mechanical energy

into heat through the dissipation of frictional forces. This energy

dissipation mechanism provides an effective way of reducing the am-

plitude and duration of vibrations, thereby improving the dynamic

response of structures. Friction dampers exhibit nonlinear behav-

ior, which can be advantageous in certain dynamic scenarios. The

nonlinear characteristics of friction dampers enable them to adapt

to varying vibration amplitudes and frequencies, providing effective

damping across a wide range of operating conditions. Researchers are

motivated to investigate the nonlinear behavior of friction dampers,

develop accurate modeling techniques, and explore the potential ben-

efits of nonlinear damping in improving system performance and sta-

bility.

1.3 Aims and objectives

The objective of this thesis is to study linear and nonlinear advanced mech-

anism for high-performance vibration suppression performance. To achieve

this aim and according to the current main research content mentioned

above, the below points should be paid more attention:

• Develop Innovative Metamaterial-Based Vibration Control

Devices

The aim is to design and develop novel vibration control devices based

on metamaterials. The objective is to utilise the unique properties of
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metamaterials to create devices that can passively suppress vibrations

in mechanical systems, providing low-frequency bandgaps.

• optimise the Design and Performance of Inerter-Based Vi-

bration Control Systems

The aim is to investigate the application of inerters in mechanical

vibration control and optimise the design and performance of inerter-

based systems, which provide a high level of relative motion between

two end, enabling effective vibration isolation and damping. The fo-

cus is on developing efficient inerter configurations and control strate-

gies to improve overall vibration control performance.

• Enhance the Efficiency and Effectiveness of Friction Dampers

The aim is to enhance the efficiency and effectiveness of friction

dampers in mechanical vibration control and investigate friction damper

design parameters, such as the normal force applied and friction co-

efficient, to improve their energy dissipation capabilities and broaden

their operating range. The focus is on developing advanced friction

damper designs that can effectively mitigate vibrations across a wide

frequency spectrum.

• Integration of Metamaterials, Inerters, and Friction Dampers

The aim is to explore the synergistic effects of combining metama-

terials, inerters, and friction dampers in vibration control systems

and investigate how these technologies can complement each other to

provide enhanced vibration attenuation and control. The focus is on

developing integrated systems that leverage the unique properties of

each technology to achieve superior vibration control performance.
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1.4 Thesis outline

Chapter 1 introduces the research background, motivation, aims and ob-

jectives.

Chapter 2 includes the literature review about the metamaterials, inerter

and friction damper. It starts with the characteristics and current research

summary of acoustic metamaterials. The inerter is then basically intro-

duced with its properties and applications. At last the contact friction

damper in jointed structure is discussed with emphasis on the hysteresis

behavior.

Chapter 3 presents the fundamental theories for metamaterials and funda-

mental calculation for arc beam. The vibration power flow analysis method

is also introduced.

Chapter 4 proposes linear and geometrical nonlinear inerter based meta-

materials configurations for enhanced suppression of low-frequency vibra-

tion transmission.

Chapter 5 investigates a diatomic acoustic metamaterial configuration

with negative stiffness mechanism for zero frequency vibration control.

Chapter 6 presents a novel dissipation mechanism for structural vibration

reduction through coupling of flexural motion with an inerter.

Chapter 7 evaluates the dynamic performance of a friction damper with

hysteresis behavior and demonstrates its application on SDoF and 2DoF

coupled structure for enhanced suppression of vibration response and power

transfer by tailoring contact friction.

Chapter 8 summarises the main contributions of this study, emphasizes
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the potential of metamaterials, inerter and friction damper in mechanical

vibration control and provides recommendations for future research.



Chapter 2

Literature Review

2.1 Metamaterials

2.1.1 Locally resonant acoustic metamaterial

Noise pollution is a major global problem and, unfortunately, conventional

acoustic materials fail to offer substantial progress in vibration and noise

control. Metastructures are rapidly becoming a key engineering research

focus as artificial composite structures can exhibit unique properties not

found in natural materials. The past decade has seen the fast develop-

ment of metastructures in the field of bionics (Luo et al., 2022), optics

(Singh et al., 2021; Mohammadi Estakhri et al., 2019), electromagnetics

(Fan et al., 2020b) and especially acoustics (Kumar et al., 2018; Kumar

and Lee, 2020). Noise is one of the types of pollution that severely affects

the daily life of citizens worldwide, which is mainly induced by machine

vibration. The vibration of the equipment will also lead to inevitable me-

chanical structural fatigue or even damage, affecting service life and oper-

13
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ational safety. While the demand for high-performance vibration control

systems in society and industry continues to increase, the development and

popularization of advanced technologies (Banhart, 2001) such as additive

manufacturing (Fabro et al., 2020) has provided solid assistance for the

realization of metastructures and their applications in vibration control.

Novel 3D phononic metastructures (Muhammad and Lim, 2021a,b) were

proposed and analysed analytically, numerically and experimentally, shown

to be able to have wide three-dimensional complete bandgaps, beneficial

for low-frequency vibration suppression.

Metamaterials were originally designed for the aim of controlling elec-

tromagnetic waves (Pendry, 2000; Sachan and Majetich, 2005). And be-

cause mechanical waves are similar to electromagnetic waves, researchers

have begun investigating the analogy of using electromagnetic metamateri-

als to deal with sound waves (Cheng et al., 2008; Li and Chan, 2004; Milton

and Willis, 2007). Acoustic metamaterials does not yet have a strict defini-

tion, but based on its development history and commonality, it can be de-

fined as: orderly design microstructures on sub-wavelength physical scales

(generally a few tenths of the controlled wavelength) to obtain artificial pe-

riodic or non-periodic structures with extraordinary acoustic or mechanical

properties that conventional materials do not have (Huang et al., 2009; Wu

et al., 2007). It is notable that the most intuitive impression of acoustic

metamaterials is that they have special properties such as negative mass,

negative elastic modulus, low frequency bandgap at resonance, and extraor-

dinary absorption. For example, negative mass implies that the effective

mass of a unit cell of a metamaterial structure may be negative over a cer-

tain range of excitation frequencies. However, its far-reaching significance

lies in greatly improving researchers’ ability to manipulate elastic waves.
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Material parameters such as positive, negative and zero elastic modulus

and mass can be realised with relative freedom through the design of unit

structures, thus allowing waves to reflect, refract, or even propagate with

arbitrary bending in a specific frequency range. This concept represents a

brand-new composite material or structural design concept, whereby new

materials are designed and manufactured as they are intended to be, based

on understanding and utilising them to their fullest potential.

As one of the important branches of metamaterials, acoustic metama-

terials (AMs) are investigated for vibration wave propagation suppression

and sound reduction (Li et al., 2017b; Sainidou et al., 2006). Over the last

few decades, extensive research has been conducted to explore the distinc-

tive acoustic properties of acoustic metamaterials compared with conven-

tional materials, as well as their potential applications, as shown in Fig.

2.1. Researchers have utilised the specific acoustic parameters of AMs to

develop various innovative physical effects and functional acoustic devices.

These include metamaterial insulators, metamaterial absorbers, topologi-

cal acoustics, hydroacoustic metamaterials, programmable metamaterials

and acoustic metasurfaces, among others. Despite being inspired by elec-

tromagnetic metamaterials, AMs have played a significant role in diverse

applications such as architectural acoustics, urban noise control, acous-

tic landscape design, acoustic functional devices, acoustic stealth, acoustic

imaging, and acoustic levitation (Gao et al., 2022).

Compared with phononic crystals designed to control waves through

Bragg scattering (BS), which is associated with periodic crystal structures

(Deymier, 2013; Jensen, 2003; Sigalas, 1992), AMs can also generate lo-

cal resonance (LR) characteristics to control and guide wave propagation

(Huang et al., 2009; Liu et al., 2000; Moscatelli et al., 2019; Pai, 2010; Pai
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Figure 2.1: Diagram illustrating the broad categorization and application
of acoustic metamaterials (Gao et al., 2022).

et al., 2014; Zhao et al., 2005). This function works based on the properties

of bandgap, which is generated by periodic structures. The bandgaps can

inhibit the propagation of elastic waves in specific frequency ranges and it

can also be called stopband (Li et al., 2019b). They can provide a vibration-

free working or processing environment for special precision instruments or

equipment to improve work accuracy and reliability, extending equipment

life.

However, the wave suppression properties and bandgap structure of

BS and LR are evidently different from each other. As for BS, it can be

used to obtain a very broad bandgap with good wave suppression per-

formance (Jia et al., 2018). But the gaps are normally located at high-
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frequency areas because the center of bandgap frequency range for BS is

determined by periodic configuration lattice constant and wave velocity,

which means a very large structure is required with a low-frequency target

BS bandgap (Jiang et al., 2017). Hence, it is confined to applying the BS

mechanism for controlling low-frequency vibration because the engineering

size is strictly restricted on most occasions. Since Liu et al. (2000) pro-

posed a local resonance unit (as shown in Fig. 2.2(a)) that uses a rubber

material to coat a high-density magnetic core and developed a theory for a

local resonance phononic crystal in 2000, the study of acoustic metamate-

rials based on sub-wavelength structures to explore acoustic supernormal

physical properties has attracted the attention of many researchers. Li

and Chan (2004) take a soft rubber spheres composite suspending in water

to show the negative equivalent elastic modulus and negative equivalent

mass density within a defined frequency range, and they clearly put for-

ward the concept of acoustic metamaterials for the first time. Liu et al.

(2005) analysed the effective parameter densities of the three-component

local resonance structure in 2005, and the results showed that effective mass

densities are negative in the low frequency bandgap. They found that the

size of the resonant unit cell is much smaller than the elastic wave wave-

length in the bandgap, so the mechanism of the local resonance bandgap

is proposed, which makes the acoustic metamaterials potential to be used

in practical engineering. Following this discovery, several research groups

utilised conventional phononic-crystal theory to identify a wide frequency

range of acoustic metamaterials characterised by a negative equivalent mass

density and bulk modulus (Li and Chan, 2004). In 2006, the arrangement

of Helmholtz resonators in a periodic manner (as depicted in Fig. 2.2(b))

was experimentally demonstrated to exhibit a negative equivalent elastic

modulus within the resonant frequency range (Fang et al., 2006). Subse-
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quently, multiple research teams employed conventional phononic crystal

theory and made groundbreaking discoveries of acoustic metamaterials en-

compassing a wide frequency range (Ding et al., 2007; Garcia-Chocano

et al., 2012; Chen et al., 2013).

On the other hand, the bandgap location and width of LR are only

related to the resonant frequency, which is a material parameter. Each

unit has its own mechanical vibration, and the unit size can be small so

that there is basically no interaction, resulting in the natural frequency of

the resonator being insensitive to structural size parameters and direction

(Chang et al., 2018). It is able to achieve sub-wavelength bandgaps, which

can overcome the objective material limitations of the BS-based phononic

crystals. Therefore, with the consideration of suitable dimensions of a pe-

riodic configuration, the bandgap in LR can have a much lower frequency

location compared with that of the BS bandgap. While phononic crys-

tals are designed to mitigate waves by the use of Bragg scattering (Jensen,

2003; Deymier, 2013; Sainidou et al., 2006; Sigalas, 1992), locally resonant

acoustic metamaterials (LRAMs) can generate local resonance characteris-

tics to guide and suppress wave propagation (Moscatelli et al., 2019; Pai,

2010; Pai et al., 2014; Sheng et al., 2003). They are designed by attach-

ing substructures to the master structure, and waves in certain frequency

ranges cannot propagate in these periodic structures (Liu et al., 2000). To

realise a bandgap to control long wavelengths, a relatively large cell size is

required. LRAMs have the potential to overcome such limitations by the

introduction of local resonance mechanisms (Brillouin, 1953; Raghavan and

Phani, 2013). The most typical feature of LRAM is the subwavelength size

and abnormal dynamic effective parameters. When sound waves propa-

gate in such structures, they will be affected, which causes the suppression
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(Cummer et al., 2016). Therefore, through the design of this special struc-

ture, many new physical characteristics and phenomena such as reflection,

absorption, filtering, focusing and stealth of sound waves can be realised,

which has important potential application value in national defense and

daily life.

Figure 2.2: The initial developments of LRAMs. (a) Images of the sample
that achieved the first realization of an anomalous mass effect induced by
local resonance (Liu et al., 2000). Left: a cut-away view showcases a sample
unit cell composed of a small metallic sphere coated with a thin, uniform
layer of silicone rubber. Right: the units shown on the left are connected
using epoxy to create the final sample. (b) An illustration of another sample
which successfully demonstrated frequency dispersion for the bulk modulus
(Fang et al., 2006). Left: one of the Helmholtz resonator sample. Right: a
sample consisting of a series of Helmholtz resonators connected to one side
of a conduit.
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Early AMs mainly consisted of periodic microstructures embedded in

a matrix material with specific resonance properties. These structures ex-

hibited a negative acoustic response, but were limited to a small frequency

range near the resonance frequency, resulting in a narrow working band-

width. In 2008, Fok et al. (2008) introduced the concept of localised

resonance units in acoustic metamaterials, which were able to produce

unique acoustic effects at sub-wavelength scales. Subsequently, Torrent

and Sánchez-Dehesa (2008) defined ‘acoustic metamaterials’ as any artifi-

cial acoustic structure that utilises repetitive or random structural units

to significantly alter the material’s equivalent acoustic parameters, which

has broadened the scope of AMs. In 2012, Liang and Li (2012) theoreti-

cally realised a wide bandwidth of negative refractive indices using spatially

folded structures. The problem of narrow bandwidth was also compensated

by realising double negative parameters without relying on local resonance

mechanisms.

The research on acoustic metamaterials has only been a few years

since the concept was put forward, and it is still in the exploratory de-

velopment stage. Many attempts focusing on LRAMs configuration de-

sign have been reported to optimise vibration control performance and

expand the scope of application, for example, tunable acoustic metama-

terials (Fig. 2.3) (Wang et al., 2014), sandwich structures (Arunkumar

et al., 2017), and filled honeycomb composite structures (Fig. 2.4), multi-

resonator structures (Bao et al., 2021; Stein et al., 2022), membrane-type

acoustic metamaterials (Zhou et al., 2018), piezoelectric acoustic metama-

terial plates (Wang et al., 2021), inerter-based configurations (Kulkarni and

Manimala, 2016), inertial amplification mechanisms based LRAMs (Settimi

et al., 2021), metamaterial-based barriers and foundations (Wang et al.,
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2022b), graded flexible metamaterials (Li et al., 2021a), double-resonator-

based metaconcrete composite slabs (Liu et al., 2022a), the dual-resonator

metamaterial beam (Bao et al., 2021), (Lu et al., 2016; Li et al., 2020b;

Xie et al., 2020), and geometrical nonlinear mechanism-based structures

(Wang et al., 2019a; Li et al., 2021b). Performance benefits using LRAM

in the noise reduction of an automobile panel structure (Jung et al., 2019)

have also been reported. An interesting idea of considering periodically ar-

ranged urban trees as natural metamaterials is proposed (Fig. 2.5), which

can help design artificially engineered arrays of trees with low-frequency

Rayleigh wave bandgaps Their study provides a new concept for the quan-

titative design of urban forests to reduce ground vibration in a specific

frequency range (Liu et al., 2019).

Figure 2.3: Tunable acoustic metamaterial: (a) The initial configuration
consists of resonating units distributed within an elastomeric matrix. Each
resonator consists of a metallic mass connected to the matrix through elas-
tic beams, forming a structural coating. (b) By applying a compressive
strain vertically, the beams experience buckling, leading to a notable change
in the effective stiffness of the structure (Wang et al., 2020).

The bandgap properties of LRAM arise from the generation of neg-
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Figure 2.4: The corresponding relationship between the multilayer honey-
comb single unit cell, which is made from high-strength and light-weight
aramid fiber sheets, and the finite simplified mass-spring model, where the
mass of membrane is simplified as a lumped mass, the spring is used to sim-
ulate the elastic stiffness and damping of the membrane (Li et al., 2020b).

Figure 2.5: The periodic arrangement of urban forests surrounding a build-
ing can be regarded as a natural metamaterial (Liu et al., 2019). The
resonance produced by the trees interacts with elastic waves in the soil,
particularly Rayleigh waves. The propagation of Rayleigh waves can be
effectively suppressed at specific frequencies.

ative effective mass of unit cells (Huang et al., 2009; Li and Chan, 2004;

Milton and Willis, 2007; Pendry, 2000). Considering a 2DoF mass-in-mass

unit cell comprising an inner mass connected to an outer mass via a spring,

it has been shown that when the spring suspended outer mass is subjected
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to a force, the effective mass of the whole unit cell could be negative in a

range of excitation frequencies (Cummer et al., 2016). According to the

Newton’s second law, the direction of the acceleration of a forced negative

mass is opposite to that of the applied force. Using this property, vibration

reduction designs can be realised (Chang et al., 2018; Dong et al., 2021;

Li et al., 2021c). Many previous investigations (Liu et al., 2000; Pai et al.,

2014; Hussein and Frazier, 2013) of LRAM have shown that in the disper-

sion curve diagram, there will be one bandgap near the resonant frequency.

The bandgap is caused by the local resonance of the inner mass, and its

location and width only depend on the material parameters of the system

but not the excitation force.

2.1.2 Novel configurations

Previous studies have focused on the monatomic chain structure with a low-

frequency bandgap generated by local resonance characteristics. Because

the frequency range of the locally resonant bandgap can be changed by tun-

ing the material parameters, LRAMs can provide highly customised design

services to satisfy demanding conditions. Their application can provide

a vibration-free processing or working environment, improving the perfor-

mance and reliability of the equipment. Studies on LRAMs have been

extended to diatomic-based configurations, which are achieved by alternat-

ing the distribution of lumped masses of the main structure. The unit cell

investigated in a monatomic configuration usually consists of a single mass

resonator mechanism, whereas that in a diatomic configuration comprises

dual mass resonator mechanisms. The use of diatomic structure can lead

to multiple bandgaps due to the existence of different resonant frequencies

(Porubov and Andrianov, 2013; Zhou et al., 2017b; Li et al., 2017a). Novel
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phenomena and band characteristics have been observed in LRAMs of di-

atomic configuration. Alamri et al. (2019) developed a diatomic LRAM to

realise asymmetric elastic-wave transmission in multiple broadband ranges,

which was experimentally observed and verified. Zhou et al. (2021) de-

signed and fabricated a 3D-printed diatomic LRAM for impact mitigation

and vibration suppression. The similarities between electrons in crystals,

photons in phononic crystals, and phonons have prompted the extension of

topological concepts from electrons to electromagnetism and acoustics, and

further to mechanical vibrations (Xin et al., 2020; Fan et al., 2020a; Chen

et al., 2019; Chaunsali et al., 2018). Zhao et al. (2018) proposed a locally

resonant topological MTM structure (Fig. 2.6). The diatomic configu-

ration induces two additional Bragg scattering bandgaps located on both

sides of the local resonant bandgap, and topological interface states appear

in these two bandgaps. Compared with other complex monatomic configu-

ration LRAMs optimised for better vibration control performance, the cost

of converting the monatomic configuration to the diatomic configuration

is considerably lower. The design of LRAMs in diatomic configurations

is highly cost-effective. Different spring constants can be obtained by ad-

justing the separation of the resonators in one diatomic unit. Hu et al.

(2022) presented the use of springs linking resonators in one diatomic unit

cell, making it straightforward to obtain topological interface states by only

adjusting the resonators.

At present, many nonlinear mechanisms are initially investigated and

applied in single-degree-of-freedom (SDoF) systems, and the use of some

of them has led to good performance. For the SDoF geometrical nonlin-

ear damping vibration isolator, Wu and Tang (2020) presented a modified

harmonic balance (HB) method to derive the force and displacement trans-
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Figure 2.6: Spring-mass models of a one-dimensional array of local resonant
unit cells. (a) Monatomic configuration. (b) Modified chain configuration
similar to the monatomic chain in (a), but with a new unit cell consisting
of two unit cells in (a). (c) Diatomic chain with different springs. The
dashed frames indicate the unit cells of three different configurations.

missibility. Nonlinear elements have been exploited in the design of LRAMs

designs for further performance improvement. Sepehri et al. (2022) com-

bined exclusive properties of nonlinear chains with electromagnetic actua-

tion to actively manipulate the propagating waves in a monatomic chain

structure. The study related to the active control effects on nonlinear piezo-

electric PCs can create a new bandgap, whose width between the acoustic

and optic branches is influenced by nonlinearity (Wang and Wang, 2018).
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The introduction of nonlinear mechanisms provides the potential to re-

alise low-frequency vibration control of LRAMs, by achieving relatively

low resonant frequencies and bandgap shifting. The effects of temperature-

induced stiffness nonlinearity on the wave propagation of shape memory

alloys based nonlinear diatomic lattices were investigated (Sepehri et al.,

2021). Bae and Oh (2022) presented a geometric nonlinearity-based LRAM

to achieve the bandgap tunability at the quasi-static frequency range. Lin

et al. (2021) proposed a quasi-zero stiffness (QZS)-based LRAM (Fig. 2.7)

that can achieve an ultralow frequency bandgap. It is noted that many

QZS mechanisms lead to nonlinear restoring force, which can yield unde-

sirable nonlinear behaviour. Negative-stiffness mechanism (NSM) has the

potential to be applied to LRAM designs for better performance, and its

use in SDoF vibration isolation systems has been extensively studied (Shi

et al., 2021; Antoniadis et al., 2015; Wang et al., 2018; Sun et al., 2021;

Wang et al., 2019b; Nagarajaiah and Sen, 2020).

Yang et al. (2020) also proposed a nonlinear vibration isolator with

a geometrical nonlinear inertance mechanism (GNIM), which improves vi-

bration isolation performance through achieving a broader frequency band

of vibration transmission. Chen et al. (2020b) focused on the effects of

nonlinearity on the band properties of diatomic mass-in-mass chain with

active control. It showed that it is possible to close the band-folding-

induced gaps in the nonlinear LRAM if negative nonlinearity is applied.

Bae and Oh (2020) reported a new type of bandgap phenomenon called

amplitude induced bandgap, which is induced by amplitude in nonlinear

metamaterials. Yu et al. (2021b) proposed a combinational design of linear

and nonlinear LRAM, which has both chaotic bands and bandgaps. It has

better robustness, higher efficiency, and broader bandwidth for the wave
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Figure 2.7: The proposed conceptual physical model to suppress the hori-
zontal component of Rayleigh waves. The proposed structure mainly con-
sists of four components: built-up steel barriers, resonators, RC retaining
walls and wire ropes (Lin et al., 2021).

suppression effect relative to the noncombined linear or nonlinear LRAM.

Yang et al. (2022) studied the effect of prestress on bandgaps. They used

super-elastic alloy and horseshoes lattices to propose a novel approach to

design metamaterial rods with amplitude-dependent bandgaps. Ji et al.

(2021) presented a review of metamaterials and origami-based structures

and the applications to wave control. Some researchers focused on the

study of the geometrical nonlinear LRAM. Zhou et al. (2017a) realised

multi-low-frequency bandgaps by using multiple resonators with negative-

stiffness mechanisms. The numerical experiments showed that as the res-

onator number in one unit cell with the target frequency increases, the

bandgaps are notably broadened. Wang et al. (2019a) investigated a high-

static-low-dynamic-stiffness mechanism-based LRAM, and the theoretical

results showed that the nonlinearity will affect the central frequency and

width of the bandgaps. The multi-body dynamic analyses and numerical
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simulations all validated the existence of the low-frequency bandgap. In-

spired by all the related research studies, it might be possible to combine

the inerter and geometrical nonlinearity to obtain both advantages. Set-

timi et al. (2021) proposed a 1D cellular mechanical lattice configuration

consisting of pantograph mechanisms in the tetra-atomic cell as minimal

physical realization of an inertially amplified metamaterial. The results

showed that the center-frequency of the bandgap significantly decreased

with the relative mass of the inertia amplifiers. Xu et al. (2019) presented a

nonlinear dissipative elastic metamaterial in a triatomic mass-spring chain

to explore the interplay between nonlinearity and dissipation and provided

a design approach for materials capable of suppressing blast-induced shock

waves or impact generated pulses. Many other research studies based on

nonlinear metamaterials have shown the value of nonlinearity on vibra-

tion control (Fang et al., 2016; Lazarov and Jensen, 2007; Xia et al., 2020;

Mosquera-Sánchez and De Marqui Jr, 2021).

For a majority of the studies on LRAMs, the results primarily showed

dispersion relations and force transmissibility; however, limited studies

have used the vibration power flow analysis (PFA), which is a widely ac-

cepted method for displaying the dynamic characteristics of complex struc-

tures. PFA expresses the combined effect of the velocity amplitudes, forces,

and their relative phase angles as a single quantity that can be used as a

unified measure to directly evaluate the vibrational energy transfer between

different components within a structure (Yang et al., 2013). The theory

has been well developed and the time-averaged power flow variables have

been used in many studies (Xing and Price, 1999; Xiong et al., 2003) as in-

dices to evaluate the vibration dissipation for dynamic analysis. PFA has

been performed on many nonlinear dynamic systems, such as oscillating
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systems incorporating bilinear stiffness and damping elements (Shi et al.,

2019), impact oscillators with linear and nonlinear constraints (Dai et al.,

2020), impact oscillators with nonlinear motion constraints created by a

diamondshaped linkage mechanism (Dai and Yang, 2021), the geometric

nonlinear system of a linkage mechanism with embedded linear springs

(Dai et al., 2022a), the geometrical nonlinear system with a diamond-

shaped inerter-based linkage mechanism (Shi et al., 2022a), a harmoni-

cally excited L-shaped laminated composite structure with flat sub-plates

connected (Zhu et al., 2021a), laminated composite box structures (Zhou

et al., 2024b) and laminated composite plates with a cutout and a variable

angle tow design (Zhou et al., 2024a). With the development of metama-

terials, PFA has been used to quantify the dynamic properties associated

with bandgaps. Al Ba’ba’a and Nouh (2017) presented an approach to

investigate the behaviour of bandgap by analysing structural power flow-

ing in different constituents of LRAM, which can be further extended to

complex LRAM structures. Attarzadeh et al. (2018) used power flow in

LRAMs to quantify the energy transfer modes related to the nonrecipro-

cal response. The results can help in designing a class of low-frequency

configurations at subwavelength scales. In our previous work (Liu et al.,

2022b), PFA was applied to validate the dispersion relations and inves-

tigate the bandgap characteristics of the proposed geometrical nonlinear

inerter-based LRAM configuration from a new perspective for structural

optimisation. The above applications have demonstrated the advantages

and potential of PFA in the study of complex structures.
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2.2 Inerters

2.2.1 Introduction

By attaching energy dissipation vibration damping devices or tuned mass

damper to the structure, passive control is currently the most widely used

method to control the structure vibration. It mainly applies three basic

mechanical elements of mass, damper and spring to the structure (one or

more types) to achieve the purpose of changing the dynamic properties of

the structure and reducing the dynamic response of the structure. Among

these three types of basic mechanical elements, dampers and springs are

two-terminal elements at both ends, and the force at their ends is related to

the relative speed and relative displacement between the two ends. But the

mass is always a single-terminal mechanical element. Because the spring

and damper are easier to install in the structure, the vibration damping

devices based on these two types of mechanical elements are widely used

in the field of structural vibration control. As a single-terminal device, the

mass element requires a large volume to achieve the desired control effect,

so it is inconvenient to install, and at the same time, adding mass to the

structure will also cause additional dynamic effects.

The idea of a liquid pump using the inertial resistance of flowing liquid

firstly came up by Kawamata et al. (1973). But at that time the two-

terminal ‘inerter’ was used incidentally. The concept of the inerter was

first introduced by Malcolm Smith in 2002 using a force-current analogy

between mechanical and electrical networks (Smith, 2002), as shown in

Fig. 2.8. The definition of inerter is somewhat abstract that a two-terminal

device with the characteristic that the equal and opposite forces at two ends
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are proportional to the relative acceleration between them is recognised

as an inerter (Smith, 2020). Different from the normal mass element, as

the inerter model shown in Fig. 2.9, the inertial force, F , generated by

inerter is related to the relative acceleration, ü, between the two ends. The

corresponding proportional coefficient is named ‘inertance’, b:

b =
F (t)

ü1(t)− ü2(t)
(2.1)

They also summarised the principle of inertial elements from a theo-

retical perspective. Then at the beginning of the 21st century, the teams

of Ikago and Inoue from Tohoku University proposed a structural damping

device using the principle of inertia at both ends and conducted a system-

atic study on the principles of inertial efficiency and damping efficiency

(Saito and Inoue, 2007; Saito, 2007). This is the first reported literature

that the inerter system was applied in the field of Civil Engineering.

The inerter itself only has the functions of inertial adjustment and en-

ergy transfer. In order to more effectively achieve the purpose of vibration

damping and control, it is necessary to connect the inerter with springs,

dampers and other mechanical components to work in cooperation. Com-

pared with the traditional vibration absorption system, the inerter system

can achieve flexible adjustment of frequency and change the effective struc-

ture mass without substantially changing the physical mass of the struc-

ture. The inertance can be much larger than the actual physical mass of

the inerter. What’s more, it can improve energy consumption efficiency of

energy dissipater (Zhang et al., 2019a).

Many engineering structures, such as racing cars (Smith, 2002) and air-

planes (Arunkumar et al., 2017), experience harmful low frequency vibra-
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Figure 2.8: Force–current analogy, where stiffness k, inductance L, massm,
capacitance C, damping c, and resistance R are positive constants (Smith,
2020).

tions of which effective suppression is a challenge. For LRAM, its bandgap

can be shifted to lower frequencies by having a heavier mass of the resonator

or a softer spring. However, having a heavy resonator mass is impractical

in most real-world applications due to weight constraints. Also, a soft res-

onator spring will lead to undesirable large static deflections. Therefore,

it is still challenging to realise low-frequency wave suppression (Hussein

et al., 2014). The inerter, which is a two-terminal passive mechanical ele-

ment, provides a possible solution to low-frequency wave attenuation using

LRAM.

2.2.2 Application

The inerter provides flexible frequency shifts and effective mass adjustment

without substantially changing the physical mass of the configuration. Re-
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Figure 2.9: The two-terminal inertial element, inerter. The inertial force
generated by inerter is related to the relative acceleration between the two
ends.

cent evidence suggests that the inerter has a good application prospect in

engineering fields (Dai et al., 2019; Zhao et al., 2020; Javidialesaadi and

Wierschem, 2019; Liu et al., 2022b). The theoretical results on the perfor-

mance benefits of vibration suppression devices may become less convincing

without the required experimental verification. Therefore in the past two

decades, a number of inerter prototypes have been designed in practice, in-

cluding the rack-and-pinion inerter (Papageorgiou et al., 2009; Sun et al.,

2017), ball-screw inerter (Papageorgiou et al., 2009; Li et al., 2012), helical

fluid inerter (De Domenico et al., 2019; Zhang et al., 2018, 2020), hydraulic

inerter (Wang et al., 2011), electromagnetic inerter (Gonzalez-Buelga et al.,

2015) and living-hinge inerter (John and Wagg, 2019). Different from the

normal mass element, the inerter can generate large effective mass with

small physical mass. Based on this characteristic, inerters have been used

to upgrade the traditional dynamic vibration absorber because it can re-

duce the natural frequency of the vibration system (Chen et al., 2014).

Fig. 2.10(a) illustrates a schematic representation of a typical ball-

screw inerter. The device comprises several components, including a ball

screw, a flywheel, a radial bearing, and a housing connected to the ball

nut. The ball screw plays a crucial role in this inerter by converting lin-

ear motion between its two ends into the rotation of the ball nut, which

subsequently results in the rotation of the flywheel. This design allows for
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the amplification of the physical mass of the flywheel, thereby achieving a

substantial inertance. Since 2008, Penske Racing Shocks has been at the

forefront of the commercial development and provision of inerters (Smith,

2020). Fig. 2.10(b) displays a specific version of Penske’s ball-screw inerter

used in Formula One. The construction of this inerter closely resembles the

schematic depicted in Fig. 2.10(a). Notably, there is no internal mecha-

nism within the device to prevent rotation. Instead, the rod and housing

have terminal attachments with a clevis mount that individually locks them

against rotation. In this particular example, the ball screw is lubricated

with grease and operates without seals.

A schematic illustration of a rack-and-pinion inerter is presented in Fig.

2.11(a), comprising components such as a rack, pinions, gears, a housing

and a flywheel. In this configuration, the rack is capable of sliding within

the housing and driving the rotation of the flywheel through the pinions and

gears. The relative translation of the terminals is thereby converted into the

rotational movement. By utilizing the rotational motion of the flywheel, the

desired inertance is achieved in this system. Fig. 2.11(b) shows an inerter

device prototyped in the Cambridge University Engineering Department

(CUED) workshops.

Many inerter-based vibration control systems have been proposed and

developed (Shi et al., 2022b). Hwang et al. (2007) proposed the research

of rotational inertia dampers with toggle bracing in building structure vi-

bration reduction. The numerical results indicate the rotational inertia

damper is effective in structural vibration control and the efficiency of the

damper depended heavily on the ball screw lead length. Hessabi and Mer-

can (2016) carried out both experimental and theoretical analysis on a

gyro-mass damper inerter device for controlling building structures vibra-
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Figure 2.10: Ball-screw inerter. (a) Schematic drawing (Ma et al., 2021)
and (b) One version of the Penske ball-screw inerter (Smith, 2020).

tion. Enhancing the acceleration difference of two inerter terminals can

improve the performance of the inerter device on vibration control. Dai

et al. (2022b) investigated an innovative nonlinear tuned mass-damper-

inerter (TMDI) in the application of the ship propulsion shafting system.

The numerical results indicate that the analysed TMDI can increase energy

dissipation and reduce energy transmission, which has better performance

than the conventional mass-spring-damper device. Giaralis and Petrini

(2017) investigated the application of TMDI to suppress excessive wind-
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Figure 2.11: Rack-and-pinion inerter. (a) Schematic drawing (Ma et al.,
2021) and (b) One rack-and-pinion inerter mechanism designed by Papa-
georgiou et al. (2009).

induced oscillations in tall buildings. In this research, one terminal of the

TMDI was attached to the top floor while the other terminal was connected

to the lower floor. It was found that as the number of floors spanned by the

TMDI increased, the peak acceleration on the top floor decreased. Subse-

quent study (Petrini et al., 2020) also demonstrated the robustness of the

TMDI to host structure is increased by spanning more floors to connect

the secondary mass to the host structure by inerter device. The deflected

shape and external force distribution on the host structure are also analysed

for TMDI performance evaluation, combining optimal TMDI tuning with
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host structure design to enhance performance for dynamic loads. Su et al.

(2022) went a step further, proposing empirical formulas as guidance for

determining optimal TMDI design parameters related to inerter location.

In recent years, the nonlinear energy sink with an inerter has been

investigated and has shown good vibration reduction effects (Chen et al.,

2020a; Zhang et al., 2019b). Based on all these benefits, it is a practi-

cable choice to apply the inerter to the structure design of LRAM with

low-frequency bandgap. A few studies based on the application of linear

inerters in LRAM have already shown its potential and advantages. Kulka-

rni and Manimala (2016) studied the different inerter-based configurations.

The results showed that the bandgap frequency range can be shifted both

up and down by adjusting the parameters, and it is possible to retain a

minimum resonator mass ratio. Another study has shown the wave dis-

persion and bandgap of the so-called inertially amplified acoustic metama-

terials and proposed an alternative resonator-free acoustic metamaterial

structure, which exhibits local resonance effects under appropriately tuned

conditions (DePauw et al., 2018). However, the existing configurations still

have a lot of room for improvement.

Most of the inerter research in the literature focused on theoretical

analysis and there are a limited number of experimental studies reported

investigating the dynamic behaviour of the inerter-based metastructure (Yu

et al., 2021a; Pietrosanti et al., 2020; Gonzalez-Buelga et al., 2017). Li et al.

(2019a) designed a novel inerter-based damper termed electromagnetic in-

ertial mass damper for the vibration suppression of a 135 m long full-scale

cable, which can provide excellent vibration mitigation performance with

optimal inertance and damping coefficient. Zhang et al. (2022) performed

an experimental investigation of a novel crank inerter with a variable nega-
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tive stiffness effect. The experimental data match well with the theoretical

results, proving it can be effective for providing an apparent mass effect and

variable negative stiffness. Brzeski et al. (2017) presented the experimental

verification of a novel TMD which enables changes of inertance. The re-

sults showed that it can offer superior damping efficiency in a broad range

of excitation frequencies. Our research group also have studied several in-

erter based systems and demonstrated the potential for inerter to enhance

performance (Shi et al., 2022b; Dai et al., 2022b; Zhu et al., 2021b; Shi

et al., 2024; Chao et al., 2023; Dai et al., 2024; Dong et al., 2021).

2.3 Friction dampers

2.3.1 Contact friction of jointed structures

Many mechanical structures comprise multiple substructures interconnected

through joints and high-performance vibration suppression connections are

critically needed to reduce vibration propagation within them. There are

various types of connections used in engineering structures, such as welded

joints (Ceglarek et al., 2015; Lee et al., 2011), bolted joints (Gaul and Lenz,

1997; Dano et al., 2007), assembled joints (Tian et al., 2023; Yang et al.,

2023). As common components of complex mechanical systems, joint con-

nections play a crucial role in the dynamic behaviour of the system (Bograd

et al., 2011). Contrary to ideal pinned or rigid connections, dry friction has

a strong influence on the dynamic behaviour of joints in bolted and riveted

assembled structures.

Friction is a very complex topic, which is the property of a dynamic

system (tribosystem) instead of the property of materials or surfaces sliding
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against each other. The fundamental question about friction is how energy

is actually dissipated. When two distinct surfaces slide against each other,

part of the kinetic energy is dissipated through elastic and inelastic defor-

mation of the asperity tips. Part of the energy is dissipated through viscous

mechanisms. The rest is dissipated through a number of factors such as

fracture, adhesion and other chemical processes. Therefore, as shown in

Fig. 2.12, friction dissipation can be ultimately regarded as a conversion

of kinetic energy into thermal and potential energy, which is released into

the surroundings (Akay, 2002).

Figure 2.12: Friction energy flow path diagram (Akay, 2002).

Based on tribology, which is the study of friction, wear and lubrication,

and design of bearings, science of interacting surfaces in relative motion,

plowing and adhesion are the two main sources of dry friction between two

metallic sliding bodies. Adhesive friction arises due to plastic deformation

of the asperities, i.e., microscopical contact points or micro-junctions, of two
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sliding surfaces, normally under mutual loading. This plastic deformation

results in a ‘cold welded’ joint that requires a certain amount of lateral

sliding force to shear its sliding. Plowing, on the other hand, occurs when

the roughness of hard metal penetrates into softer metal. Therefore, in

order for these objects to slide against each other, the natural roughness

needs to be skipped. The following are three classic dry friction theories

that lay the foundation of tribology (Halling and Burton, 1977; Persson,

2013):

1. The first law of Amonton’s states that for any object which is under

motion the friction is proportionate and perpendicular to normal load.

2. Amonton’s second law states that friction of an object is determined

by the characteristics of the surface it comes into contact with.

3. The Coulomb’s Law of Friction states that the amount of the relative

surface velocity has no effect on the kinetic friction exerted between

the contact surfaces of two dry objects.

The summary of these three theories is usually stated as follows:

F = µN (2.2)

where µ denoted the coefficient of friction, representing the ratio of the

frictional force, F , that acts against the motion of two contacting surfaces,

and the normal force, N , which is the force exerted perpendicular to the

surfaces, pressing them together.

The static friction coefficient and the kinetic friction coefficient possess

distinct numerical values. Static friction acts in opposition to the applied
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force on an object, preventing its movement until the force surpasses the

threshold of static friction. On the other hand, kinetic friction opposes

the motion of an object that is already in motion. Hence, it gives rise to

the concept of the stick-slip phenomenon, which occurs when objects in

contact slide over each other. Instead of smooth and continuous motion,

these objects exhibit irregular movement characterised by intermittent ac-

celerations (slips) followed by halts (sticks). Stick-slip motion is typically

attributed to friction and can result in vibration, noise and mechanical

wear of the moving objects, making it undesirable in mechanical devices

(Berman et al., 1996). However, in certain situations, stick-slip motion can

have advantageous applications, such as producing musical tones when a

bow moves across a string in a bowed string instrument (Gao et al., 1993).

2.3.2 Hysteresis nonlinearity

The motion of the joints exhibits global stiffness and damping properties

due to nonlinear contact friction and sliding that occurs at the microscopic

scale of the joint region (Gaul and Nitsche, 2001). These elements, which

have both stiffness and dissipation properties within a certain area, exhibit

typical hysteretic properties. Moreover, nonlinear softening effects occur

near the resonant frequency because of the sliding effects that occur when

joints have large vibration amplitudes. The hysteresis phenomenon of a

multitude of connections may cause a large portion of the energy dissipation

in the structural system, leading to discontinuities and nonlinearities in

the system stiffness and damping, and making the whole structure exhibit

complex nonlinear dynamic behaviour (Liu et al., 2021). If the connections

between substructures are assumed to be rigid during modelling without

considering the effect of joints, it may result in properties that are very
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different from those of the actual physical structure. Many studies have

been carried out to suppress or even completely eliminate the effect of

friction in vibration (Dehkordi et al., 2022). But on the other hand, there

is the potential to utilise the effects of friction to reduce vibration transfer

between subsystems (Ferri, 1995), e.g. friction component based vibration

transfer suppression device.

Many passive linear isolators in the transmission path have been in-

serted in the transmission path for preventing excessive vibration transmis-

sion (Rivin, 2004). Passive nonlinear vibration isolators have been further

proposed because of their advanced performance in vibration control, which

overcome the limitations of linear vibration isolators (Shi et al., 2019; Dai

et al., 2020). Hysteresis nonlinearities typically exhibit greater complexity

than geometric and polynomial nonlinearities due to their damping and

stiffness dependence on response amplitude. The hysteresis can occur in

different shape cycles, but the typical discontinuity point on the restoring

force curve has a certain affinity with piecewise nonlinearity (Casini and

Vestroni, 2022). The hysteresis nonlinearity is considered to be a strong

nonlinearity, which reveals a great number of nonlinear phenomena as com-

pared to the weak nonlinearity, and thus brings a lot of research interest on

its dynamic response. For example, seismic isolation bearings play a vital

role in mitigating the seismic risk of a structure. Numerous studies have

shown that lead-rubber bearing (LRB), consisting of lead plug inserts, can

provide a characteristic hysteretic energy dissipation effect (Zheng et al.,

2022; Yasar et al., 2024; Dezfuli et al., 2017; Providakis, 2008).

Several methods are available in the literature to tackle the hysteresis

dynamic aspects of jointed systems (Gaul and Nitsche, 2001; Ferri, 1995;

Mathis et al., 2020; Berger, 2002). Nonlinear finite element analysis (FEA)
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describes contact interfaces considering hundreds of degrees of freedom and

can provide models with high fidelity (He, 2011). However the simulation

of these models in a nonlinear dynamic state is computationally expen-

sive, especially for obtaining the time-domain response. For most appli-

cations where the modelling of contact surfaces is not of great concern,

a lumped model in the form of a single-degree-of-freedom (SDoF) oscilla-

tor driven by a hysteresis term is the ideal solution for reconstructing the

global dynamics of a jointed structure (Miguel et al., 2022). One of the

most fundamental and uncomplicated ways of conveying the dry friction

behaviour is the Coulomb model, which determines the system’s sliding

state solely through the use of a sign function of relative velocity (Gaul

and Lenz, 1997). The Coulomb model defines friction force in sliding and

sticking situations, which should be dealt with separately. An elastic spring

in series with a Coulomb slider creates a Jenkins element, which exhibits a

bilinear hysteresis force-displacement curve capable of tracing both sliding

and sticking states (Kashani, 2017; Li et al., 2022). The hysteresis curves

for the Jenkins elements show nonlinear force-displacement relationships,

with closed regions corresponding to dissipated frictional energy (Bograd

et al., 2011). To achieve smooth switching rather than the hard switch-

ing between sticking and sliding states that bilinearity would cause, the

Iwan model (Iwan, 1966) can be implemented, which is a combination of

several Jenkins elements in parallel. This model has a specific distribu-

tion of friction thresholds and spring coefficients that smooth the resulting

hysteresis loop. The Maxwell-slip model (Al-Bender et al., 2005) improves

on Ivan’s model by considering the inertial properties of the slider. An

alternative method of smoothing the hysteresis curve is to replace the bi-

linear function with a smooth function. Other smooth hysteresis models

such as the Dahl model (Dahl, 1976), the Duhem model (Padthe et al.,
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2008), the Lugre model (Johanastrom and Canudas-De-Wit, 2008) and the

Bouc-Wen model (Wen, 1976; Zhu et al., 2019; Nguyen et al., 2022) have

been introduced, improved or adopted.

2.3.3 Dry friction damper

On the other hand, hysteresis dampers can also be used to suppress struc-

tural vibrations, and dry friction dampers, as one of the most common

types, are widely used in many structural systems to achieve vibration

damping. A comprehensive literature review was conducted (Jaisee et al.,

2021), systematically examining cited and reviewed studies from 1985 to

2020. Fig. 2.13 displays a graphical representation depicting the quantity

of research throughout the entire period. The trends observed in Fig. 2.13

distinctly demonstrate the increasing popularity of friction dampers since

their inception in civil engineering approximately four decades ago. The

bar graph highlights a significant surge in the number of studies conducted

during the present decade, indicating the rapid progress and widespread

implementation of friction dampers.

Pall et al. (1980) first developed dampers to dissipate seismic energy

by generating mechanical damping through sliding friction by analogy with

vehicle braking in 1980. The authors developed a solution called Limited

Slip Bolted joints to effectively dissipate energy at the joints of large panel

structures. Through a series of static and dynamic tests, they identified a

system that exhibits consistent and foreseeable frictional behavior, priori-

tizing it overachieving maximum energy dissipation. However, a significant

issue was identified in braced steel frames equipped with the proposed de-

vice (Pall and Marsh, 1981). The braces were primarily designed to func-
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Figure 2.13: Bar chart of the number of literature related to friction damper
and the year published (Jaisee et al., 2021).

tion efficiently under tension loading for economic reasons. Nevertheless,

when subjected to repeated tension loading, the braces did not perform

effectively, requiring them to be stretched beyond their original elongated

length to regain their usual functionality, which was deemed undesirable.

In order to address this concern, Pall and Marsh (1982) introduced a mod-

ification to the sliding friction joint in 1982. They proposed securing the

friction pad at the intersection of cross braces using four links. This revised

design resulted in the creation of the Pall frictional damper as shown in Fig.

2.14(a), which served as both a friction damper and a safety valve (Pall and

Pall, 1996; Pall et al., 2004). In a subsequent development in 2005, Wu et al.

(2005) introduced further enhancements to the Pall Frictional Damper and

named it the improved Pall friction damper (Fig. 2.14(b)). The authors
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conducted numerical calculations to assess the hysteretic response of the

improved Pall friction damper, considering geometric nonlinearity. The re-

search demonstrated that the improved Pall friction damper replicated the

mechanical behavior of the Pall frictional damper while offering additional

advantages such as simplified analysis, reduced manufacturing costs, and

easier assembly.

Figure 2.14: Differnt dampers: (a) Pall Friction Damper (Vezina et al.,
1992). (b) Construction and operation of Improved Pall Friction Damper
(Wu et al., 2005).

While the Pall frictional damper served as a viable option for energy

dissipation in moment resisting frames and braced frames, its capacity to

resist loads was found to be relatively low (Filiatrault and Cherry, 1987).

Moreover, its manufacture required precise workmanship and its installa-
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tion demanded specialised training, resulting in additional expenses (Grigo-

rian et al., 1993). To address these limitations, Fitzgerald et al. (1989)

introduced a simplified design for friction damper in 1989, known as the

Slotted Bolted Connection, as shown in Fig. 2.15(a). The proposed slot-

ted bolted connection functioned by sliding a channel bracing plate over a

gusset plate, interconnected by high-strength bolts with washers used for

adjusting bolt tension.

The Symmetric Friction Connection is a variation of the slotted bolted

connection that consists of a main plate with slotted holes, two brass shims,

two outer plates, and high-strength bolts, as presented in Fig. 2.15(b).

Grigorian (1994) conducted multiple tests on the symmetric friction con-

nection to investigate the frictional behavior between sliding mild steel

surfaces and between mild steel and brass surfaces. They discovered that

the symmetric friction connection exhibited stable and repeatable charac-

teristics under cyclic loading. Other researchers (Kim and Christopoulos,

2008; MacRae et al., 2010) have also explored the frictional behavior of

various materials such as aluminum, stainless steel, and brake-line pads.

Numerous scholars (Loo et al., 2014; Iyama et al., 2009; Tsai et al., 2008)

have integrated the symmetric friction connection into various other seismic

mitigation systems.

Comparing passive friction dampers with other passive energy dissi-

pation devices, several observations can be made. Dry friction dampers

exhibit a larger hysteretic loop compared to other devices, enabling them

to dissipate more energy per cycle. Additionally, their performance re-

mains unaffected by ambient temperature variations. The highly non-linear

behavior of friction dampers adds complexity to their analysis, and with-

out an external restoring mechanism, permanent deformation may occur.
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Figure 2.15: (a) Exploded view of Slotted Bolted Connection (Fitzgerald
et al., 1989). (b) Symmetric Friction Connection (Khoo et al., 2015).

Metallic dampers, similar to friction dampers, exhibit non-linear behav-

ior and are insensitive to ambient temperature. In contrast, viscoelastic

dampers possess restoring ability and are activated at low displacements.

Unlike metallic, viscous, and friction dampers, they can restore their origi-

nal shape. A comparison of passive dry friction dampers with other passive

energy dissipation devices is presented in Fig. 2.16.

In addition, the performance of the friction damper is less affected by

load frequency, amplitude and number of cycles, and its characteristic of
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Figure 2.16: Comparison of friction damper with other passive energy dis-
sipation devices (Symans et al., 2008).

dissipating maximum energy by generating a rectangular hysteresis loop

makes it superior to other hysteretic devices. They have been applied ex-

tensively in various fields such as civil engineering (Jaisee et al., 2021),

aviation engineering (Ciğeroğlu and Özgüven, 2006), automotive engineer-

ing (Wang et al., 2022a) and railway engineering (Lopez et al., 2004). There

have also been a number of related studies in recent years. An equivalent

modelling method for spatial lattice structures based on hysteretic non-

linear joints was presented by Liu et al. (2021). Donmez et al. (2020)

proposed a nonlinear quasi-zero stiffness vibration isolator coupled with a

dry friction damper. Wu et al. (2019) focused on the design of semi-active

dry friction dampers and conducted sensitivity analysis and experimental

studies. Salvatore et al. (2022) proposed an isolation system with negative

stiffness and superelastic hysteresis.

If further insight into the effects of hysteresis friction on the dynamic

performance of vibrating systems is desired, then vibration transfer and en-

ergy dissipation can provide additional perspectives to understand. How-
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ever, there are very few studies on vibration transmission in structures

involving friction (Dai et al., 2022c; Marino and Cicirello, 2020), much less

vibration transmission studies in coupled structures based on hysteresis

friction dampers. Hua et al. (2021) proposed a hysteretic friction tuned in-

erter damper for seismic control of engineering structures, and parameter

optimisation was achieved by minimising the maximum force as well as the

displacement transmission. Meanwhile, previous studies of the dynamic

response of nonlinear systems have paid little attention to their vibration

power and energy transfer. As a well-accepted method (Shi et al., 2023),

power flow analysis (PFA) can also be used to evaluate the vibration and

energy transfer levels of complicated dynamic systems. The idea was ini-

tially introduced by Goyder and White (Goyder and White, 1980) with

further development in the study of different linear and nonlinear systems

(Royston and Singh, 1996; Xiong et al., 2001, 2003, 2005). This method has

been applied to the analysis of vibration characteristics of various complex

structures, such as smooth or non-smooth joint based coupled structures

(Shi et al., 2019; Dai et al., 2020), composite plates (Zhu and Yang, 2022;

Zhou et al., 2023), acoustic metamaterials (Liu et al., 2022c,b), and inerter

based vibration isolators (Dong et al., 2022; Liu et al., 2023). PFA can

bring another point of view to study the dynamic behaviour of the friction

damper based system.



Chapter 3

Basic theories and dynamic

analysis methods

3.1 Acoustic metamaterials for wave atten-

uation

When electromagnetic waves enter the material, their magnetic and electric

fields will interact with the electrons of the material and other charges of

molecules and atoms. This interaction changes the wavelength and speed

of the wave, especially when local optical resonance occurs. Therefore, this

electromagnetic interaction can be used to design materials with negative

electric and magnetic permeability, and thus with negative refractive in-

dex (Pendry, 2000). Elastic waves in a continuum may interact with their

subsystems, which is similar to electromagnetic waves. This interaction

will influence the speed and wavelength of the waves, especially when local

mechanical resonance occurs in the subsystems. Therefore, this mechani-

cal interaction can also be utilised to design acoustic metamaterials with

51
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negative effective mass or stiffness. However, there are natural materials

with negative dielectric constants, but no natural materials with negative

stiffness or mass. Therefore, acoustic metamaterials could be achieved by

applying microstructures, and the experimental results have proved the ex-

istence of negative effective mass. (Li and Chan, 2004; Milton and Willis,

2007; Wu et al., 2007; Cheng et al., 2008; Huang et al., 2009; Pai, 2010).

This theory will also be presented later.

The bandgaps of LRAMs are mainly based on the theory of negative

mass. If one of the unit cells in the metamaterials system is selected to be

investigated, it is clear to get its equations of motion. If the internal struc-

ture of the unit cell is assumed to be unknown, which means the 2-DOF

unit cell could be recognised as a SDoF lumped mass, the equation of the

effective mass of the lumped mass could be derived based on the equations

of motion. And it shows in some specific range of excitation frequency, the

effective mass could be negative. It is clear that according to Newton’s

second law of motion, if the mass is negative, the corresponding accelera-

tion will be opposite to the applied force, and the response amplitude will

be decreased (Chang et al., 2018; Wu et al., 2016). Making use of this

theory and Bloch’s theorem (Brillouin, 1953), the dispersion curve equa-

tions of the LRAMs system could be derived, which could be used to get

the dispersion curve diagram. Many existing researches about the locally

resonant metamaterials have already shown that there will be one bandgap

near to resonant frequency observed because of the local resonance (Huang

and Sun, 2011; Liu et al., 2000; Zhao et al., 2005). The location and width

of the bandgap are only controlled by the system material parameters but

not the excitation force. Normally the low frequency vibration is the main

target to control because it is more harmful and difficult to suppress. And
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in the LRAMs, the resonator with heavier mass and softer spring will lead

to a desired stop band which is located at a lower frequency area.

3.1.1 Unit cell negative effective mass

Figure 3.1 shows a two-degree-of-freedom (2-DoF) mass-in-mass system by

which the theory of negative effective mass could be clearly verified. In this

system, m1, m2 and u1, u2 are respectively the masses and displacements of

the outer shell and the inner lump. k1 represents the stiffness of the spring

connecting the shell and lump mass. F is the external harmonic excitation

force with excitation frequency ω0 and time t.

Figure 3.1: Mass-in-mass 2-DoF system

The equations of motion of this model can be derived:

m1ü1 + k1(u1 − u2) = F eiω0t ;

m2ü2 + k1(u2 − u1) = 0.

(3.1a)

(3.1b)

Rearranging 3.1 and writing it in matrix form yields
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m1 0

0 m2


ü1

ü2

+

 k1 −k1

−k1 k1


u1

u2

 =

F eiω0t

0

 (3.2)

Assume the displacement solutions are u1 = a1e
iω0t , u2 = a2e

iω0t ,

where a1 and a2 are constant. Hence the accelerations of the masses can be

presented as ü1 = −ω2
0a1e

iω0t , ü2 = −ω2
0a2e

iω0t . Eqs. (3.2) can be further

developed as

m1 0

0 m2


−ω2

0a1e
iω0t

−ω2
0a2e

iω0t

+

 k1 −k1

−k1 k1


a1e

iω0t

a2e
iω0t

 =

F eiω0t

0

 (3.3)

Re-arrange Eqs.(3.3) to derive

−ω2
0m1 + k1 −k1

−k1 −ω2
0m2 + k1


a1

a2

 =

F

0

 (3.4)

The frequency response functions Hi1(ω)(i = 1, 2) between the re-

sponse ai(t) and the input harmonic force F (t) can be derived based on 3.4

as

H11 =
a1
F

=
k1 −m2ω

2
0

(k1 −m1ω2
0)(k1 −m2ω2

0)− k2
1

;

H21 =
a2
F

=
k1

(k1 −m1ω2
0)(k1 −m2ω2

0)− k2
1

.

(3.5a)

(3.5b)

Assume that the internal structure of the system is unknown to the

observer, which means assuming u2 = 0. It can be assumed as an effective

SDoF system rather than 2-DoF system, and the effective mass m̃ of the

SDoF system can be derived:

m̃ =
F eiω0t

ü1

=
F

−ω2
0a1

= m1 +
m2

1− ω2
0/ω

2
2

, (3.6)
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where ω2 =
√

k2/m2 is the resonant frequency of m2.

According to Eq. (3.6), it reveals that when ω2 > ω0, as ω0 approaches

ω2, the effective mass |m̃| tends to infinity and u1 tends to 0. In this case,

based on Eqs. (3.1a), it is shown that F = −k1u2, i.e. internal spring and

mass act as vibration absorber and the external force are offset. What’s

more, when ω2 < ω0, according to Eq. (3.6), if m2/(1 − ω2
0/ω2) < −m1,

the effective mass m̃ can be negative.

3.1.2 Unit cell negative effective stiffness

Using the same method, a two-DOF mass-spring system shown in Fig. 3.2

is studied. The mass of the upper shell is ignored and the lower shell is fixed

so only the mass of the internal lumped mass, m2, is considered. Besides, u1

and u2 are the displacements of the upper shell and the lumped mass. The

two shells are connected by two same springs with stiffness k1/2 separately.

F is the external harmonic excitation force with excitation frequency ω0

and time t. The equations of motion of this system can be derived:

k1u1 + k2(u1 − u2) = F eiω0t ;

m2ü2 + k2(u2 − u1) = 0.

(3.7a)

(3.7b)

Rearranging Eq. (3.7) and writing it in matrix form, it yields

0 0

0 m2


ü1

ü2

+

k1 + k2 −k2

−k2 k2


u1

u2

 =

F eiω0t

0

 (3.8)

where the displacement solutions are u1 = a1e
iω0t , u2 = a2e

iω0t , where
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Figure 3.2: Mass-in-spring 2-DoF system

a1 and a2 are constant. Hence the corresponding accelerations can be

presented as ü1 = −ω2
0a1e

iω0t , ü2 = −ω2
0a2e

iω0t . Eqs. (3.8) can be further

developed and arranged as

k1 + k2 −k2

−k2 −ω2
0m2 + k2


a1

a2

 =

F

0

 (3.9)

The frequency response functions Hi2(ω)(i = 1, 2) between the re-

sponse ai(t) and the input harmonic force F (t) can be derived as

H11 =
a1
F

=
k2 −m2ω

2
0

(k1 + k2)(k2 −m2ω2
0)− k2

2

;

H21 =
a2
F

=
k2

(k1 + k2)(k2 −m2ω2
0)− k2

2

.

(3.10a)

(3.10b)

Assume that the internal structure of the system is unknown to the

observer. The system can also be treated as a one degree of freedom system,

and the corresponding effective stiffness k̃ can be calculated:

k̃ =
F eiω0t

u1

=
F

a1
= k1 +

k2
1− ω2

2/ω
2
0

, (3.11)
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where ω2 =
√

k2/m2 is the resonant frequency of m2.

According to Eq. (3.11), it shows that when ω2 < ω0, as ω0 approaches

ω2, the effective stiffness |k̃| tends to infinity and u1 tends to 0. Based

on Eqs. (3.7b), it can be derived that F = −k2a2, which means that

the internal force cancels out the external excitation force. Hence the

displacement u1(t) = 0. In this case, a2 = −F0/k2 = −F0/(m2ω
2
2). a2

will arise when m2 drops. What’s more, when ω2 > ω0, according to Eq.

(3.11), if k1 < −k2/(1−ω2
2/ω

2
0)), the effective stiffness k̃ could be negative.

It is novel that if the mass becomes negative, according to Newton’s

second law of motion, the acceleration will be opposite to the applied force,

and the response amplitude will be decreased. And based on Hooke’s law,

if the stiffness is negative, the displacement will be opposite to the applied

force, and the response amplitude will also be reduced.

3.2 Power flow analysis

Power flow analysis is a widely accepted method for displaying the dynamic

characteristic of complex structures, which can provide a new perspective

to understand and study the dynamic behaviour of the proposed system.

PFA expresses the combined effect of the velocity amplitudes, forces, and

their relative phase angles as a single quantity that can be used as a uni-

fied measure to directly evaluate the vibrational energy transfer between

different components within a structure (Yang et al., 2013). The theory

has been well developed and the time-averaged power flow variables have

been used in many studies (Xing and Price, 1999; Xiong et al., 2003) as

indices to evaluate the vibration dissipation for dynamic analysis.
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The motion equations of the N-DoF system are written in the matrix

form:

M¨̃X + C ˙̃X + KX̃ = F̃eiΩτ , (3.12)

where M, C and K are the mass, damping and stiffness matrices, respec-

tively; ¨̃X, ˙̃X and X̃ represent the acceleration, velocity and displacement

vectors of the system, respectively; F̃ is the vector for complex amplitudes

of the external forces.

Pre-multiplying Eq. (3.12) by the velocity vector, the energy flow

balance equation is derived

˙̃X
H
M¨̃X+ ˙̃X

H
C ˙̃X+ ˙̃X

H
KX̃ = ˙̃X

H
F̃eiΩτ , (3.13)

where the superscript (•)H indicates the conjugate, transposed matrix.

The total instantaneous power input into the system is the product of

the excitation force and the corresponding velocity at the excitation point

(Al Ba’ba’a and Nouh, 2017; Shi et al., 2019). Hence, the corresponding

input power at time τ is given as:

P (τ) = ℜ{ ˙̃X
H
}ℜ{F̃eiΩτ} (3.14)

The time averaged input power during one excitation cycle is denoted

as follows (Xiong et al., 2001):

P =
1

τs

∫ τ0+τs

τ0

ℜ{ ˙̃X
H
}ℜ{F̃eiΩτ}dτ

=
1

2
(ℜ{ ˙̃X

H
}ℜ{F̃eiΩτ}+ ℑ{ ˙̃X

H
}ℑ{F̃eiΩτ}),

(3.15)

where τ0 is the averaging start operation time and τs = 2π/Ω is the exci-

tation period.
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3.3 Dynamic analysis for nonlinear system

Dynamic analysis for nonlinear systems involves studying the behavior and

response of systems that exhibit nonlinear relationships between inputs and

outputs. Unlike linear systems, where the superposition principle holds,

nonlinear systems exhibit complex and often nonlinear responses that can

include phenomena such as bilinearity, hysteresis, and chaotic behavior. To

perform a dynamic analysis of a nonlinear system, several approaches can

be employed.

3.3.1 Numerical Simulations

Numerical simulations are a powerful tool for analysing the behavior of

nonlinear systems. They involve using computational methods and tech-

niques to solve the mathematical equations that describe the system’s dy-

namics. To simulate the system’s behavior over time, numerical methods

for time integration are employed. Commonly used methods include the

Euler method (Hahn, 1991) and the Runge-Kutta methods (Butcher, 1996;

Cockburn and Shu, 2001). These methods approximate the system’s state

at each time step based on the previous state and the system’s dynam-

ics as shown in Fig. 3.3. The accuracy of numerical simulations depends

on various factors, such as the time step size, the spatial resolution, and

the chosen numerical method. Smaller time step sizes and finer spatial

resolutions generally lead to more accurate results, but they also increase

computational costs.
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Figure 3.3: Two methods for calculating dynamic response, numerical in-
tegration and HB (Krack and Gross, 2019).

3.3.2 Analytical approximation

The Harmonic Balance (HB) Method in Fig. 3.3 is actually an analytical

approximation method used to approximate the steady-state response of

nonlinear systems subjected to periodic excitation. The method relies on

the representation of time-periodic variables as Fourier series. By assuming

a finite number of harmonic components, the governing equations of the

system can be transformed into algebraic equations, which can then be

solved analytically.

The periodic input and system response are represented in the fre-

quency domain using Fourier series or Fourier transforms. The input is

typically decomposed into a series of sinusoidal components. The governing

equations of the system, typically differential equations, are transformed

into algebraic equations using the frequency domain representation. This

involves substituting the harmonic representation of the input and system



3.3. Dynamic analysis for nonlinear system 61

response into the governing equations. The resulting algebraic equations

are solved to obtain the values of the unknown harmonic components of the

system response. This step typically involves algebraic manipulations and

solution techniques such as polynomial root finding or matrix inversion.

Once the unknown harmonic components are determined, the time domain

response of the system can be reconstructed by summing the harmonics.

The main challenge of the HB approximation is to determine the

Fourier coefficients, and one of the algorithms to solve generic nonlinear

forces is the Alternating Frequency–Time (AFT) scheme (Cameron and

Griffin, 1989; Cardona et al., 1998). The AFT scheme is the most common

and versatile method to date for solving nonlinear force problems within

the HB (Krack and Gross, 2019).

Figure 3.4: Graphical representation of the one-dimensional AFT scheme

As shown in Fig. 3.4, the generalised coordinates and velocities are

sampled at equal time points within an oscillation period. The nonlin-
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ear forces are evaluated at these moments to obtain the samples. Finally,

the Fourier coefficients of the approximate nonlinear forces are obtained

by discrete Fourier transform. The AFT scheme is a fast and accurate

method when computing nonlinear forces on polynomials (Woiwode et al.,

2020), especially when using computationally efficient FFT. In contrast,

non-polynomial nonlinear forces typically produce an infinite sequence of

non-zero harmonics, even if the input is a truncated Fourier series. This

unavoidably leads to aliasing when using an AFT scheme. At this point,

a large number of time samples may be required to make the results suffi-

ciently stable.



Chapter 4

Enhanced suppression of

low-frequency vibration

transmission in metamaterials

with linear and nonlinear

inerters

4.1 Introduction

In this study, a geometrical nonlinear inerter-based LRAM is analysed the-

oretically for its advantage for vibration suppression compared with that of

linear configuration. Based on the Bloch’s theorem, the dispersion relation

of single and dual resonators attached linear configurations are calculated

to observe the bandgap, and the relation of inerters and band characteris-

tics is investigated by changing different inertance ratios. Then the band

63
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properties of a one-dimensional periodic mass-in-mass metamaterial beam

with GNIM are studied. The nonlinear inertance force of this mechanism

is approximated by Taylor expansion. With the HB method, the dispersion

relations and bandgaps with different material parameters can be obtained.

The effective inertance of GNIM can be adjusted to any desired value with

better precision compared with linear inerter if the resonator displacement

amplitude is suitable. The bandgap results are also validated by the wave

transmittance and power flow diagrams of the finite unit cell system with

different material parameters. For finite-unit-cell systems, the influence of

cell number on wave suppression performance is also discussed.

The rest of the article is organised as follows. Two linear inerter-based

single resonator attached LRAMs with in-parallel and in-series configura-

tions are first introduced and their bandgap properties are presented in Sec.

4.2. In Sec. 4.3, the bandgap properties of LRAM with dual resonators

in each unit attached are studied. The dispersion diagram is validated

by comparing it with the wave transmittance diagram. In Sec. 4.4, the

geometrical nonlinear inerter mechanism unit cell is presented and its use

in the nonlinear inerter-based LRAM structure is examined. Results and

discussions including dispersion relation diagrams, wave transmittance fig-

ures, and the influence of cell number on the attenuation effect are shown

and discussed. Finally, conclusions are drawn in Sec. 4.5.
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4.2 Linear inerter-based single-resonator LRAM

4.2.1 Mathematical modelling

Figure 4.1 shows three configurations of 1D chain LRAM systems. Figure

4.1(a) represents the benchmark configuration with N identical mass-in-

mass unit cells and a spring-mass local resonator in each unit cell. Each unit

cell has a lumped mass m0 and an internal resonator mass m1. The lumped

masses m0 are interconnected by linear springs with stiffness coefficient k0

and dampers with damping coefficient c0, while each internal resonator is

attached to the corresponding individual lumped mass with a linear spring

with stiffness coefficient k1. The initial distance between main masses m0

is L. The first lumped mass is attached to a harmonic excitation base

with displacement amplitude d0 and frequency ωf . Figures 4.1(b) and (c)

show two inerter-based LRAM configurations with different local resonator

setups. In Fig. 4.1(b), the resonator in each unit cell is attached to the

lumped mass with an in-parallel spring and inerter. In Fig. 4.1(c), the

local resonator comprises a spring and an inerter, connecting in-series with

mass m0.

The equations of motion of the inerter-based in-parallel LRAM shown

in Fig. 4.1(b) are

m0ÿj + c0(2ẏj − ẏj−1 − ẏj+1) + k0(2yj − yj−1 − yj+1) +m1ẍj = 0;

m1ẍj + k1(xj − yj) + b1(ẍj − ÿj) = 0,

(4.1a)

(4.1b)

where yj represent the displacement of lumped mass in the jth unit cell

and xj is the absolute displacement of the jth resonator. The equations of

motion in Eq. (4.1) can be nondimensionalised to be
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Figure 4.1: Locally resonant acoustic metamaterials configurations with
N different identical mass-in-mass unit cells, which are interconnected by
linear springs k0 and dampers c0. An excitation displacement d0 cosωf tis
applied to the first cell. (a) Benchmark model c0. (b) Inerter-based model
C1 with in-parallel spring k1 and inerter b1. (c) Inerter-based model C2
with in-series spring k1 and inerter b1.

Y ′′
j + 2ζ0(2Y

′
j − Y ′

j−1 − Y ′
j+1) + (2Yj − Yj−1 − Yj+1) + µ1X

′′
j = 0;

µ1X
′′
j + β1(Xj − Yj) + λ1(X

′′
j − Y ′′

j ) = 0.

(4.2a)

(4.2b)

where the primes (•)′ denote differentiation with respect to τ . The param-

eters and variables are introduced as

Yj =
yj
L
,Xj =

xj

L
, ω0 =

√
k0
m0

, ω1 =

√
k1
m1

, τ = ω0t,

Ω =
ωf

ω0

, ζ0 =
c0

2m0ω0

.µ =
m1

m0

, β =
k1
k0

, λ =
b1
m0

,

(4.3)

where Yj and Xj represent the non-dimensional displacements; ω0 and ω1

are the natural frequencies of the lumped mass and the internal resonator,

respectively; τ and Ω are the nondimensional time and excitation frequency,

respectively; and ζ0, µ1, β1, and λ1 are the damping ratio, mass ratio,
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stiffness ratio, and the inertance-to-mass ratio, respectively.

4.2.2 Dispersion relation

For the jth unit cell in this system, the harmonic wave solutions are pre-

sented by

Yj = Ŷ ei(jqL−Ωτ);

Xj = X̂ei(jqL−Ωτ),

(4.4a)

(4.4b)

where q is the wave number and Ŷ and X̂ represent the response amplitudes

for lumped mass and the internal resonator mass, respectively.

Based on the Bloch’s theorem (Brillouin, 1953), if two adjacent masses

vibrate with the same amplitude, there will be a phase difference. There-

fore, the displacements of the (j + 1)th and (j − 1)th lumped masses can

be written as

Yj+1 = Ŷ ei((j+1)qL−Ωτ) = Ŷ ei(jqL−Ωτ)eiqL;

Yj−1 = Ŷ ei((j−1)qL−Ωτ) = Ŷ ei(jqL−Ωτ)e−iqL.

(4.5a)

(4.5b)

Note that eiqL + e−iqL = 2 cos (qL) and that in the calculation of dis-

persion relation, the damping effects are ignored in the current study. The

damping will only have an influence on the response amplitude but not

affect the bandgap frequency range. By substituting Eqs. (4.4) and (4.5)
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into Eq. (4.2) and ignoring the dampers, we have

2− 2 cos (qL)− Ω2 −µ1Ω
2

−β1 + λ1Ω
2 −µ1Ω

2 + β1 − λ1Ω
2


Ŷ

X̂

 =

0

0

 . (4.6)

If the determinant of the 2-by-2 matrix shown in Eq. 4.6 is null, there

will be a set of trivial solutions. Therefore, the dispersion relation is

∣∣∣∣∣∣∣
2− 2 cos (qL)− Ω2 −µ1Ω

2

−β1 + λ1Ω
2 −µ1Ω

2 + β1 − λ1Ω
2

∣∣∣∣∣∣∣ = 0. (4.7)

Following the same derivation process, for the LRAM shown in Fig.

4.1(c), the equation governing the dispersion relation of the in-series inerter-

based LRAM can be derived:

∣∣∣∣∣∣∣
2− 2 cos (qL)− Ω2 −µ1Ω

2

λ1γ
2 λ1Ω

2 − µ1γ
2 − λ1γ

2

∣∣∣∣∣∣∣ = 0. (4.8)

4.2.3 Wave transmission

The effective mass meff of the unit cell with a linear inerter-based resonator

is obtained by considering the combined lumped mass and the internal res-

onator as a single equivalent mass that can be negative at some frequencies

(Fang et al., 2006). Note that the nondimensional equation of motion is

MeffY
′′
j + 2ζ0(2Y

′
j − Y ′

j1
− Y ′

j+1) + 2Yj − Yj−1 − Yj+1 = 0, (4.9)

where Meff = meff/m0.
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For the in-parallel and the in-series configurations, by solving Eqs.

(4.2), (4.8) and (4.9), the non-dimensional effective masses can be derived

respectively as

Meff p = 1 + µ1 +
µ2
1Ω

2

β1 − λ1Ω2 − µ1Ω2
;

Meff s = 1 +
λ1µ1

µ1 + λ1 − λ1Ω2
.

(4.10a)

(4.10b)

For an N -unit finite periodic effective mass lattice structure without

damping, the wave transmission property is of interest (Meng et al., 2020).

The equations of motion are shown below:

 MeffY
′′
j + 2Yj − Yj−1 − Yj+1 = 0, when j = 1, 2, ..., N − 1;

MeffY
′′
j + Yj − Yj−1 = 0, when j = N.

(4.11)

Note that Y0 represents the amplitude of motion excitation. Using

Eqs. (4.4a) and (4.11), the following non-dimensional relations for a finite

system are derived:

 (2− Ω2Meff)Ŷj = Ŷj+1 + Ŷj−1, when j = 1, 2, ..., N − 1;

(1− Ω2Meff)Ŷj = Ŷj−1, when j = N.
(4.12)

Based on Eq. (12), the wave transmittance T = 20 lg | Ŷj/Ŷ0 | of the

finite periodic lattice structure is

T = 20 lg

( N∑
n=1

| Ta |
)
. (4.13)
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where Ta = Ŷa/Ŷn−1 could be expressed in the form of

Ta =
1

2− Tn+1 −MeffΩ2
, (4.14)

when n=1, 2, ..., N, with TN+1 = 1.

4.2.4 Vibration power flow and transmission

The power flow analysis is also conducted for the design and application

of the metamaterial system. The total instantaneous power input into the

system is the product of the excitation force and the corresponding velocity

at the excitation point (Al Ba’ba’a and Nouh, 2017; Shi et al., 2019). For

the current metamaterial system, the first lumped mass is connected to a

moving end of displacement, D0 cosωf t, as the excitation displacement as

shown in Fig. 4.1(b). By representing the effect of the local resonators in

the outer mass as an effective mass, the metamaterial system is treated as

a chain structure of effective masses connected by springs and dampers.

The corresponding non-dimensional equation of motion of the system with

N unit cells and the energy balance equation are

MY′′ + CY′ + KY = F;

Y′TMY′′ +Y′TCY′ +Y′TKY = Y′TF.

(4.15a)

(4.15b)
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respectively, where

M = Meff



1 0 · · · 0

0
. . . . . .

...

...
. . .

... 0

0 · · · 0 1


; (4.16a)

C = 2ζ0



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


; (4.16b)

K =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


; (4.16c)

F = Meff



D0 cosΩτ − 2ζ0ΩD0 sinΩτ

0

...

0


(4.16d)

are the N by N total mass, damping and stiffness matrices, and the exter-

nal force vector, respectively, and the symbol T stands for the transpose

operation of a matrix. The displacement vector is calculated from the

structural dynamics as

Y = [K+ iΩC− Ω2M]−1F. (4.17)

The non-dimensional real power at time τ defined in the complex no-
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tation (Xing and Price, 1999) is given by

P (τ) = F(τ)Y′(τ) = ℜ{F̄(τ)}ℜ{Ȳ′
(τ)}. (4.18)

The non-dimensional time-averaging real power over an excitation cy-

cle can be calculated and complex variable operated as follows:

P (τ) =
1

τs

∫ τ0+τs

τ0

ℜ{F̄(τ)}ℜ{Ȳ′
(τ)}dτ

=
1

2
(ℜ{F̄}ℜ{Ȳ′}+ ℑ{F̄}ℑ{Ȳ′}).

(4.19)

where τ0 is the non-dimensional averaging operation beginning time and

τs = 2π/ωf is the non-dimensional excitation period.

Therefore, the excitation force is related to the difference of first lumped

mass and excitation displacement (D0 cosΩτ − Y1). For a N-unit finite

metamaterial system, the total instantaneous output power is defined as

the power transmitted to Nth lumped mass, which is the power of (N−1)-

unit lumped mass. The force is related to the displacement difference of

the last two lumped masses (YN−1−Ya). The non-dimensional steady-state

time-averaged input and output powers are derived based on Eq. 4.19 as:

P̄in =
1

τs

∫ τ0+τs

τ0

−D0Ω sinΩτ(Y1 −D0 cosΩτ + 2ζ0Y
′
1+

2ζ0D0 sinΩτ)dτ,

P̄out =
1

τs

∫ τ0+τs

τ0

Y ′
N−1(YN−1 − Ya + 2ζ0Y

′
N−1 − 2ζ0Y

′
a)dτ

(4.20a)

(4.20b)

respectively. The relative power flow analysis transmission can be evaluated

by comparing the input and output powers.
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4.2.5 Results and validation

Figures 4.2(a) and (b) show the dispersion relation and the wave transmit-

tance characteristics for the inerter-based LRAM configuration C1. The

wave transmittance is defined as the ratio of the displacement amplitude

of the last cell mass and that of the first cell displacement and is shown

in a decibel scale. For numerical validations, the non-dimensional material

parameters are selected as µ1 = 0.5 and β1 = 0.5. Figure 4.2(a) represents

the dispersion diagram with different inertance ratios λ1. The figure shows

that in each case there will be a shadowed frequency gap where there is no

real solution in Eq. (4.7) for wave propagation constant qL. It indicates

that the wave transmission is attenuated in this frequency region, and it

can be recognised as the bandgap. Note that λ1 = 0 corresponds to the

no inerter case, i.e., configuration c0 as shown in Fig. 4.1(a). When λ1 in-

creases from 0 to 1, the bandgap shifts to the lower-frequency region while

the bandgap width is narrowed. The in-parallel inerter-based mechanism

provides benefits to the bandgap properties by achieving the low-frequency

bandgap. Figure 4.2(b) shows the wave transmittance diagram for the in-

parallel LRAM structure with finite unit cells, obtained by presenting in

the form of effective mass as shown in Eq. (4.10a). When the transmit-

tance is less than zero due to the local resonance as highlighted in Fig.

4.2(b), it means the wave is well suppressed in this range. Comparing Fig.

4.2(a) with (b), the blue shadow reveals that they have a good agreement

regarding the bandgap location and width from 0.72 to 0.82, thereby veri-

fying each other. Based on Eqs. (4.13) and (4.14), for the 6-cell in-parallel

LRAM system with λ1 = 0.4, the corresponding wave transmittance dia-

gram shows a distinct frequency gap with low transmittance. Outside the

gap, there are many peaks located at different frequencies. Figure 4.2(b)
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also reveals that there is better wave attenuation performance when the

frequency is near the lower limit of the bandgap than that close to the up-

per limit. As for a continuous or multiple degrees of freedom system, the

wave transmittance is complex because the resonator is coupled with all

structural modes of the host system, so the peaks correspond to different

resonant frequencies.

Figure 4.2: Theoretical results of inerter-based in-parallel LRAM config-
uration C1 of µ1 = 0.5, β1 = 0.5 with different inertance ratios. (a) Dis-
persion diagram with different inertance ratios and (b) wave transmittance
diagram. The gray, blue and red shadowed areas represent the bandgap
locations with λ1 = 0, 0.4, and 1, respectively. The case λ1 = 0 can be
recognised as the original system c0.

Figure 4.3(a) shows the dispersion diagram for the in-series configura-

tion C2. This structure becomes the benchmark configuration when λ1 is

set as infinite (solid curve). The figure reveals that when λ1 is decreasing

from infinity to a finite value of 0.4 and then 0.1, the bandgap is moving

to a higher frequency with a broader width. This property is in contrast

to the in-parallel configuration. Figure 4.3(b) shows the wave transmit-

tance diagram when λ1 = 0.4. There is one extra low-transmittance gap

shadowed in blue, outside of which there are multiple small peaks resulting

from the complex resonant frequencies. The bandgap shown in Fig. 4.3(b)

is consistent with that shown in Fig. 4.3(a). Comparing Figs. 4.2 and
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4.3, it is found that the in-parallel configuration may be desirable when

low-frequency vibration suppression is sought.

Figure 4.3: Theoretical results of inerter-based in-series LRAM configura-
tion C2 with µ1 = 0.5, β1 = 0.5 with different inertance ratios. (a) Dis-
persion diagram with different inertance ratios and (b) wave transmittance
diagram. The gray, blue and red shadowed areas represent the bandgap
locations with λ1 = 1, 0.4, and 0.1, respectively. The case λ1=1 can be
recognised as the original system c0.

In Fig. 4.4, the theoretical results of the time-averaging input and out-

put power flow of the 100-unit in-parallel configuration C1 are plotted for

comparing and deriving the power flow consumption. The non-dimensional

parameters selected are µ1 = 0.5, β1 = 0.5, λ1 = 0.4, and ζ0 = 0.005. Figure

4.4(a) shows that the locations of power flow peaks and gap are similar, but

the output power all over the frequency range is always smaller than the

input power, especially the gap is much deeper. Figure 4.4(b) shows the

difference between the input and output power flow, which is calculated by

(lg P̄in − lg P̄out). The power consumption is extremely high in the range

from 0.72 to 0.82, which is exactly the same as the bandgap location and

width shown as the blue shadowed area in Fig. 4.3. It clearly indicates the

bandgap power block effect. The output power will be much lower than

the input power; thus, the vibration will be suppressed when the excitation

frequency is within the bandgap. The power flow analysis can help with
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the LRAM configuration vibration suppression design.

Figure 4.4: Theoretical results for the 100-unit in-parallel LRAM config-
uration C1 with µ1 = 0.5, β1 = 0.5, λ1 = 0.4 and ζ0 = 0.005. (a) The
time-averaging power flow diagram. The red and blue curves are the input
power of the first cell produced by excitation displacement and the output
power of the last cell, respectively. (b) The power flow consumption in dB,
which is the difference of the input and output power flow in the logarith-
mic scale.

4.3 Linear inerter-based dual-resonator LRAM

4.3.1 Modelling and governing equations

Multi-resonator LRAM will lead to the generation of the same number of

bandgaps as that of the local resonators. Here, the use of the dual local

resonators attached to a lumped mass m0 is shown in Fig. 4.5. This con-

figuration, labeled as C3, differs from the configuration C1 by the addition

of another local resonator comprising mass m2 connected to the lumped

mass via a linear spring of stiffness k2 and an inerter of inertance b2. The

absolute displacement of the jth resonator m2 is defined as zj.
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Figure 4.5: Linear inerter-based locally resonant acoustic metamaterials’
configuration C3. The lumped masses are interconnected by identical
springs k0 and dampers c0, while in each lumped mass dual local resonators
are attached by in-parallel springs k1, k2 and inerters b1, b2.

The equations of motion for configuration C3 are

Y ′′
j + 2ζ0(2Y

′
j − Y ′

j−1 − Y ′
j+1) + (2Yj − Yj−1 − Yj+1) + µ1X

′′
j + µ2Z

′′
j = 0;

(4.21a)

µ1X
′′
j + β1(Xj − Yj) + λ1(X

′′
j − Y ′′

j ) = 0; (4.21b)

µ2Z
′′
j + β2(Zj − Yj) + λ2(Z

′′
j − Y ′′

j ) = 0, (4.21c)

where the non-dimensional parameters are shown in Eq. (4.3), and new

parameters have been introduced:

Zj =
zj
L
, µ2 =

m2

m0

, β2 =
k2
k0

, λ2 =
b2
m0

, (4.22)

where Zj represents the non-dimensional displacement and µ2, β2, and λ2

are the damping ratio, mass ratio, stiffness ratio, and the inertance-to-mass

ratio, respectively. The dispersion relation without damping for the dual
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resonator configuration can be derived as

∣∣∣∣∣∣∣∣∣∣
2(1− cos (qL))− Ω2 −µ1Ω

2 −µ2Ω
2

−β1 + λ1Ω
2 −µ1Ω

2 + β1 − λ1Ω
2 0

−β2 + λ2Ω
2 0 −µ2Ω

2 + β2 − λ2Ω
2

∣∣∣∣∣∣∣∣∣∣
= 0

(4.23)

Based on the Bloch theorem, the relations of displacement amplitude

between the jth, (j+1)th, and (j−1)th lumped masses can be obtained by

solving Eq. (4.21). Substituting the equations for connected lumped mass

displacement amplitude into Eq. (4.9), the corresponding non-dimensional

effective mass for the dual resonator configuration is derived to be

Md
eff = 1 + µ1 + µ2 +

µ2
1Ω

2

β1 − λ1Ω2 − µ1Ω2
+

µ2
2Ω

2

β2 − λ2Ω2 − µ2Ω2
. (4.24)

The wave transmittance can also be obtained by inserting Eq. (4.24)

into Eqs. (4.13) and (4.14).

4.3.2 Dispersion relation and validation

Figure 4.6 presents the bandgap characteristic diagrams of the LRAM con-

figuration C3. The general material parameters are set as µ1 = µ2 = 0.5

and β1 = β2 = 0.3. When λ1 = 1 and λ2 = 0.5, the dispersion relation curve

shows two separate bandgaps, which are caused by the presence of two lo-

cal resonators. The bandgaps are located around the natural frequencies

of the local resonators (El-Borgi et al., 2020). The wave transmittance di-

agram shown in Fig. 4.6(b) demonstrates that the low-transmittance gaps

have good agreement with bandgap locations and widths, as shown in Fig.

4.6(a). The upper bandgap is relatively broader compared with the lower
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bandgap. To make full use of these two bandgaps, it is desirable to merge

them into one complete gap. Material parameters such as the inertance ra-

tio of the resonators can be tailor-designed to change the bandgap locations

such that they can be merged.

Figure 4.6: (a) Dispersion relations diagram and (b) wave transmittance
diagram of the inerter-based dual-resonator LRAM configuration C3 with
the parameters µ1 = µ2 = 0.5, β1 = β2 = 0.3, λ1 = 1, and λ2 = 0.5. The
blue and orange shadowed areas are the dual produced bandgaps.

In Fig. 4.7(a), the inertance ratio λ2 is set as a constant value of

0.5 while λ1 increases from 0 to 1. It shows that at the two boundaries

of λ1 = 0 and λ1 = 1, there are two bandgaps that are distinctly apart.

The solid curve represents the total gap width of these two gaps. As λ1

increases from 0 to 0.5, the bandgaps move toward each other and merge

when λ1 = 0.5. Therefore, in this case, λ1 = λ2 = 0.5 can lead to a complete

bandgap located in the low-frequency region. The figure also shows that

with increasing λ1, the total bandwidth is reduced. Fig. 4.7(b) shows the

bandgap characteristics when the inertance ratio λ2 is set as a constant

value of 0.8 while λ1 increases from 0 to 1. It shows that two bandgaps

merge when λ1 = λ2 = 0.8. Figs. 4.7(a) and (b) show that with larger



4.3. Linear inerter-based dual-resonator LRAM 80

Figure 4.7: Influence of difference inertance ratios on dispersion diagrams
for dual resonator configuration C3 with µ1 = µ2 = 0.5, β1 = β2 = 0.3. (a)
λ1 = [0, 1], λ2 = 0.5, (b) λ1 = [0, 1], λ2 = 0.8, and (c) λ1 = [0, 1], λ2 = [0,
1]. The blue and orange areas are the upper and lower bandgaps and the
solid line represents the total bandgap width.

inertance ratios λ1 = λ2, the merged bandgap will be located at a lower

frequency with a relatively narrower bandwidth. In Fig. 4.7(c), more cases

with different parameters λ2(= 0, 1/3, 2/3, 1) are considered to verify the

results shown in Figs. 4.7(a) and (b). Based on the results shown in these

cases, it seems that when λ1 = λ2, the bandgaps can be merged into a single

one. Comparing the dispersion relation of the dual-resonator structure and

that of the single resonator structure, we can draw the conclusion that when

the resonator-related parameters are the same, the dual-resonator structure

can be recognised as a single-resonator structure, which will lead to a single
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bandgap dispersion relation. Fig. 4.7(c) shows that the setting of λ1 = λ2

= 0 leads to the broadest frequency range but with higher frequencies

than the cases with nonzero values of λ1 and λ2. With the increasing

of inertance ratios with λ1 = λ2, the gap bandwidth becomes narrower

but located at lower frequency. In summary, for low-frequency vibration

suppression using the configuration C3 with the same mass and stiffness

ratios of the local resonators, the same inertance ratios are suggested for

the merger of the bandgaps. There might be some limitations in applying

the multi-resonator design due to possible space and weight constraints.

Nevertheless, it will have more robustness against uncertainty compared

with the single-resonator structure, as the system can still function even if

one of the resonators does not work.

The theoretically calculated power flow for the 100-unit configuration

C3 is shown in Fig. 4.8. The non-dimensional material parameters selected

are µ1 = µ2 = 0.5, β1 = β2 = 0.3, λ1 = 1, λ2 = 0.5, and ζ0 = 0.05. Similar

phenomenon is emerged compared with Fig. 4.4(a), but there are two much

deeper gaps in dual-resonator configuration. The power flow consumption

in Fig. 4.8(b) shows that there will be two frequency bands with extremely

high power dissipation, which separately corresponds to the two bandgaps

shown in Fig. 4.8. In these two excitation frequency ranges, the energy is

blocked and vibration will be much reduced.
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Figure 4.8: Theoretical results for the 20-unit dual configuration C3 with µ1

= µ2 = 0.5, β1 = β2 = 0.3, λ1 = 1, λ2 = 0.5, and ζ0 = 0.005. (a) The time-
averaging power flow diagram. The red and blue curves are the input power
of first cell produced by excitation displacement and the output power of
the last cell, respectively. (b) The power flow consumption in dB, which is
the difference of the input and output power flow in the logarithmic scale.

4.4 Nonlinear inerter-based single-resonator

LRAM

The vibration absorber based on the nonlinear dynamics has attracted the

attention of many researchers, but few of them have tried to do research in

combination with the inerter, nonlinear dynamics, and LRAM. Continued

with the above works related to the linear inerter, this section will focus on

the study of the nonlinear inerter-based single resonator attached LRAM.

The characteristics of a unit cell with nonlinear inerter will be introduced in

the first section while the research will be extended to LRAM configuration

in Sec. 4.4.1. Then the results and discussion will be stated in Sec. 4.4.2.

4.4.1 Unit cell comprising a nonlinear inerter

Figure 4.9(a) shows a schematic diagram of the geometrically nonlinear

inertance mechanism (GNIM) proposed in our previous studies, which
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have shown the design and implementation feasibilities (Yang et al., 2020;

Moraes et al., 2018; Wang et al., 2019c). In this mechanism, one pair of

identical lateral inerters is hinged together at the point O while their other

terminals are pinned to points A and B, to which the vertical distances

from terminal O are the same and denoted as l. The two inerters are as-

sumed to be of negligible physical mass and linear so that the inertial force

of each inerter in the horizontal direction is proportional to the relative

acceleration between the two ends. If the terminal O deviates from the

static balance position along the horizontal direction, the lateral inerters

will tilt and form a nonlinear inertance mechanism because of the geomet-

rical nonlinearity. Due to symmetry, the terminal O moves only along the

horizontal direction and the relative displacement is r.

Figure 4.9: (a) Schematic diagrams of the geometrically nonlinear inertance
mechanism. Two lateral inerters of b are hinged together at a terminal
with displacement r. (b) 2-DoF GNIM based unit cell. The lumped mass
is attached by a spring k0 to a base of harmonic excitation displacement
d0 cosωf t. The resonator is connected to the lumped mass with longitudinal
spring k1, inerter b2, and two lateral inerters b1.

The force–response relationship of the GNIM has been analysed (Yang

et al., 2020) and is revisited here. The velocity of the deviating terminal
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is ṙ, so the velocity along the axis of the inerter is ṙ sin θ, where sin θ =

r/
√
r2 + l2. The force along the inerter axis can be obtained as

fa = b1
d(ṙ sin θ)

dt
= b1(r̈ sin θ +

ṙ2l2

(l2 + r2)
√
l2 + r2

). (4.25)

Due to symmetry, the total nonlinear inertial force should be in the

horizontal direction and is expressed by

fa = 2fa sin θ = 2b1

(
r2r̈

l2 + r2
+

l2rṙ2

(l2 + r2)2

)
= fb1 + fb2, (4.26)

where fb1 = 2b1r
2r̈/(l2 + r2) and fb2 = 2b1l

2rṙ2/(l2 + r2)2.

Figure 4.9(b) shows the schematic diagram of a unit cell comprising

the GNIM. The outer lumped mass, m0, is connected to a base by a spring

of stiffness coefficient k0. Inside the lumped mass, there is a local resonator

comprising a mass, m1, one horizontal spring with stiffness coefficient k1,

one horizontal inerter with inertance b2, and the GNIM with two lateral

inerters each with inertance b1. The two lateral inerters are hinged together

at the terminal O with the resonator mass while their other terminals A

and B are fixed at the rigid lumped mass shell. The horizontal inerter

is hinged at terminal O and pined at terminal C to the outer mass. The

displacement of mass, m0, is denoted by y and is connected to a moving end

of displacement d0 cosωf t. The relative displacement between the resonator

mass and the lumped mass is denoted as r, such that the inerters are

oriented in the vertical direction when r = 0.

The equations of motion of the system shown in Fig. 4.9(b) are
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m0ÿ + k0(y − d0 cosωf t)− b2r̈ − k1r − fa(r, ṙ, r̈) = 0;

m1(r̈ + ÿ) + b2r̈ + k1r + fa(r, ṙ, r̈) = 0.

(4.27a)

(4.27b)

By introducing the following parameters and variables:

Y =
y

L
, R =

r

L
, D0 =

d0
L
, (4.28)

where Y and R represent the non-dimensional displacements and D0 are

the non-dimensional excitation amplitude, respectively. Referring to Eqs.

(4.3), (4.22), and (4.28), the equations of motions in Eqs. (4.27) can be

non-dimensionalised to be

(1 + µ1)Y
′′ + µ1R

′′ + Y = D0 cosΩτ ;

(µ1 + λ2)R
′′ + µ1Y

′′ + β1R +G(R,R′, R′′) = 0,

(4.29a)

(4.29b)

where the primes (•)′ denote differentiation with respect to τ , and the non-

dimensional nonlinear inertial force caused by the geometric nonlinearity

is

G(R,R′, R′′) =
fa(r, ṙ, r̈)

m0Lω2
0

= 2λ1

(
R2R′′

1 +R2
+

RR′2

(1 +R2)2

)
. (4.30)

It shows that the geometric nonlinear force is influenced by the relative

displacement, velocity, and acceleration between masses m0 and m1.

When the relative displacement response R is small, the nonlinear term

can be Taylor expanded at R = 0 to obtain

G(R,R′, R′′) ≈ 2λ1R
2R′′ + 2λ1(1− 2R2)RR′2. (4.31)



4.4. Nonlinear inerter-based single-resonator LRAM 86

Substitute Eq. (4.31) into Eq. (4.29) to obtain the simplified non-

dimensional equations

(1 + µ1)Y
′′ + µ1R

′′ + Y = D0 cosΩτ ;

(µ1 + λ2)R
′′ + µ1Y

′′ + β1R + 2λ1R
2R′′ + 2λ1(1− 2R2)RR′2 = 0.

(4.32a)

(4.32b)

4.4.2 HB approximation and validation

The harmonic balance method (Von Groll and Ewins, 2001) is applied to

solve nonlinear equations shown by Eqs. (4.32). Only considering the fun-

damental harmonic response, the non-dimensional steady-state displace-

ment, the corresponding velocity and acceleration of the resonator mass

can be written as

R = R̂ cos (Ωτ + ϕ);

R′ = −R̂Ω sin (Ωτ + ϕ);

R′′ = −R̂Ω2 cos (Ωτ + ϕ),

(4.33a)

(4.33b)

(4.33c)

where R̂ and ϕ represent the response amplitude and the phase angle,

respectively.

Substituting Eqs. (4.33) into Eq. (4.32b) and following the trigono-

metric sum-to-product identities, it can be derived that

µ1Y
′′ +

(
− (µ1 + λ2)Ω

2R̂ + β1R̂− λ1Ω
2R̂3 − λ1Ω

2R̂5

2

)
cos (Ωτ + ϕ)

+

(
− λ1Ω

2R̂3 +
λ1Ω

2R̂5

4

)
cos (3Ωτ + 3ϕ)

+
λ1Ω

2R̂5

4
cos (5Ωτ + 5ϕ) = 0.

(4.34)
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Considering only the response component at the excitation frequency

Ω and ignoring the terms with harmonics at 3Ω and 5Ω, the approximated

displacement of the lumped mass is obtained as

Y =

(
β1R̂

µ1Ω2
− (µ1 + λ2)R̂

µ1

− λ1R̂
3

µ1

− λ1R̂
5

2µ1

)
cos (Ωτ + ϕ)

= Ŷ cos (Ωτ + ϕ).

(4.35)

By using the approximate expressions of R and Y shown by Eqs. (4.33)

and (4.35) to replace the corresponding terms in Eq. (4.32a), we obtain a

simplified non-dimensional governing equation as

− Ω2(1 + µ1)

(
β1R̂

µ1Ω2
− (µ1 + λ2)R̂

µ1

− λ1R̂
3

µ1

− λ1R̂
5

2µ1

)
cos (Ωτ + ϕ)

− R̂µ1Ω
2 cos (Ωτ + ϕ) +

(
β1R̂

µ1Ω2
− (µ1 + λ2)R̂

µ1

− λ1R̂
3

µ1

− λ1R̂
5

2µ1

)
cos (Ωτ + ϕ) = D0 cosΩτ .

(4.36)

According to the trigonometric identities, the right-hand side of Eq.

(4.36) could be rewritten as

D0 cosΩτ = D0 cos (Ωτ + ϕ− ϕ) = D0 cosΩτ cosϕ+D0 sinΩτ sinϕ.

(4.37)

Insert Eq. (4.37) into Eq. (4.36), and there are no terms of sin (Ωτ + ϕ)

in the left-hand side, which means sinϕ = 0 and cosϕ = 1. Therefore, in

this case, only the coefficients of cos (Ωτ + ϕ) are needed to be balanced:

(1−Ω2−µ1Ω
2)

(
β1R̂

µ1Ω2
− (µ1 + λ2)R̂

µ1

−λ1R̂
3

µ1

−λ1R̂
5

2µ1

)
−R̂µ1Ω

2 = D0. (4.38)

The displacement transmissibility is defined as the ratio of the dis-
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placement amplitude of the output and that of the input:

Td unit =
Ŷ

D0

=

(
β1R̂
µ1Ω2 − (µ1+λ2)R̂

µ1
− λ1R̂3

µ1
− λ1R̂5

2µ1

)
D0

. (4.39)

It can be seen from Eq. (4.35) that µ1, λ1, λ2, and β1 are related

to the material parameters. By sweeping the frequency Ω over a certain

range, the response of the internal resonator can be derived. Then by

substituting the response amplitude into Eq. (4.39), the corresponding

displacement transmissibility of the lumped mass can be obtained based

on analytical HB approximation.

To validate the frequency–response relationship obtained by HB ap-

proximation, here the fourth-order HB with alternating frequency- time

(AFT) technique (Krack et al., 2013) and the Runge–Kutta (RK) method

are used. In HB-AFT, the displacement responses of the lumped mass,

R, R′, and R′′, are presented with an Nth order Fourier series with a fun-

damental frequency, Ω. The nonlinear term G(R,R′, R′′) can be Fourier

expanded and the coefficients of the harmonic terms are obtained by in-

serting in the harmonic expressions of R, R′, and R′′. When using the

AFT scheme, the nonlinear term’s continuous Fourier transforms are re-

placed by discrete Fourier transforms to obtain the nonlinear term sample

at the equidistant moment of one oscillation period (Dai and Yang, 2021).

After substituting the displacement responses and nonlinear term into Eq.

(4.32) and balancing the coefficients of different harmonic terms, there will

be a total number of 2(2N + 1) nonlinear algebraic equations, which can

be solved by the Newton–Raphson method with a numerical continuation.

Then the displacement response of lumped mass, R, is obtained.
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Figure 4.10 shows the results obtained from the use of different meth-

ods for validation and comparison purpose. Figure 4.10(a) shows the trans-

mittance diagram of the lumped mass in the 2-DoF GNIM-based system

and the single-DoF (SDoF) system. The dashed line presents the wave

transmittance for the SDoF system without the internal resonator. With

the consideration of accuracy and computational cost, the dashed-dotted

line represents the results obtained by the third-order HB-AFT method

while the solid line denotes the results obtained using analytical first-order

HB approximations. The pink circles are the results obtained by the RK

time marching method. In these cases, the non-dimensional parameters are

chosen as µ1 = 1, γ1 = 1, λ1 = λ2 = 0.1, ω0 = 1, and D0 = 0.01. The figure

shows that the results obtained from analytical HB approximations agree

well with those obtained using HB-AFT. There may be minor difference

between the RK results and the HB approximations due to the absence of

damping in the system. The figure shows that compared with the SDoF

system, the system with the internal resonator will have two peaks and

especially a frequency band in which there is low transmittance with the

attached resonator working as a vibration absorber. Due to the nonlinear

inertial force introduced by the GNIM, the right peak bends slightly to the

left while the left peak remains almost unchanged. It also leads to the mov-

ing of the low-transmittance gap to lower-frequency region, which shows

that the GNIM-based internal resonator has a good potential to control

low-frequency vibration. Figure 4.10(b) shows the response characteristics

of the internal resonator. There are two peaks in each curve, but there is

no anti-peak, compared with the transmittances of the lumped mass shown

in Fig. 4.10(a). In summary, with the addition of the internal resonator,

the response amplitude of the lumped mass can be significantly reduced in

a frequency band.
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Figure 4.10: Wave transmittance diagrams gathered by analytical HB ap-
proximation, HB-AFT, and RK of (a) the lumped mass and (b) the internal
resonator. The parameters selected are µ1 = 1, γ1 = 1, λ1 = λ2 = 0.1, ω0

= 1, and D0 = 0.01. The dashed line is the transmittance of the SDoF
system. The dashed-dotted line, solid line, and circles are the results of
the 2-DoF system obtained by HB-AFT, HB analytical, and RK methods,
respectively.

The effective mass Meff of the unit cell with an inerter-based resonator

is obtained by considering this 2-DoF system as a SDoF equivalent mass

subject to motion excitation. Note that the non-dimensionalised equation

of motion could be expressed as

MeffY
′′ + Y −D0 cosΩτ = 0, (4.40)

where Meff = meff/m0. The non-dimensionalised effective mass can be

derived by substituting Eqs. (4.35) and (4.38) into Eq. (4.40) to have

Meff =
D0 cosΩτ − Y

Y ′′

= 1 + µ1 +
2µ2

1Ω
2

2β1 − 2µ1Ω2 − 2λ2Ω2 − 2λ1Ω2R̂2 − λ1Ω2R̂4
.

(4.41)

Figure 4.11 shows the variations of the effective mass Meff of the com-

bined massm0 and the nonlinear resonator against the excitation frequency

considering the unit cell with and without adding inerters. The dashed line
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denotes the case when λ1 = λ2 = 0.5, R̂2 = 0.05 while the solid line rep-

resents the configuration C0 without inerters. It shows that there are two

separate curves for each case. The effective mass associated with the first

curve at low frequency keeps positive and the value increases fast as the

frequency increases. The second curve starts at minus infinity and increases

with the frequency to become greater than zero. However, the maximum

value ofMeff is always smaller than the minimum value of the first left curve.

The effective mass can be negative in the right-hand side curve when the

excitation frequency is located in the respective shadowed frequency band.

The figure shows that with the use of inerters in the local resonator, the

frequency band of negative effective mass moves to the low-frequency band.

The addition of inerters in the local resonator can affect the negative mass

frequency range, providing potential benefits for low-frequency vibration

control.

Figure 4.11: Effective mass of a unit cell with and without GNIM (con-
figuration C1 and C0) in the local resonator (µ1 = 1, γ1 = 1, and ω0 =
1). The solid line and dashed line are the effective mass curves for SDoF
and 2-DoF systems while the corresponding gray and blue shadowed area
represent the negative mass region.



4.4. Nonlinear inerter-based single-resonator LRAM 92

4.4.3 Nonlinear inerter-based LRAM

Mathematical modelling

Figure 4.12 shows an inerter-based LRAM structure, which is the modified

system developed from the structure shown in Fig. 4.1 by adding GNIM

inside the rigid lumped mass shell between the local resonator mass and

the lumped mass. The GNIM comprises a pair of identical vertical inerters

of inertance b1 and a linear horizontal inerter of inertance b2.

Figure 4.12: Geometrical nonlinear inerter mechanism-based locally res-
onant acoustic metamaterials configuration C4. The lumped masses m0

are interconnected by spring k0 and damper c0 while each resonator m1 is
connected to the lumped mass with longitudinal spring k1, inerter b2, and
two lateral inerters b1.

The equations of motion of GNIM-LRAM can be derived and expressed

as

m0ÿj + c0(2ẏj − ẏj−1 − ẏj+1) + k0(2yj − yj−1 − yj+1)+

m1(r̈j + ÿj) = 0;

m1(r̈j + ÿj) + b2r̈j + k1rj + 2b1

(
r2j r̈j

l2 + r2j
+

l2rj ṙ
2
j

(l2 + r2j )
2

)
= 0,

(4.42a)

(4.42b)

where yj represents the displacement of lumped mass in the jth cell and rj

is the displacement of the jth resonator relative to the jth lumped mass.

These two equations can be nondimensionalised by referring to the param-
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eters defined in Eqs. (4.3), (4.22), and (4.28). Then, by approximating

the inertial force caused by geometric nonlinearity via Taylor expansion at

Rj = 0, we have

(1 + µ1)Y
′′
j + 2ζ0(2Y

′
j − Y ′

j−1 − Y ′
j+1) + (2Yj − Yj−1 − Yj+1)+

µ1R
′′
j = 0;

(µ1 + λ2)R
′′
j + µ1Y

′′
j + β1Rj + 2λ1R

2
jR

′′
j+

2λ1(1− 2R2
j )RjR

′2
j = 0.

(4.43a)

(4.43b)

Dispersion relation

For the GNIM-LRAM configuration, the HB method can also be applied

to solve the nonlinearity in motion equations. Only the fundamental har-

monic response is considered in this case. The non-dimensional steady state

displacement, velocity, and acceleration of the jth resonator mass can be

written as

Rj = R̂j cos (Ωτ + ϕ);

R′
j = −R̂jΩ sin (Ωτ + ϕ);

R′′
j = −R̂jΩ

2 cos (Ωτ + ϕ),

(4.44a)

(4.44b)

(4.44c)

respectively. Substituting Eq. (4.44) into Eq. (4.43), following the trigono-

metric sum-to-product identities and considering only the response compo-

nent at excitation frequency Ω, the approximated displacement of the jth,

(j + 1)th and (j − 1)th lumped masses can be derived as
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Yj =

(
β1R̂j

µ1Ω2
− (µ1 + λ2)R̂j

µ1

−
λ1R̂

3
j

µ1

−
λ1R̂

5
j

2µ1

)
cos (Ωτ + ϕ)

= Ŷj cos (Ωτ + ϕ);

Yj+1 = Yje
iqL;

Yj−1 = Yje
−iqL.

(4.45a)

(4.45b)

(4.45c)

Note that eiqL+e−iqL = 2 cos (qL). By substituting Eq. (4.45) into Eq.

(4.43a), the governing equation for the dispersion curve of this configuration

is obtained:

cos (qL) =1− Ω2(1 + µ1)

2

− µ2
1Ω

4

2β1 − 2µ1Ω2 − 2λ2Ω2 − 2λ1Ω2R̂2
j − λ1Ω2R̂4

j

.
(4.46)

The dispersion equation can also be obtained in another way. The

non-dimensional steady-state displacement of the jth resonator mass can

also be presented in the form of complex Fourier series:

Rj = Â1.je
iΩτ + Â2.je

−iΩτ . (4.47)

Using the same method, by substituting Eq. (4.47) into Eq. (4.43b),

integrating twice with respect to τ and only keeping the form of e−iΩτ , the

approximated displacement of the jth lumped mass is derived:

Yj =

(
− (µ1 + λ2)Â1.j +

β1

Ω2
Â1.j − 4λ1Â

2
1.jÂ2.j − 8λ1Â

3
1.jÂ

2
2.j

)
eiΩτ . (4.48)

Inserting Eq. (4.48) and applying the Bloch theorem, the equation
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governing the dispersion property can be obtained

cos (qL) =1− Ω2(1 + µ1)

2

− µ2
1Ω

4

2β1 − 2µ1Ω2 − 2λ2Ω2 − 8λ1Â2
1.jÂ2.j − 16λ1Â3

1.jÂ
2
2.j

.
(4.49)

As it is easy to prove that R̂2
j = 4Â1.jÂ2.j based on these different

displacement forms in Eqs. (4.44a) and (4.47), the two presentations of

the dispersion relation as shown in Eqs. (4.46) and (4.49) are exactly the

same.

4.4.4 Results and discussions

In this section, the effects of adding inerters on the low-frequency bandgap

properties of LRAM are analysed. The dispersion relations with different

material parameters are shown to examine the bandgap characteristics of

the proposed nonlinear structure. Then the wave attenuation behavior is

studied for the validation of the bandgap. The wave suppression effect

of the proposed resonator in a finite unit cell structure is analysed. The

influence of unit cell number on longitudinal wave attenuation in the GNI-

LRAM is investigated.

Dispersion characteristics

Here, the dispersion characteristics of the inerter-based LRAM are derived

by using Eqs. (4.46) and (4.49). The former equation is used for numer-

ical validation. Equation (4.46) shows that the corresponding dispersion

curve is independent of the number of lumped mass j. However, it will
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be influenced by the resonator displacement amplitude R̂j, the mass ra-

tio µ1, the stiffness ratio β1, and inertance ratios λ1 and λ2. In other

words, the bandgaps can be controlled by adjusting these parameter val-

ues. With the given range of frequency Ω, the wave propagation constant

qL could be obtained. The material parameters are selected as µ1 = β1

= 0.3, ω2
0 = 1× 105(rad/s)2. In order to express the characteristic change

more clearly, in the subsequent results, the non-dimensional frequency Ω is

processed to be dimensional frequency, f = Ω× ω0/2π.

Figure 4.13 shows the influence of the nonlinear inerter-based mecha-

nism on the bandgaps. In Fig. 4.13(a), the effects of the inertance ratio λ1

are studied. The horizontal linear inerter is not considered so the inertance

ratio λ2 is set to be 0. The resonator displacement amplitude square R̂2
j

is set constant as 0.01 while the inertance ratio λ1 of the GNIM increases

from 0 to 80. For the purpose of comparison, the case with λ1 = 0 (solid

curve) is regarded as the corresponding results of the benchmark LRAM

structure without any inerters. Its bandgap location is from 48.0 to 57.4

Hz and the bandwidth is 9.4 Hz. When λ1 = 5, the use of the nonlinear

inerter-based resonator moves bandgap to the low-frequency region. The

dispersion diagram reveals that the lower boundary of the bandgap reduces

by approximately 3.0 Hz, and the total bandwidth decreases from 2.4 to

7.0 Hz. When λ1 = 20, the bandgap moves to the area of 38.3–42.0 Hz.

Its corresponding bandwidth decreases to 3.7 Hz. If λ1 increases to 80, the

bandgap location drops significantly to a band of 26.2–27.1 Hz. The band-

width also drops to 0.9 Hz. In general, the figure shows that the bandgap

location is successfully moved to the lower frequency area by the use of the

GNIM at the expense of the slight narrowing of the bandwidth of the gap

as the inertance ratio λ1 increases. Figure 4.13(b) shows the dispersion
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curves for a fixed inertance ratio λ1 = 2 while the resonator displacement

amplitude R increases from 0 to 0.25. It also shows that the bandgaps

move slowly to a lower frequency region. The solid line is for the system

without GNIM for comparison. When R̂2
j = 0.01, the gap shifts to the

range of 46.8–55.0 Hz. The corresponding bandwidth reduces to 8.2 Hz.

When R̂2
j = 0.05 (the dashed-dotted curve), the location of the frequency

region is relatively low from 42.4 to 47.8 Hz with a sufficient bandwidth

of 5.4 Hz. The lower boundary of the bandgap drops to 29.3 Hz, and its

bandwidth is 1.7 Hz when R̂2
j increases to 0.25. With the increasing dis-

placement amplitude of the local resonator, the location of the bandgap

also moves to the low-frequency region and its width becomes narrower.

These two subfigures show similar trends in the variation of the bandgap,

i.e., the increases in the values of λ1 and R̂j of the GNIM lead to the shift

of the relatively narrower bandgap to the lower frequency region. The re-

sults also show that if the oscillation amplitude increases, the geometrical

nonlinearity of the GNIM becomes more significant.

Figure 4.13: Dispersion diagrams of the nonlinear configuration C4 with
parameters selected as µ1 = β1 = 0.3 and ω2

0 = 1× 105. (a) The nonlinear
parameters are λ2 = 0 and R̂2

j = 0.01. The solid line, dashed line, dashed-
dotted line, and cross are the results with λ1 = 0, 5, 20, and 80, respectively.
(b) The nonlinear parameters are λ1 = 2 and λ2 = 0. The solid line, dashed
line, dashed-dotted line, and cross are the results with R̂2

j = 0, 0.01, 0.05,
and 0.25, respectively.



4.4. Nonlinear inerter-based single-resonator LRAM 98

Figure 4.14 presents the effects of the inertance ratio λ2 on the prop-

erties of the bandgap. For the case in Fig. 4.14(a), each local resonator

mass is attached to the lumped mass by the horizontal linear spring and

the horizontal inerter, and no geometrical nonlinear lateral inerters is ap-

plied, which is achieved by setting the material parameters as λ1 = R̂2
j =

0. The inertance ratio λ2 increases from 0 to 0.1 to 0.4 and then to 1. The

solid line represents the benchmark case with the inerter for comparison.

When λ2 is set as 0.1, the bandgap is located at lower frequencies com-

pared to the reference case shown by the solid line. With λ2 = 0.1, the

lower and upper boundaries of the bandgap are 40.3 and 44.7 Hz, respec-

tively. When λ2 is set at 0.4 and then 1, the bandgaps’ lower boundary

reduces to 31.6 and 23.7 Hz, respectively. Meanwhile, the corresponding

bandwidths are 1.8 and 0.7 Hz, respectively. The figure shows that the

increase in λ2 will contribute to the moving of bandgap location and its

width. Compared with the influence of the lateral inerters λ1, the bandgap

properties are more sensitive to the variations of the inertance λ2 of the

horizontal inerter. This is demonstrated by the stronger effects created

by a small increase in λ2 from 0 to 1, compared to those resulting from

large variations of λ1 from 0 to 80. Figure 4.14(b) has shown the effect of

increases in λ2 on the bandgap characteristics of the metamaterial configu-

ration with nonlinear inerters. The related nonlinear parameters are set as

λ1 = 10 and R̂2
j = 0.01. Compared with Fig. 4.14(a), the bandgaps have

moved to a lower-frequency location. For instance, in the case shown by

the dashed-dotted line (λ2 = 0.4), the bandgap is from 30.6 to 32.2 Hz with

a bandwidth of 1.6 Hz. The figure demonstrates the importance of taking

full advantage of both linear and nonlinear inerters. The results show that

the inerter-based mechanism yields a substantial and beneficial influence

on the bandgap characteristics. This property can be applied to achieve
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a low-frequency bandgap at the cost of decreases in the associated band-

width. It is necessary to create a bandgap in the low-frequency range while

maintaining sufficient bandwidth. The results show that a small value of

inertance for the linear inerter with λ2 = 1 can lead to a relatively small

bandwidth. It is worth exploring the use of a geometrical nonlinear inerter

in LRAM for low-frequency vibration suppression.

Figure 4.14: Dispersion diagrams of the nonlinear configuration C4 with
parameters selected as µ1 = β1 = 0.3 and ω2

0 = 1 × 105. (a) The non-
linear parameters are λ1 = 0 and R̂2

j = 0. The solid line, dashed line,
dashed-dotted line, and cross are the results with λ2 = 0, 0.1, 0.4, and 1,
respectively. (b) The nonlinear parameters are λ1 = 10 and R̂2

j = 0.01.
The solid line, dashed line, dashed-dotted line, and cross are the results
with λ2 = 0, 0.1, 0.4, and 1, respectively.

Figure 4.15 shows the individual dispersion relation feature and the

band structure of the inerter-based LRAM. Figure 4.15(a) presents the

results associated with the case with λ1 = λ2 = 0, which is the benchmark

configuration C0 as shown in Fig. 4.1. The constant qL is a complex

number providing the propagation solution. The real part of qL decides

the direction of propagation, which is the phase constant shown in the right-

hand side of the figure. The lefthand side area is the imaginary part of qL,

the attenuation constant, deciding the wave attenuation. A larger absolute

value of the imaginary component will lead to a better wave attenuation

effect. The bandgaps are highlighted in blue shadow between 48.0 and
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57.4 Hz where there no real solutions exist for qL. The imaginary part

is larger when it is close to the lower bandgap boundary, which means

in the bandgap the wave suppression performance is even better at low

excitation frequencies. Figure 4.15(b) shows the cases with λ1 = 0 and λ2

= 0.1. With the addition of the horizontal inerter, the bandgap moves to

a lower frequency range between 42.5 and 47.9 Hz while the bandwidth

decreases by 4.0 Hz. In Fig. 4.15(c), lateral inerters with λ1 = 20 are

attached to the system with no horizontal inerter. The bandgap is located

at a lower frequency between 38.3 and 42.0 Hz compared to the system

shown in Fig. 4.15(a). Figure 4.15(d) presents the case with λ1 = 20,

λ2 = 0.1, R̂2
j = 0.01. By the combined effects of both horizontal and

lateral inerters, the bandgap moves to the region between 35.2 and 37.8

Hz, and the corresponding bandwidth reduces to 2.6 Hz. It is noted that

with the protection of the geometry nonlinear structure, it is possible to

have a heavier resonator mass and a softer stiffness in comparison to the

benchmark configuration C0.

In Figs. 4.16 and 4.17, the effects of the variations of the mass ratio µ1,

the spring stiffness ratio β1, and their combined changes on the dispersion

behavior of the inerter-based LRAM are examined, respectively. Figure

4.16 shows that the increasing mass ratio will lead to a wider bandgap

located at a lower frequency. In Fig. 4.16(a) with λ1 = 5, λ2 = 0.1, R̂2
j

= 0.01 , when β1 = 0.5 and µ1 = 0.3, the bandgap locates between 51.1

and 57.7 Hz. When µ1 increases to 0.5, the bandgap moves down to the

range from 42.2 to 51.2 Hz, while the bandwidth even increases by 2.4

Hz. When µ1 = 0.7, the lower bound of the band decreases by 5.4 Hz and

the width rises to 10.7 Hz. Figures 4.16(b–d) show the influence of the

mass ratio µ1 on the dispersion relations while considering different values
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Figure 4.15: Dispersion relation diagram of the nonlinear structure with
parameters selected as µ1 = β1 = 0.3, ω2

0 = 1×105 with different nonlinear
parameters. (a) λ1 = λ2 = 0, (b) λ1 = 0, λ2 = 0.1, (c) λ1 = 20, λ2 = 0, R̂2

j

= 0.01, and (d) λ1 = 20, λ2 = 0.1, R̂2
j = 0.01. The shadowed areas show

the bandgap location and width.

of the amplitude R̂2
j and the inertance ratios λ1 and λ2. It shows that

the addition of parameters λ1, λ2, and R̂j will lead to the reductions in

both bandgap location frequency and also in the bandwidth. For instance,

with same mass ratio µ1 = 0.3, the lower boundary of the bandgap in

Fig. 4.16(b) decreases by 6.1 Hz while the bandwidth decreases to 3.8 Hz

compared with the corresponding values shown in Fig. 4.16(a). For the

cases in Figs. 4.16(c) and 4.16(d), the bandgaps are located at 40.6–43.1

Hz and 43.2–46.4 Hz, respectively. Their bandwidth decreases by 4.1 Hz

and 3.4 Hz, respectively. The figure shows that for low frequency vibration
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suppression, within the manufacturing limit, larger inerter ratios λ1, λ2,

and amplitude R̂j are preferred for reducing the bandgap frequency, and

greater mass ratio µ1 is desirable as it enlarges the bandwidth.

In Fig. 4.17, the influence of β1 and µ1 on the bandgap is studied with

R̂2
j = 0.01, inertance ratios λ1 = 5 and λ2 = 0.1. Figure 4.17(a) reveals that

a larger stiffness ratio β1 can move the bandgap to a higher frequency range

with a broader width. When β1 = 0.3, µ1 = 0.5 (shown by the solid line),

the lower boundary of the bandgap is 33.3 Hz while the upper boundary

is 39.6 Hz, and the corresponding bandwidth is 6.3 Hz. As β1 increases to

0.5, the bandgap moves up to be from 42.2 Hz to 51.2 Hz, with its width

increasing by 2.7 Hz. When β1 = 0.7, the band locates from 48.9 to 60.6 Hz

with a bandwidth of 11.7 Hz. The figure demonstrates that as the stiffness

ratio β1 reduces from 0.7 to 0.3, the resonant frequency of the internal res-

onator also reduces, leading to the moving down of the bandgap frequency

range and the narrowing of the bandwidth. In Fig. 4.17(b), the values of β1

and µ1 are kept the same for each case. It shows that with the parameter

setting, the bandgap can have a much broader width spreading out to both

sides. So a larger mass and stiffness with the same ratio is preferred in the

LRAM design. When compared with the basic linear inerterbased struc-

ture, the geometrical nonlinear mechanism will play a protective role, and

it is achievable to extend the material parameters’ limitation for better

wave attenuation performance. In summary, the nonlinear inerter-based

mechanism could induce a low-frequency range with broader bandwidth

compared with the common linear inerter-based LRAM.
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Figure 4.16: Dispersion relation diagram of the system when µ1 is increas-
ing with parameters selected as (a) λ1 = 5, λ2 = 0.1, R̂2

j = 0.01, (b) λ1 =

20, λ2 = 0.1, R̂2
j = 0.01, (c) λ1 = 5, λ2 = 1, R̂2

j = 0.01, and (d) λ1 = 5,

λ2 = 0.1, R̂2
j = 0.05. The solid line, dashed line, and dashed-dotted line

represent the cases that µ1 = 0.3, 0.5, and 0.7, respectively.

Wave transmittance

For the purpose of validation, the wave transmittance diagram for GNI-

LRAM of finite unit cells is obtained by presenting in the form of effective

mass as shown above. Figure 4.18 shows the dispersion and wave transmit-

tance diagrams for the benchmark configuration C0. Based on the effective

mass in Eq. (4.40) and transmittance equations in Eqs. (13) and (14), if

there are six unit cells in the system, the wave transmittance diagram for

the case without a nonlinear mechanism is illustrated in Fig. 4.18(b). It

shows that there is a distinct frequency gap and many peaks located at
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Figure 4.17: Dispersion relation diagrams of the system when parameters
selected as λ1 = 5, λ2 = 0.1, R̂2

j = 0.01. (a) Constant mass ratio µ1 = 0.5
and different stiffness ratios β1. The solid line, dashed line, and dashed-
dotted line represent the results of β1 = 0.3, 0.5, and 0.7, respectively. (b)
Different mass and stiffness ratios. The solid line, dashed line, and dashed-
dotted line represent the results of µ1 = β1 = 0.3, 0.5, and 0.7, respectively.

different frequencies. As for a continuous or multiple degrees of freedom

system, the wave transmittance is complex because the resonator is coupled

with all structural modes of the host system. The peaks are the different

resonant frequencies. When the wave transmittance is less than zero as

highlighted in blue shadow, it means the excitation frequency is located

in the bandgap. Therefore, in this diagram, the bandgap is determined

by searching a range where the wave transmittances are smaller than zero

at higher and lower boundaries. Based on the definition of transmittance,

the displacement amplitude of the last unit lumped mass is smaller than

that of the first lumped mass that is applied by excitation force, which

means in this case, the wave is suppressed. It shows that the lower and

upper boundaries of the wave transmittance gap are 48.0 Hz and 57.4 Hz.

Compared with the dispersion diagram shown in Fig. 4.18(a), the blue

shadow reveals that they have good agreement with bandgap location and

width. The corresponding wave transmittance figure also reveals that the

wave attenuation effect within the bandgap area close to the lower edge is
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better than that close to the higher edge. For lower boundary, the wave

transmittance in dB drops from 0 dB to -100 dB by the difference of just

0.5 Hz, while for the upper boundary, it costs 2.9 Hz to decrease the same

value. This result also proves the correctness of the dispersion relation

whose curve in the imaginary part shows the same characteristic in wave

attenuation ability.

Figure 4.18: Theoretical results of the benchmark configuration C0 with
parameters selected as µ1 = β1 = 0.3, ω2

0 = 1× 105, λ1 = λ2 = 0. (a) Dis-
persion relation diagram. (b) Wave transmittance diagram. The shadowed
area represents the bandgap and the low transmittance range.

Figure 4.19 shows the dispersion relation and transmittance property

for a system consisted of six unit cells when λ1 = 5, λ2 = 0.1, R̂2
j = 0.01.

Its bandgap is located at the range from 42.2 to 51.2 Hz, which matches the

result from the dispersion diagram. Figures 4.19(b-d) are, respectively, the

transmittance diagrams for a system consisting of six unit cells when λ1 =

20, λ2 = 0.1, R̂2
j = 0.01; λ1 = 5, λ2 = 0.4, R̂2

j = 0.01; and λ1 = 5, λ2 = 0.1,
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R̂2
j = 0.05. Their bandgaps are located at the ranges from 38.6 to 44.7 Hz,

from 35.8 to 40.2 Hz, and from 37.5 to 42.9 Hz. It seems that with different

material parameters, the bandgaps in corresponding dispersion curves and

wave transmittance diagrams are always almost the same. Therefore, these

two types of diagrams are obtained by two different methods, and with the

coincident bandgaps, they can verify each other.

Figure 4.19: Dispersion and wave transmittance diagrams (six unit cells)
of the nonlinear structure when parameters selected as (a) λ1 = 5, λ2 =
0.1, R̂2

j = 0.01, (b) λ1 = 20, λ2 = 0.1, R̂2
j = 0.01, (c) λ1 = 5, λ2 = 0.4, R̂2

j

= 0.01, and (d) λ1 = 5, λ2 = 0.1, R̂2
j = 0.05. The shadowed area represents

the bandgap and the low transmittance range.

Power flow analysis

The theoretically calculated input and output power flow and the power

consumption for the proposed 100-unit nonlinear LRAM configuration C4
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are shown in Fig. 4.20. The parameters selected are µ1 = β1 = 0.5, λ1 =

5, λ2 = 0.1, R̂2
j = 0.01, and ζ0 = 0.005. In Fig. 4.20(a), the corresponding

peaks and gap locations are similar for both time-averaged power flow

variables. The output power flow is lower than the input power due to

damping especially within the gap. Fig. 4.20(b) shows that the power

consumption is more than 20 dB between 42.2 and 51.2 Hz, which locates

the same range as the bandgap shown in Fig. 4.19(a). It can be explained

by the effect of the bandgap and the energy is almost blocked in this range.

Figure 4.20: Theoretical results for the 100-unit nonlinear configuration
C4 with µ1 = β1 = 0.5, λ1 = 5, λ2 = 0.1, R̂2

j = 0.01, and ζ0 = 0.005. (a)
The time-averaging power flow diagram. The red and blue curves are the
input power of the first cell produced by excitation displacement and the
output power of the last cell, respectively. (b) The power flow consumption
in dB, which is the difference of the input and output power flow in the
logarithmic scale.

The effect of increasing the damping ratio on the output power flow

is studied in Fig. 4.21. It shows that with different damping ratios, the

peaks and gap locations remain the same. When the damping ratio is

increasing, the peak amplitudes are reduced. When ζ0 rises from 0.001 to

0.005, the power flow average amplitude along the frequency lower than the

bandgap is about 6 times smaller, and it is about 2.5 times smaller when ζ0

= 0.01 compared with that of 0.05. Larger damper can reduce the power

flow amplitude and reduce volatility. When ζ0 = 0.02, the power flow shows
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similar varying trend, but on the right-hand-side of the bandgap, the power

reduces a lot more as the excitation frequency increases. The difference in

these four cases is small at low frequency while it generally increases as

frequency rises, which means that the large damper has better vibration

suppression ability at higher frequency while it plays a little role in energy

dissipation in low frequency.

Figure 4.21: Effect of damping ratio on the 100th lumped mass for the
100-unit nonlinear configuration C4 with parameters selected as µ1 = µ2

= 0.5, β1 = β2 = 0.3, λ1 = 1, and λ2 = 0.5. The blue, red, yellow, and
purple curves represent the results with ζ0 = 0.001, 0.005, 0.01, and 0.02,
respectively.

Figure 4.22 shows power transmission along the 100-unit nonlinear

configuration C4, which is defined as the ratio of the jth lumped mass

power over the input power. Generally, over the whole frequency range,

the power transmission is reduced as the cell position number increases. A

gap with the same frequency range as bandgap is shown to have low trans-

mission, and the extremely low transmission range (blue area) extends to
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fill the whole bandgap in the first few cells. The gap is generated by the

bandgap effect while the low transmission at high frequency and large cell

position number is influenced by the dampers. The dampers will dissipate

more energy as the cell position number is larger, but the low-frequency vi-

bration is hardly affected, which also indicates the challenges of controlling

low-frequency vibrations. However, with the proposed nonlinear LRAM

configuration, the bandgap can be designed to control the extremely low-

frequency vibration.

Figure 4.22: Power transmission map along the cell position for the 100-
unit nonlinear configuration C4 with parameters selected as µ1 = µ2 = 0.5,
β1 = β2 = 0.3, λ1 = 1, and λ2 = 0.5. The colorbar represents different
wave transmittances in dB.

Influence of the unit cell number

As in practice it is not possible to build an infinite-unit LRAM, it is nec-

essary to investigate the influence of the number of unit cells on the wave

attenuation performance. The fast Fourier transform (FFT) is applied for
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analysing the lumped mass frequency spectra. As depicted in Fig. 4.23, the

frequency spectra diagrams of the lumped masses in the nonlinear LRAM

system are shown. Figure 4.23(a) shows the frequency spectra for different

cell positions Yj in a 20-unit-cell system. The horizontal axis is the cell

position, representing Yj, j = 1, 2, ..., 20. The non-dimensional excitation

frequency Ω = 1 is selected for example. It shows that with different cell

positions, the frequency component remains similar, which means it will

not be affected by the propagation distance. The frequency components

(peaks) are located at two broad frequency bands. The frequency spectra

diagram of the last cell response in the jth cell number nonlinear system is

shown in Fig. 4.23(b). The horizontal axis represents the total cell number

j for the systems, and only the last unit cell response of each system is

focused and recorded. It can be seem that the variation trend of frequency

spectra against unit cell number is similar with that against the propaga-

tion position in Fig. 4.23(a). The increase in the unit cell number will not

influence the frequency components’ location.

Figure 4.23: Frequency spectra of (a) different cell positions of Yj in the 20-
cell nonlinear configuration C4 and (b) the last cell response Yj in different
cell number nonlinear systems for the input non-dimensional frequency with
parameters selected as λ1 = 1, λ2 = 0.1, R̂2

j = 0.01. The colorbar represents
different amplitude spectra.

Figure 4.24(a) shows the dispersion relation diagram of an infinite-unit

LRAM. Figures 4.24(b) and (c) show two wave transmittance diagrams
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of finite systems with 6 and 30 unit cells, respectively. The parameters

and variables are set as λ1 = 5, λ2 = 0.1, R̂2
j = 0.01. It reveals that for

these two different cases with same material parameters, the location and

width of bandgaps are still the same. Some differences in wave suppression

performance are exhibited. The figure shows that there are more peaks in

wave transmittance for the 30-unit system than that for the 6-unit system.

It is because that the former system has a much larger number of degrees of

freedom. The figure also shows that the curve close to the upper boundary

of the bandgap for the 30-unit system is flatter compared with that of

the 6-unit system. The former is beneficial for vibration suppression. As

shown in Fig. 4.24(b) for the six-cell system, at the upper boundary of the

bandgap, the wave transmittance drops from 0 dB at 51.2 Hz to -100 dB

at 48.1 Hz, demonstrating that the frequency variation is 3.1 Hz for the

change in wave transmittance 0 to -100 dB. In comparison, for the 30-cell

case, the wave transmittance drops from 0 to -100 dB with a variation in

frequency being 0.3 Hz. At the lower bond of the bandgap, the difference in

the attenuation performance of the two structures is found to be relatively

small.

Figure 4.25(a) presents a 3D isometric view of the wave transmittance

showing the influence of the unit cell number on wave attenuation when λ1

= 5, λ2 = 0.1, R̂2
j = 0.01. The number of cells changes from 0 to 30 while

the frequency range between 0 and 100 Hz is shown. The figure shows

that there is a plane with many peaks distributed and a gap located in the

neighborhood of 50 Hz. The bandgap shows low wave transmittance at

this range of frequency. The suppression performance is enhanced because

the transmittance in the bandgap becomes smaller as the number of unit

cells increases. As the number of unit cells increases from 5 to 30, more
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Figure 4.24: (a) Dispersion relation for the infinite system and (b) and (c)
wave transmittances of 6-unit and 30-unit LRAM, respectively. Parameters
are set as λ1 = 5, λ2 = 0.1, R̂2

j = 0.01. The shadowed area represents the
bandgap and low transmittance range.

amplitude peaks appear due to the increasing number of DoFs. Figure

4.25(b) is the top view of the 3D wave transmittance model. It shows that

the bandgap width (defined as the frequency bandwidth within which the

transmittance is below 0 dB) is almost not changed by the changes in the

number of unit cells. However, the frequency range of the extreme low

transmittance is widened as the cell number increases. It shows that the

wave attenuation performance is better at the left boundary of the bandgap

than at the right boundary. In summary, an increased number of unit cells

can lead to better wave attenuation performance of the system.
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Figure 4.25: (a) 3D isometric view and (b) top view of the wave trans-
mittance of the proposed nonlinear metamaterials for different numbers of
unit cells with parameters selected as λ1 = 5, λ2 = 0.1, R̂2

j = 0.01. The
colorbar represents different wave transmittances.

4.5 Summary

This article investigated the performance of four different configurations

of linear and nonlinear inerter-based locally resonant acoustic metamate-

rials (LRAM). For the linear inerter-based LRAMs, single in-parallel, in-

series, and dual in-parallel structures were investigated. The geometrical

nonlinear inerter mechanism (GNIM) was introduced to the proposed non-

linear inerter-based LRAM design. For the single resonator LRAM, the

in-parallel configuration shows more potential for low-frequency vibration

control compared with the in-series configuration. For the dual resonator

LRAM, there are two bandgaps in the dispersion relation, and they can

be combined to one complete broader bandgap. Moreover, the increasing

inertance ratios will make the bandgap move to the lower frequency region

with narrower width. For the proposed nonlinear inerter-based LRAM, it

has been found that:

• The bandgap exists around the local resonant frequency. Compared

with the linear inerter-based LRAM, nonlinear inerter-based LRAM,

can induce a low-frequency range with a broader bandwidth, which
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is much less sensitive to the inertance changes of the GNIM.

• The bandgaps in the wave transmittance diagram for finite systems

and dispersion diagram for infinite systems have good agreement with

bandgap location and width.

• The power flow analysis shows that the power flow is blocked within

the bandgap and the power transmission is lower as the cell position

number increases.

• An adequate number of unit cells is preferred to gain better wave at-

tenuation performance, especially around the upper band boundary.

In summary, the proposed nonlinear LRAM configuration can provide a

lower-frequency bandgap with sufficient bandwidth. These findings can

enhance the understanding of the effects and performance benefits of using

geometrically nonlinear inerter mechanisms in LRAMs.



Chapter 5

Enhanced vibration

suppression using diatomic

acoustic metamaterial with

negative stiffness mechanism

5.1 Introduction

The current chapter seeks to explore the combined use of the diatomic

configuration and negative stiffness mechanism for enhanced performance

of vibration suppression. Also, the dynamic properties of the proposed

LRAMs are investigated from both the wave transmittance and the vibra-

tion power flow viewpoints. Multiple bandgaps can be created and the

lower bound of the locally resonant bandgap can be reduced to quasi-zero

value to achieve ultra low frequency wave attenuation. The local resonators

were connected to the adjacent lumped masses in the proposed diatomic

115
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configuration. The bandgap characteristics of the monatomic configura-

tion with similar parameters were compared to present additional Bragg

scattering bandgaps. Wave transmittance and PFA methods were applied

to investigate the wave control ability of the bandgaps. Based on the new

perspective of analysis, the diatomic LRAM configuration is improved by

applying NSM to connect each lumped mass and corresponding resonator

to achieve a constant effective negative-stiffness coefficient. With a criti-

cal value of effective negative stiffness, the locally resonant bandgap can

be effective from zero frequency, thus achieving ultralow frequency vibra-

tion control, while the upper band-folding-induced bandgap exhibits good

performance.

The remainder of this study is organised as follows. Section 5.2 briefly

presents the mathematical modelling of the diatomic-configuration LRAM.

The corresponding governing equations for the dispersion relation are ob-

tained together with an explanation of the wave transmittance and PFA

methods. In Section 5.3, an NSM-based diatomic LRAM configuration

is presented. The nonlinear characteristics of the NSM are presented in

the SDoF and 4-DoF systems. Subsequently, the proposed LRAM with

constant negative stiffness is analysed with the use of dispersion relations,

wave transmittance, and PFA. The influence of material parameters was

also studied. The conclusions of this study are presented in the last section.
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5.2 Diatomic mass-spring chain model

5.2.1 Mathematical modelling

Fig. 5.1 depicts two 1-D mass-spring configurations representing the LRAMs.

Fig. 5.1(a) shows a monatomic configuration C1 with N identical mass-

spring unit cells. Each unit cell comprises one lumped mass m1 and one

resonator mass m0. The lumped masses m1 are interconnected by dampers

of damping coefficient c and linear springs of stiffness coefficient k0, and the

initial distances between the lumped masses m0 are L, which are the same

as the lattice spacing. In each unit cell, resonator m1 is connected to one

lumped mass with a spring of stiffness coefficient k2 and a fore-lumped mass

with a spring of stiffness coefficient k1. The first lumped mass is attached to

a moving base of displacement, d0 cosωt, as motion excitation. Fig. 5.1(b)

shows the proposed diatomic LRAM configuration C2. The only difference

between configurations C1 and C2 is that the lumped masses in C2 are not

all identical, with mass couples of m1 and m2 alternately distributed along

the system.

The equations of motion for the diatomic LRAM depicted in Fig.

5.1(b) can be obtained as:

m1ẍi + c(2ẋi − ẋj−1 − ẋj) + k0(2xi − xj−1 − xj)+

k1(xi − yj) + k2(xi − yi) = 0; (5.1a)

m0ÿi + k1(yj − xj−1) + k2(yi − xi) = 0, (5.1b)

m2ẍj + c(2ẋj − ẋi − ẋi+1) + k0(2xj − xi − xi+1)+

k1(xj − yi+1) + k2(xj − yj) = 0; (5.1c)

m0ÿj + k1(yj − xi) + k2(yj − xj) = 0, (5.1d)
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Figure 5.1: Mass-spring chain structure LRAMs with N identical mass-
spring unit cells of (a) monatomic configuration C1 with cell spacing L and
(b) diatomic configuration C2 with cell spacing 2L.

where x, y are the displacements of the lumped mass and resonator, respec-

tively, and the subscripts i and j represent the i-th and j-th cell positions,

respectively.

5.2.2 Dispersion relation

For an infinite LRAM of diatomic configuration, the harmonic wave solu-

tions are presented by:

xi = Xi cos (ωt+ ϕ); (5.2a)

xj = Xj cos (ωt+ ϕ); (5.2b)

yi = Yi cos (ωt+ ϕ); (5.2c)

yj = Yj cos (ωt+ ϕ), (5.2d)

where ϕ is the phase angle and X and Y are the response amplitudes of the

lumped mass and resonator, respectively. Considering the i-th resonator
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as an example, the steady-state velocity and acceleration can be written as

ẋi = −Xiω sin (ωt+ ϕ); (5.3a)

ẍi = −Xiω
2 cos (ωt+ ϕ), (5.3b)

respectively. According to the Bloch’s theorem (Brillouin, 1953), a phase

difference occurs when the amplitudes of two adjacent vibrating masses are

identical. Hence, the motion of adjacent masses can be expressed as:

xj−1 = xje
−2iqL; (5.4a)

xi+1 = xie
2iqL; (5.4b)

yi+1 = yie
2iqL, (5.4c)

where q is the Bloch wave number, and L is the lattice constant.

It is noted that previous studies have often used the corresponding

undamped structures to determine the dispersion properties of LRAMs,

which in reality are weakly damped. Similarly, the dispersion analysis car-

ried out in the current study is based on the absence of damping. However,

it is noted that in the wave transmittance and power flow analysis in the

next sections, damping effects are taking into consideration as there is as-

sociated energy dissipation. By substituting Eqs. (5.2)– (5.4) into Eqs.

(5.1b) and (5.1d), the displacements of the i-th and j-th resonators can be

derived:

Yi =
k1e

−2iqLXj + k2Xi

−m0ω2 + k1 + k2
; (5.5a)

Yj =
k1Xi + k2Xj

−m0ω2 + k1 + k2
. (5.5b)
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Eqs. (5.5a) and (5.5b) can be substituted into Eqs. (5.1a) and (5.1c)

to eliminate the responses of the internal resonators. By combining the

terms (−ω2Xi), (2Xi− e−2iqLXj −Xj), (−ω2Xj) and (2Xj −Xi− e2iqLXi),

the following equations are obtained:

(
m1 +

m0(k1 + k2)

k1 + k2 −m0ω2

)
(−ω2Xi)+(

k0 +
k1k2

k1 + k2 −m0ω2

)
(2Xi − e2iqLXj −Xj) = 0; (5.6a)(

m2 +
m0(k1 + k2)

k1 + k2 −m0ω2

)
(−ω2Xj)+(

k0 +
k1k2

k1 + k2 −m0ω2

)
(2Xi − e2iqLXj −Xj) = 0. (5.6b)

Based on the effective mass concept (Huang et al., 2009; Alamri et al.,

2018; Sugino et al., 2017; Tan et al., 2012; Zhu et al., 2014), the system can

be effectively considered as a chain structure with alternating distributed

effective masses mi eff and mj eff , connected by identical effective stiffness

springs Keff . The equations of motion can be written as:

mi
eff ẍi + keff(2xi − xj−1 − xj) = 0; (5.7a)

mj
eff ẍj + keff(2xj − xi − xi+1) = 0. (5.7b)

where

mi
eff = m1 +

m0(k1 + k2)

k1 + k2 −m0ω2
; (5.8a)

mj
eff = m2 +

m0(k1 + k2)

k1 + k2 −m0ω2
; (5.8b)

keff = k0 +
k1k2

k1 + k2 −m0ω2
. (5.8c)
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Eq. (5.7) can be further written in a matrix form as:

 2keff −mi
effω

2 −(1 + e−2iqL)keff

−(1 + e2iqL)keff 2keff −mj
effω

2


Xi

Xj

 =

0

0

 . (5.9)

A set of trivial solutions to Eq. (5.9) are obtained when the matrix deter-

minant is zero. Hence, the equation for the dispersion relation is:

∣∣∣∣∣∣∣
2keff −mi

effω
2 −(1 + e−2iqL)keff

−(1 + e2iqL)keff 2keff −mj
effω

2

∣∣∣∣∣∣∣ = 0. (5.10)

Eq. (5.10) can be rewritten as

(2keff −mi
effω

2)(2keff −mj
effω

2)− (1 + e−2iqL)(1 + e2iqL)k2
eff = 0. (5.11)

Note that e2iqL + e−2iqL = 2 cos (2qL), so Eq. (5.11) can be further written

as

cos (2qL) = 1 +
mi

effm
j
effω

4 − 2keffm
i
effω

2 − 2keffm
j
effω

2

2k2
eff

. (5.12)

Similarly, the dispersion relation of the monatomic configuration C1 can

be obtained:

cos (qL) = 1− mn
effω

2

2kn
eff

. (5.13)

where mn
eff = m1+m0(k1+k2)/(k1+k2−m0ω

2) and kn
eff = k1k2/(k1+k2−

m0ω
2).

The dispersion diagrams of the monatomic and diatomic configurations

can be obtained using Eqs. (5.12) and (5.13). Fig. 5.2(a) and (b) show

the corresponding dispersion relation curves for configurations C1 and C2,

respectively, with the set parameter. The mass parameters in C2 were

selected as m1 = m2 = 1 kg, such that configurations C1 and C2 were the
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Figure 5.2: Dispersion relation diagrams for (a) monatomic configuration
C1, (b) diatomic configuration C2 with m1 = m2 = 1 kg, and (c) diatomic
configuration with m1 = 1.2 kg, m2 = 0.8 kg.

same. The other parameters are selected as m0 = 0.6 kg, ω1 = 30 rad/s,

k0 = (m1 + m2)ω
2
1/2, k1/k0 = 0.4 and k2/k0 = 0.8, ω2 =

√
k2/m2. The

solid curves are associated with the real part of qL and the non-dimensional

frequency Ω is defined as ω/ω2. The figure shows the bandgap indicated by

a blue-shadowed frequency range, in which there is no real solution. When

m1 = m2, the bandgaps for the two configurations are the same. The

dispersion curve shown in Fig. 5.2(b) was obtained by folding the curve

by the midline (qL = π/2), as shown in Fig. 5.2(a). Fig. 5.2(c) shows the

dispersion relation diagram of the system with m1 = 1.2 kg, m2 = 0.8 kg

while the remaining parameters are set the same as those used in Fig. 5.2(a)

and (b). Fig. 5.2(c) shows the dispersion relation diagram of the system

with m1 = 1.2 kg, m2 = 0.8 kg. The figure shows three different bandgaps,

with the one shaded in blue being the same as the ones shown in Fig. 5.2(a)

and (b). Two additional bandgaps emerge at the two band-folding points,

shaded in red. The local resonant gaps remain constant because the total

mass remains the same. From a macro perspective, configurations C1 and

C2 should exhibit similar performance. However, the staggered distribution

of different lumped masses leads to more band-folding-induced bandgaps,

which have beneficial dynamic characteristics and can yield better vibration
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suppression performance.

5.2.3 Wave transmittance and power flow analysis

The methods of wave transmittance and PFA are briefly discussed in this

section. If the 2-DoF mass-resonator unit is converted into a SDoF system

by using the effective mass, the LRAM structure can be considered as a

system comprising effective masses connected by dampers and springs of

effective stiffness. The motion equations of N-DoF chain oscillator corre-

sponding to the LRAM configuration C2 are written in the matrix form

as:

M
¨̃
X + C

˙̃
X + KX̃ = F̃ee

iωt, (5.14)

where

M =



mi
eff 0 · · · 0 0

0 mj
eff

. . . . . . 0

...
. . . . . . . . .

...

0
. . .

... mi
eff 0

0 0 · · · 0 mj
eff


; (5.15a)

C = c



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


; (5.15b)

K = keff



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


; (5.15c)
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F̃e =



F̃1

F̃2

...

F̃N−1

f̃n


; (5.15d)

X̃ =



X̃1

X̃2

...

X̃N−1

X̃N


eiωt. (5.15e)

Note that M, C and K present the N × N total mass, damping,

stiffness matrices, respectively; F̃e is the vector for complex amplitudes of

the external forces; X̃,
˙̃
X and

¨̃
X denote the displacement, velocity, and

acceleration vectors of the system, respectively. The solution to Eq. (5.14)

has the form
˙̃
X = Ṽeiωt, with Ṽ being the complex amplitudes of velocities.

Therefore, Eq. (5.14) takes the form

F̃e =

(
iωM+C+

K

iω

)
Ṽ, (5.16)

and we have the vector for velocity amplitudes:

Ṽ =

[
iωM+C+

K

iω

]−1

F̃e. (5.17)

The transmittance is defined as the logarithmic ratio of the response
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amplitude of the N -th effective mass to the first effective mass:

T = 20 lg

(∣∣∣∣X̃N

X̃1

∣∣∣∣). (5.18)

PFA can also provide a new perspective for LRAM design and appli-

cation. The energy flow balance equation was obtained by premultiplying

Eq. (5.14) by the velocity vector

˙̃
X

H

M
¨̃
X+

˙̃
X

H

C
˙̃
X+

˙̃
X

H

KX̃ =
˙̃
X

H

F̃ee
iωt, (5.19)

where the superscript (•)H denotes a conjugate, transpose matrix. The total

input instantaneous power of the system is the product of the excitation

point velocity and the excitation force (Shi et al., 2019). The real power

at time t is given as:

P (t) = ℜ
{

˙̃
X

H
}
ℜ
{
F̃ee

iωt

}
. (5.20)

The time-averaged power over one excitation cycle is expressed as fol-

lows:

P =
1

ts

∫ t0+ts

t0

ℜ
{

˙̃
X

H
}
ℜ
{
F̃ee

iωt

}
dt

=
1

2

(
ℜ
{

˙̃
X

H
}
ℜ
{
F̃ee

iωt

}
+ ℑ

{
˙̃
X

H
}
ℑ
{
F̃ee

iωt

})
,

(5.21)

where t0 is the start time of the averaging operation and ts = 2π/Ω is the

excitation period.

The differences in the output and input power can be compared to

identify the energy dissipation. The force applied to each cell is associated
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with the difference in displacements and velocity responses between the

adjacent effective masses. For an N -unit LRAM configuration, the input

power is defined as the power transmitted to the first effective mass from

the motion excitation, whereas the output power is the power transmitted

to the N -th effective mass from the (N − 1)-th effective mass. Therefore,

the time-averaged input and output powers for the LRAM configuration

C2 attached to a moving base left-hand-side end of displacement, d0e
iωt, by

the spring and damper can be obtained:

P in =
1

ts

∫ t0+ts

t0

ℜ
{
(iωc+ keff)(X̃1 − d0)e

iωt

}
ℜ
{
iωd0e

iωt

}
dt; (5.22a)

P out =
1

ts

∫ t0+ts

t0

ℜ
{
(iωc+ keff)(X̃N − X̃N−1)e

iωt

}
ℜ
{
iωX̃N−1e

iωt

}
dt.

(5.22b)

Fig. 5.3(a) and (b) present the displacement transmittance of the

proposed diatomic-chain LRAM structures with 10-and 50-unit cells, re-

spectively. The excitation displacement amplitude was set to be d0 = 0.1

m, and the damping coefficient c = 0.001. Frequency ranges with transmit-

tances lower than -20 dB are defined as regions of low wave transmittance.

Fig. 5.3(a) shows that for the 10-unit cell structure, there will be a clear

low transmittance gap from Ω = 1.20 to 1.55 within the locally resonant

bandgap. At the same time, the wave attenuation performance is not com-

promised within the upper band-folding-induced bandgap and within the

lower band-folding-induced bandgap from Ω = 0.96 to 1.01. Fig. 5.3(b)

presents the corresponding transmittance for the configuration of 50-unit

cell. In this case, the upper bandgap induced by band folding demonstrates

a lower transmittance, and the lower bandgap around Ω = 1 also validates

the existence of a lower bandfolding- induced bandgap. With enough unit
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cells, the upper bandgap can provide good wave attenuation performance as

a locally resonant bandgap, which is better than that of the lower bandgap.

Figure 5.3: Wave transmittance diagrams for diatomic configuration C2
with m1 = 1.2 kg, m2 = 0.8 kg and of (a) 10 unit cells and (b) 50 unit
cells.

The use of PFA to investigate the system can lead to improved un-

derstanding and reveal the structural wave suppression behaviour from

another viewpoint. Fig. 5.4 shows the vibration power flow characteristics

of the monatomic and diatomic configurations. The time-averaged power

flows for monatomic configuration C2 are shown in Fig. 5.4(a), with the

red and blue solid lines representing the input and output powers, respec-

tively. The material parameters remained unchanged, as applied in the

case study in Fig. 5.2 and the lumped mass number is 50. The input

power was always larger than the output power, and a gap was induced

in the output power flow curve. Fig. 5.4(b) shows the power transmit-

tance in dB, which is defined as the logarithmic ratio of the output and

input powers (lg(Pout/Pin)). Compared with Fig. 5.2(b), within the locally

resonant bandgap frequency, the power transmittance is lower, suggesting

that the energy of the waves with the excitation frequency located in the

bandgap is blocked. Fig. 5.4(c) and (d) depict the time-averaged power

flow and power transmittance, respectively, for diatomic configuration C2.
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In contrast to configuration C1, there are two more gaps induced by band

folding, as shaded in red, which represents the power-blocking ability. The

lower frequency band has a weaker power consumption ability, which may

be due to the use of a small cell number. The results show that the energy

is almost blocked in the upper two bandgaps, and the performance is better

at higher frequencies.

Figure 5.4: Power flow behaviour of monatomic and diatomic LRAM con-
figurations with 50-unit cells. (a) Time-averaged input and output powers
and (b) power consumption for monatomic configuration C1. (c)Time-
averaged input and output powers and (d) power consumption for diatomic
configuration C2.

In Fig. 5.5, the influence of the number of unit cells on the bandgap

characteristics is investigated further. The power transmission maps in the

3D view and top view are shown in Fig. 5.5(a) and (b), respectively. The

labelled axes represent the non-dimensional frequency, unit cell number,
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Figure 5.5: The influence of the number of unit cells on power flow of
LRAM structures. (a) 3D view and (b) top view.

and power transmission, respectively. Fig. 5.5(b) shows that the bandgap

induced by local resonance with frequencies between 1.20 and 1.55 can block

the energy even with just a few cells, while the power transmission within

the upper band-folding-induced bandgap is relatively higher but still has a

good ability to block the vibration power transmission. It is noted that for

the lower band-folding-induced bandgap, at least 40 cells were required to

achieve the desirable energy dissipation.

5.3 Diatomic configuration with negative stiff-

ness

Low-frequency vibrations need to be suppressed in many engineering sys-

tems. In this section, an improved spring-bar mechanism with constant

negative stiffness is applied to the diatomic-configuration LRAM for low-

frequency wave suppression. As shown in Fig. 5.5, the width of the lower

bandgap was not as broad as that of the other two bandgaps even with a

relatively large number of cells. In this section, the application of negative

stiffness to enhance benefits is explored.
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5.3.1 Negative-stiffness-based diatomic LRAM

The diatomic LRAM applied with spring-bar mechanisms is depicted in

Fig. 5.6, while the springs and dampers, except k2, are equivalent to those

in Fig. 5.1(b). The spring-bar mechanism coloured in green can be repre-

sented by an effective spring with stiffness kn. The influence of NSM-based

configuration can be modelled by replacing k1 with kn in the original di-

atomic configuration.

The corresponding equations of motion of the system are:

m1ẍi + c(2ẋi − ẋj−1 − ẋj) + k0(2xi − xj−1 − xj)+

k1(xi − yj) + kn(xi − yi) = 0; (5.23a)

m0ÿi + k1(yj − xj−1) + kn(yi − xi) = 0; (5.23b)

m2ẍj + c(2ẋj − ẋi − ẋi+1) + k0(2xj − xi − xi+1)+

k1(xj − yi+1) + kn(xj − yj) = 0; (5.23c)

m0ÿj + k1(yj − xi) + kn(yj − xj) = 0. (5.23d)

Figure 5.6: The model of proposed diatomic LRAM configuration C3 with
spring-bar mechanism colored in green whose dynamic stiffness can be rep-
resented by kn.
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5.3.2 Spring-bar mechanism with negative stiffness

There have been a few physical realisations of NSMs, and their potential

benefits in vibration isolation systems have been reviewed (Li et al., 2020a).

In this model, a spring-bar mechanism NSM based on our previous study

(Shi et al., 2021), as shown in Fig. 5.7(a), is applied for the performance

enhancement of a diatomic LRAM. Two identical vertical springs of stiff-

ness ka are guided by the blocks, with one of the terminals pinned to the

fixed wall and the other attached to joints A and B. The two joints are

connected to terminal O with mass m by separate rigid bars of fixed length

l and can only move vertically owing to the restraint of the frictionless

slide guide blocks. The mass at terminal O is also attached to a point C

with a spring stiffness coefficient kb and a damper of damping coefficient

c. A harmonic motion excitation d(t) is applied to terminal C, leading to

the horizontal motion of the mass denoted as z(t). The static equilibrium

position of the mass was considered as the reference position of z = 0,

where the bars were horizontal. The masses of the springs, joints, and bars

described above were considered negligible in this study. The two bars tilt

at an angle of θ and constitute a potentially geometrical nonlinear mecha-

nism. To achieve negative stiffness characteristics, the springs were initially

compressed by δ0 at the static equilibrium position.

According to the structure geometrical relations, we have:

tan θ =
z√

l2 − z2
. (5.24)

Therefore, the combined horizontal force related to ka and kb can be
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Figure 5.7: Schematic diagrams of (a) a SDoF spring-bar NSM-based sys-
tem and (b) a 4-DoF diatomic spring-bar NSM-based system with harmonic
motion excitation.

obtained by replacing the trigonometric terms as:

fn =

(
kb + 2ka

l −
√
l2 − z2 − δ0√
l2 − z2

)
z = knz, (5.25)

where kn = kb + 2ka(l −
√
l2 − z2 − δ0)/(

√
l2 − z2).

Based on Eq. (5.25), if δ0 = l, which means that the initial compression

of the horizontal springs is the same as the length of the bars, the combined

restoring force will be:

fn = (kn − 2ka)z = kn1z, (5.26)

where kn1 = kb − 2ka. Eq. (5.26) shows that, under suitable material pa-

rameters, the restoring force varies linearly with the displacement, and the

effective stiffness of this spring-bar mechanism can be a negative constant.

Compared with the NSM formed by a pair of oblique springs, the dynamic

stiffness of this mechanism does not introduce nonlinearity.

The equation of motion of the SDoF mechanism depicted in Fig. 5.7(a)
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is:

mz̈+ cż+

(
kb +2ka

l −
√
l2 − z2 − δ0√
l2 − z2

)
z = d0 cosωt+ cd0ω cosωt. (5.27)

Fig. 5.8 shows the frequency–response curve of the lumped mass m

under different parameter settings of the NSM. With the given parameters,

Eq. (5.27) can be solved using the HB-AFT technique and the numerical

time-marching Runge–Kutta (RK) method. The results in lines are ob-

tained by HB-AFT, while those represented by the markers are obtained

from the RK method, and the colours represent cases with different non-

linearity related parameters. The linear parameters are selected as m = 1

kg, c = 0.02 N/(m/s), kb/k0 = 1. The solid black line is a linear case with

no lateral springs ka. The blue, red, and pink dash-dotted lines are the

results with ka/k0 = 0.1 and λ = 0.5, 1, 1.5, respectively, where λ = δ0/l.

The marks obtained from the RK method seem to agree well with the re-

sults of the HB-AFT; therefore, the results can be verified. This shows

that the resonant peak is bent into the high-frequency range when λ = 0.5,

and conversely, the peak is bent into the low-frequency range when λ =

1.5. When λ = 1 as expressed in Eq. (5.26), the curve shows no nonlinear

characteristics, and the effective stiffness of the NSM is a constant.

A 4-DoF diatomic system with NSM is shown in Fig. 5.7(b), which

can be recognised as one unit of the proposed LRAM, as shown in Fig.

5.6 with harmonic motion excitation. For nonlinear systems, the harmonic

orders, and number and size of time steps per period should be considered

when using HB-AFT and RK methods, respectively. The dynamics of this

diatomic unit structure can be studied first before analysing the multi- DoF

system.



5.3. Diatomic configuration with negative stiffness 134

Figure 5.8: Transmissibility diagram of the lumped mass m in a SDoF
spring-bar NSM-based system obtained by HB-AFT technique (lines) and
RK method (markers) with different geometrical nonlinearity related pa-
rameters.

The equations of motion of the 4-DoF configuration depicted in Fig.

5.7 (b) are:



m1 0 0 0

0 m0 0 0

0 0 m2 0

0 0 0 m0





ẍ1

ÿ1

ẍ2

ÿ2





2c 0 −c 0

0 0 0 0

−c 0 c 0

0 0 0 0





ẋ1

ẏ1

ẋ2

ẏ2


+



2k0 + k1 + kn −kn −k0 −k1

−kn k1 + kn 0 0

−k0 0 k0 + kn −kn

−k1 0 −kn k1 + kn





x1

y1

x2

y2


=



cd0ω sinωt+ k0d0 cosωt

k1d0 cosωt

0

0


.

(5.28)

The displacement transmissibility diagrams for masses m1 and m2 in

4-DoF are presented in Fig. 5.9(a) and (b), respectively. The blue dashed
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line, red dash-dotted line, and pink dotted line represent the results with

geometrical parameter λ being 0.5, 1 and 1.5, respectively. Because it is a

4-DoF system, four resonant peaks exist in each curve. The nonlinearity

is influenced by the mass displacements; therefore, only the first two peaks

with relatively high amplitudes exhibit strong bending characteristics with

the selected parameters. Similar to Fig. 5.8, the peaks are bent into the

high and low frequency ranges with λ=0.5 and 1.5, respectively. When λ=

1, the system can be considered linear. It shows that the NSM can provide

a constant negative stiffness when λ=1 without the need for nonlinear anal-

ysis. NSM can be applied to diatomic LRAM to achieve a stable constant

negative stiffness avoiding the introduction of nonlinearity into the system.

Figure 5.9: Transmissibility diagrams of (a) lumped mass m1 and (b)
lumped mass m2 in a 4-DoF spring-bar NSM-based system obtained by
HB-AFT technique with different geometrical nonlinearity related param-
eters.

5.3.3 Critical value for negative stiffness

Based on the governing equations for the dispersion relation, the bound-

aries of the bandgaps can be calculated by setting cos(2qL) =±1 in Eq.

(5.12). Because the locally resonant bandgap and band-folding bandgaps

cannot be merged, and the lower bandgap becomes narrower as it moves
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to a low frequency, the optimal case is that the lower boundary of the

locally resonant bandgap reaches 0. In this case, a bandgap covering a

low-frequency range and an additional bandgap covering a high-frequency

range were obtained. The ranges of the locally resonant bandgap in the

monatomic and diatomic structures are the same, which means that the up-

per and lower bounds of the locally resonant bandgap can also be obtained

by setting cos(qL) =±1 in Eq.(5.13):

ωU =

√
(k1 + k2)(

1

m0

+
1

m1

), (5.29)

ωL =
−B −

√
B2 − 4AC

2A
, (5.30)

where A = m0m1, B = −(m0 +m1)(kn + k2)− 4k0m0, C = 4k0(kn + k2) +

4k1k2, ωU and ωL are the frequencies of the upper and lower bounds of the

locally resonant bandgap, respectively.

For a linear system, the bandgap location is not affected by external

excitation, but only by the material parameters. When ωL, as shown in Eq.

(5.30) with ωL being zero, the critical value of the stiffness for the optimal

low-frequency bandgap can be calculated. With the same parameters set

as m1 = 1 kg,m0 = 0.6 kg, k0 = m1ω
2
1, k2/k0 = 0.8, ωL =0 Hz, the critical

value of the effective stiffness ratio can be obtained as βn = kn/k0 = −4/9.

5.3.4 Wave transmittance and power flow

In Fig. 5.10, the influence of NSM on the dispersion relations is inves-

tigated with different values of βn = −0.2, -4/9, -0.6 being considered.

When βn = −4/9, the locally resonant bandgap is located in an ultra-low
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frequency region, starting from Ω = 0 to Ω = 0.84. The upper band-

folding-induced bandgap appears at relatively higher frequencies with the

band from 1.38 to 1.68 while the lower band is narrow at approximately

Ω = 0.59. With a smaller absolute value of negative stiffness, as shown in

Fig. 5.10(a), the locally resonant bandgap moves to a higher-frequency re-

gion with a narrower bandwidth, and there are two band-folding bandgaps.

The upper one moves slightly higher with almost no variations in width,

and the lower one is narrow. If the value of βn increases to -0.6 as pre-

sented in Fig. 5.10(c), the locally resonant bandgap will still start from Ω

= 0 but the upper bound will be reduced, yielding a narrower bandwidth.

The upper bandgap also shifted slightly toward a lower frequency, with a

slight change in the width. Overall, the dispersion relation diagrams show

that a specific value of effective negative stiffness exists at which the wave

attenuation performance of the proposed LRAM configuration is optimal.

Therefore, the NSM-based configuration with the optimal stiffness value

will be analysed further.

Figure 5.10: Dispersion diagrams of negative stiffness mechanism based
diatomic configuration with (a)βn = −0.2, (b)βn = −4/9, (c)βn = −0.6.

In Fig. 5.11, the wave transmittance diagrams of the proposed LRAM

with 20- and 50-unit cells with critical negative stiffnesses are depicted.

The two clear low transmittance bands were in good agreement with the
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bandgaps shown in Fig. 5.10. The transmittance is low and stable within

the locally resonant bandgap, whereas the vibration suppression perfor-

mance associated with the upper bandgap improves with an increase in the

unit cell number. The results exhibit good potential performance benefits

for the inclusion of an NSM in LRAMs to control ultra-lowfrequency waves

because the bandgap can theoretically cover frequencies starting from zero.

Figure 5.11: Wave transmittance diagram for proposed negative stiffness
based diatomic configuration LRAM with (a) 20 unit cells and (b) 50 unit
cells.

To examine the effects of the number of unit cells and cell position

on the bandgap characteristics, results were obtained and power transmit-

tance diagrams were constructed. In Fig. 5.12(a), the power transmittance,

or power transmission ratio is the logarithmic ratio of the time-averaged

transmitted power into the last cell to the time-averaged power input into

the first cell. The number of cells increases from 0 to 100. This shows

that the number of peaks for the power flow increases with the number of

cells, which correspondingly leads to an increase in the number of DoFs

and resonant frequencies. For comparison, the power transmittance in Fig.

5.12(b) shows the logarithmic ratio of the time-averaged power transmis-
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sion to different cell positions in a 100-cell structure to the time-averaged

power of the first cell. For the power transmittances of the cell positions

along the 100-cell system, the peak numbers are almost the same, which

is different from the power transmittance of the cell numbers shown in

Fig. 5.12(a). Fig. 5.12(a) and (b) are similar to the two bands of blocked

power transmission located within the bandgaps shown in the dispersion

diagrams. The power transmittance decreased as the number of unit cells

and the cell position increased. Fig. 5.12 also shows that it is more diffi-

cult to suppress the low-frequency wave, even within the locally resonant

bandgap. With approximately 20-unit cells, the proposed LRAM can block

most of the energy transmission within the bandgaps with transmittance

being lower than - 20 dB.

Figure 5.12: Top view of a surface plot of power flow transmittance of the
proposed LRAM with critical negative stiffness coefficient investigating the
effects of (a) cell number and (b) cell position on bandgap characteristics.

Several studies on LRAMs have not considered the effects of damping.

However, physical systems and structures exhibit inherent damping. Here,

PFA was conducted to examine the effects of damping on energy trans-

mission and dissipation. Fig. 5.13 shows the time-averaged output power

flow and wave transmittances of the proposed diatomic LRAM with damp-

ing coefficients varying from 0.002 to 0.05 N/(m/s), respectively. In Fig.

5.13(a), the curves for the three cases have similar varying trends and the
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frequency locations of peaks and gaps for the cases are the same. When the

damping coefficient increased from 0.001 to 0.05 N/(m/s), the peak ampli-

tudes of the time-averaged transmitted power to the last cell were reduced,

while there were fewer fluctuations. At low frequencies, small differences

existed in the amplitudes of the time-averaged output power of these three

cases. The differences become larger with an increase in frequency, suggest-

ing that damping has a greater impact on energy transmission at higher

frequencies. The wave transmittance diagram as shown in Fig. 5.13(b)

indicates identical bandgaps. As damping coefficients increase, the peak

amplitudes are reduced substantially with fewer fluctuations. The effect

of damping was significant at high frequencies, where the overall transmit-

tance is evidently decreased. In general, a larger damping coefficient can

lead to fewer local variations in the power flow curve without much influ-

ence on its overall average power, while it will decrease the overall wave

transmittance significantly.

Figure 5.13: Effects of damping coefficients, c = 0.002, 0.02, 0.05 N/(m/s),
on (a) the time averaged output power flow and (b) the wave transmittances
of the proposed LRAM with 50 unit cells.
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5.3.5 Influence of material parameters

Here, the influence of the parameters of the diatomic LRAMs on the per-

formance was investigated. A lumped mass distribution in a diatomic con-

figuration induces a band-folding bandgap, and the material parameters

are related to the bandgap characteristics. In this section, the total mass

of m1 and m2 is kept constant. The mass ratio is defined as the proportion

of m1 against the total mass, µ = m1/(m1 + m2). The influence of the

mass ratio on the diatomic LRAM bandgap characteristics is investigated,

and the dispersion relation diagrams with µ = 0.55, 0.6, 0.65 are shown in

Fig. 5.14(a-c). For these three cases, the ranges of the lower locally reso-

nant bandgaps were the same, from 0 to 0.843. The bandgaps induced by

band folding became broader as the mass ratio increased, and the bound-

aries extended in both directions with corresponding band ranges of 1.432

- 1.552, 1.384 - 1.629 and 1.343 - 1.723, respectively. Therefore, the mass

ratio preference for configuration C3 is relatively high mass ratio that does

not exceed the limit preferred for diatomic structure designs.

Figure 5.14: The dispersion diagram for the proposed LRAM with critical
values of negative stiffness with (a)µ = 0.55, (b)µ = 0.6, and (c)µ = 0.65.

Fig. 5.15 shows the influence of variations in the spring stiffness k2.

Based on Eq. (5.30), stiffness k2 is related to the lower bound of the locally
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resonant bandgap. Here, we will keep the lower bound always located at ω

= 0 so that the critical value of stiffness βn will be changed simultaneously

with β2 = k2/k0. Fig. 5.15(a-c) show the dispersion relation diagrams for

three cases when β2 = 0.5, βn =- 0.3333 for Case one, β2 = 0.8, βn =- 0.4444

for Case two and β2 = 1.1, βn =- 0.5238 for Case three, respectively. The

locally resonant bandgap becomes broader with the increase in the absolute

values of the stiffness ratios β2 and βn. Meanwhile, the bandgap induced

by upper band folding is shifted to a lower frequency range, but with a

narrower bandwidth. The total bandwidths of the two gaps for Cases one,

two, and three were 1.042, 1.088, and 1.122, respectively, indicating that

the total bandwidth increased with the absolute stiffness ratios.

Figure 5.15: The dispersion diagram for the proposed LRAM with critical
value of negative stiffness with (a)β2 = 0.5, βn = - 0.3333, (b)β2 = 0.8, βn

=- 0.4444 and (c)β2 = 1.1, βn = - 0.5238.

Further investigation of the effects of the stiffness ratios is carried

out with results depicted in Fig. 5.16, which shows the top views of the

wave transmittance and power flow maps of the proposed diatomic LRAM

based on an NSM with 20 unit cells and 50 evenly distributed values of

the stiffness ratio β2 from 0.5 to 2. The two subfigures clearly show low

transmittance and bands of blocked power flow. The results matched well

with the bandgaps in the case study, as shown in Fig. 5.15. In Fig. 5.16

(a), the transmittance within the locally resonant bandgap is shown in
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deep blue, whereas that within the upper bandgap is in a slightly lighter

blue gradient. With an increase in the absolute value of the stiffness ratio

β2, the lower bandgaps became broader, and the upper band gradually

moved toward lower frequencies with a narrower width and better wave

attenuation performance. The power flow in Fig. 5.16(b) presents similar

bandgaps, while the lower band is in gradient blue and the upper band

is in gradient yellow, owing to the difference in the colour map limits. In

general, relatively higher absolute stiffness ratios are preferred for diatomic

configuration design as the bandgaps are shifted to a lower frequency region

with a broader total bandwidth.

Figure 5.16: The top views of wave transmittance and power flow maps of
the proposed NSM-based diatomic LRAM with increasing stiffness ratio β2

from 0.5 to 2.

5.4 Summary

This study investigated the vibration suppression performance of diatomic

LRAMs with negative stiffness mechanisms by using wave transmittance

and vibration power flow indices. For the foundational diatomic configu-

ration with the same average mass of the lumped masses, a better wave

attenuation ability can be achieved as shown by two additional bandgaps

induced by band folding. These bandgaps are located on both sides of
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the typical locally resonant bandgap. Based on the power flow and wave

transmittance analyses, the results show that the vibration attenuation per-

formance of the higher band-foldinginduced bandgap is better than that of

the lower band. A satisfactory performance can be obtained by increasing

the number of unit cells. Because the locally resonant bandgap is related

to the resonant frequency of the resonator, it can be shifted to an ultralow

frequency with the use of NSMs. For the proposed NSM-based diatomic

LRAM configuration, the following conclusions are drawn:

• The diatomic LRAM configuration can be beneficial by creating two

additional Bragg scattering bandgaps located on both sides of the

locally resonant bandgap.

• With the application of NSMs on diatomic LRAMs, the lower bound

of the locally resonant bandgap can reach zero. The upper bandfold-

ing induced bandgap exists with good wave attenuation performance.

• Based on the power flow analysis, the upper bandgap presents good

power blocking ability with a small number of requisite unit cells,

which means that the proposed LRAM configuration can yield an-

other low-frequency bandgap compared to the monatomic configura-

tion with little cost.

• Investigations on the influence of material parameters show that a

relatively higher diatomic mass ratio and absolute stiffness ratio are

preferred for designs, and a relatively larger damping ratio benefits

energy dissipation.

This study suggested a new perspective of power flow to analyse the wave

attenuation performance, leading to anenhanced understanding of bandgap
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characteristics. Meanwhile, a diatomic LRAM configuration with negative

stiffness was proposed to achieve broadband ultra-lowfrequency vibrations.

The PFA method can be used to reveal the performance benefits of intro-

ducing negative stiffness or other auxiliary mechanisms to LRAM designs.



Chapter 6

Flexnertia: A novel dissipation

mechanism for structural

vibration reduction through

coupling of flexural motion

with an inerter

6.1 Introduction

This chapter focuses on the experimental demonstration of Flexnertia,

which is a novel structure for coupling structural flexural motion with an

inerter device. Here an arc-shaped metastructure with an integrated inerter

device is proposed for the reduction of structural vibration, with an empha-

sis on flexural motion. The proposed structures have potential applications

in vibration suppression of engineering structures such as bridges, build-

146
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ings, as well as aircraft wings for enhancing the dynamic performance by

coupling inerters with a particular vibration mode of structures. Accord-

ing to the D’Alembert’s principle, the theoretical inertance of the designed

inerter device can be derived and the effective rotational inertia can be cal-

culated based on the inertia equation of classical mechanics of coupled gear

systems. The numerical modelling of the Flexnertia structure is verified by

finite element (FE) software while a corresponding experimental assembly

is firstly designed for testing. The predictions are in excellent agreement

with the experimental measurements.

6.2 Arc beam

The schematic diagram for illustrating a finite element in a semicircle beam

is shown in Fig. 6.1. Analytical formulation of the equation of motion of

the arc beam structure is available and can be used to determine the natural

frequencies and mode shapes for forced vibration analysis (Henrych, 1981;

Yang et al., 2018). The beam is considered infinitely stiff in shear. The

element studied is defined with a small radius angle of θ and the shear,

stress and bending moment are presented as V , N , M , respectively. We

assume u(θ, t) and w(θ, t) as the axial and transverse motion deflection.

The strain of any circumferential fibre in the analysed finite element

is shown as

ϵ =
(ds

′ − ds)

ds
≈ 1

R
[w +

∂u

∂θ
+

z

R
(
∂u

∂θ
− ∂2w

∂θ2
), (6.1)

where z is the height of the fibre from the element’s central line.
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Figure 6.1: Schematic diagram for a finite element of the arc beam.

The stress and bending moment can be presented based on the strain

in Eq. (6.1) as

N =

∫
ϵE dA =

EA

R
(w +

∂u

∂θ
);M = −

∫
ϵEz dA = − EI

R2 (∂u
∂θ

− ∂2w
∂θ2

)
,

(6.2)

where E is the Youngs’ modulus, A is the cross-section area, I is the second

moment of area.

The force balance equation in the circumferential direction is

ρAR dθ
∂2u

∂t2
= N +

∂N

∂θ
dθ − N + V

dθ

2
+ (V +

∂V

∂θ
dθ)

dθ

2
, (6.3)

where ρA represents mass per unit length and R dθ is the small length of

the element. It can be simplified to

ρAR
∂2u

∂t2
=

∂N

∂θ
+ V. (6.4)
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The force balance equation in the radial direction is

ρAR dθ
∂2w

∂t2
= V +

∂V

∂θ
dθ − V − N

dθ

2
+ (N +

∂N

∂θ
dθ)

dθ

2
, (6.5)

which can be simplified to

ρAR
∂2w

∂t2
=

∂V

∂θ
−N. (6.6)

Based on the rotational dynamics balance, it can be obtained that

M − (M +
∂M

∂θ
dθ)− V Rdθ = 0 , (6.7)

which can be simplified to

V = − 1

R

∂M

∂θ
. (6.8)

Substituting Eqs.(6.2) and (6.8) to Eqs.(6.4) and (6.6), the equations

of motion of the arc beam can be obtained

ρAR
∂2u

∂t2
=

EA

R
(
∂w

∂θ
+

∂2u

∂θ2
) +

EI

R3
(
∂2u

∂θ2
− ∂3w

∂θ3
),

ρAR
∂2w

∂t2
= −EA

R
(w +

∂u

∂θ
) +

EI

R3
(
∂3u

∂θ3
− ∂4w

∂θ4
),

(6.9a)

(6.9b)

Based on the boundary conditions, the mode shapes and natural fre-

quencies can be obtained.
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6.3 Design of the prestressed metastructure

with an integrated inerter

The principal objective of this work is to design and assemble a metas-

tructure which would exhibit high effective inertia for targeted modes of

vibration. This pronounced effective inertia should be achieved through

minimum added extra mass, thus employing an inerter able to provide a

large effective translational inertia through coupling the motion to small

rotating masses would seem to be an ideal engineering choice. In this study,

gear-based inerters are applied and the friction and backlash problem may

occur. We prestress the free end of the arc structure to reduce the influence

of backlash. The flexinertia structure allows the use of any type of inerters,

such as ballscrew inerter, helical fluid inerter and hydraulic inerter, which

are free from backlash problems.

The advantages of employing an inerter for damping out flexural mo-

tion in civil structures have been theoretically discussed (Lazar et al., 2014;

Giaralis and Petrini, 2017), and it has already been noted that one of the

main challenges of employing an inerter is coupling a structural position

of low global displacement to a structural position of large global displace-

ment through physical links (e.g. prestressed cables). Structures such as

arches and cylindrical panels seem to be ideal for the application of such

a design concept as they can provide relatively high displacement between

the ends. Pretensioned flat panels can also be appropriate under certain

circumstances, while the design could well include a rotating damping de-

vice to further enhance motion dissipation. An arc structure (Fig. 6.2) is

hereby chosen to demonstrate the proposed Flexnertia structure with the

inerter device placed opposite the constrained edge of the structure which
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implies that the targeted vibrating modes are the ones involving large levels

of antidiametrical displacements. It is also of interest to note that by si-

multaneously physically coupling several structural positions to the inerter,

a wider range of structural vibration modes can be damped.

The semi-circle arc structure is made of Aluminium through extrusion

and drawing processes with a radius of rs = 45 cm, a width of ts = 5 cm and

a thickness of hs = 2.3 mm. The experimental design of the proposed inerter

device is shown in Fig. 6.3 while the free body diagram of the proposed arc

structure and the schematic diagram of the inerter device are depicted in

Fig. 6.4. The housing of the inerter is additively manufactured on a fusion

deposition modelling system using Acrylonitrile butadiene styrene (ABS)

material. The housing is bonded to one side of the arc structure. The two

Φ 6 mm rods are mounted through the housing and their lateral movement

is constrained through the use of shaft collars (see Fig. 6.3). The threaded

prestressed rod is made of brass. One end of this rod is connected to the

free side of the arc structure while the other end is connected to the Φ 6 mm

shaft. When motion is induced on the input side of the arc structure, where

the prestressed rod is connected, the motion will be transferred through the

rod to the inerter mechanism contained within the housing. The gears will

then be allowed to move and absorb this motion; performing better than

an equivalent attached lumped mass which merely acts in a translational

vibration mode.

The calculation of the nominal inertance properties of the designed

inerter device (Smith, 2020) can be carried out based on the schematic

diagram presented in Fig. 6.4. Assume the mass of long prestressed rod

and fixation assembly is mr, the mass of bracket is mb, the mass of Φ

60 mm gears is mg and radius is rg, the mass of Φ 10 mm pinion is mp
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Figure 6.2: Global illustrative of the Flexnertia structure presenting the
structure investigation and focusing on the inerter mechanism.

Figure 6.3: Design of the inerter mechanism comprising an assembly of
shafts and gears. The ABS housing is bonded to one side of the arc struc-
ture while the two rods are mounted through the housing and their lateral
movement is constrained through the use of shaft collars. One end of this
rod is connected to the free side of the arc structure while the other end is
connected to the shaft.
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Figure 6.4: (a) The free body diagrams for the arc structure and inerter
device. (b) Schematic diagram for the designed inerter device.

and radius rp and the rotational Φ 6 mm shafts have mass ms and radius

rs. The angle of rotation θ0 of the gear assembled with prestressed rod

satisfies θ0rs = x2 − x1, where x1, x2 are the displacements of the left

terminal and right terminal, respectively. The Φ 10mm pinion rotates with

angle of rotation θ1 satisfying θ1rp = θ0rg. The moment of inertia of the

gears, pinion and shaft are Jg, Jp and Js, respectively. If coupled gear

systems containing N sets of gears are considered, we define J0 = Jg + Js

as the total inertia of the components directly activated by the physical

connection to the structure and their mass are m0 = mg + ms, Jn as the

total moment of inertia of the connected components n steps away from

the first set of gears (here J1 = Jg + Jp + Js) and their mass are mn (here

m1 = mg +mp +ms) angle of rotation are θn. τn is the effective gear ratio

of the nth gear set to the first gear set. The influence of the rod fixation
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assembly and the eccentricity between the rod and the axle of the first gear

is small compared with the whole mechanism, so they are neglected in the

mathematical formulation. Based on the D’Alembert’s principle, assuming

infinitesimal displacements δx1, δx2, δθ1, δθ2 and δθn, we can derive the

moment balance equation

0 = (F1 −mrẍ1)δx1 + (−F2 − (mb + 2mg +mp + 2ms +
N∑

n=2

mn)ẍ2)δx2

− (Jg + Js)θ̈0δθ0 − (Jg + Jp + Js)θ̈1δθ1 −
N∑

n=2

Jnθ̈nδθn

= (F1 −mrẍ1)δx1 + (−F2 − (mb +m0 +
N∑

n=1

mn)ẍ2)δx2

− 1

rs2
(J0 +

N∑
n=1

Jn
τ 2n

)(ẍ2 − ẍ1)(δx2 − δx1).

(6.10)

Since δx1 and δx2 are independent, it can be sorted as

F1 = b(ẍ2 − ẍ1) +mrẍ1,

F2 = b(ẍ2 − ẍ1)−Mẍ2,

(6.11a)

(6.11b)

where the inertance b = (J0 +
∑N

n=1 Jn/τ
2
n)/rs

2 and the total mass of the

inerter device M = mb + m0 +
∑N

n=1 mn. The terms mrẍ1 and Mẍ2 in

Eqs 6.11(a) and (b) can be considered as two masses m1 and M directly

connected to terminals 1 and 2, respectively, while the remaining inertance

part can generate extra ideal inertial force in addition to the physical mass

of the device, which is related to the acceleration difference between the

two terminals.

It is therefore shown that the inertance is closely related to the total
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rotational inertia of the gear system, and it can be further expressed as

b =
Jeq
rs2

, (6.12)

in which Jeq = J0 +
∑N

n=1 Jn/(ητ
2
n) represents the equivalent total rota-

tional inertia of the system with the consideration of the gear efficiency η.

The merit of employing an inerter device is evident out of the expression

of Jeq which suggests that the effectiveness of a rotational inertia can be

multiplied by several orders through such a mechanism.

In our demonstration case study, a single stage referred inertia system

is employed with a gear ratio τ1 = rp/rg = 1/6. With the consideration of

gear, the total physical mass of the inerter mechanism including the bracket

is M = 0.477 kg. The inerter arrangement and gear dimensions are shown

in Fig. 6.4 with the total inertia of the first set of gears being equal to

J0 = 7.13×10−5 kg·m2 and the equivalent combined total rotational inertia

of the inerter being Jeq = 2.93 × 10−3 kg·m2, thus close to two orders of

magnitude higher than the single gear. Then the corresponding theoretical

additional inertance can be calculated to be equal to b = 0.326 kg, which

can yield an effective translational inertia of 0.803 kg.

6.4 Mathematical model analysis

Fig. 6.5(a) shows the structural model comprising a semi-circular arc beam

ABC coupled with a horizontal inerter with its two ends attached to points

A and C. The initial shape of the beam is a half circle with a radius of R

and with point O being the center. The arc beam, made of Aluminium, is

with a cross section width of W and a thickness of h . The beam is fixed at
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the end point C while the other end, point A, is subjected to a horizontal

external force of amplitude fe and frequency ω.

Figure 6.5: Schematic diagram for a semi-circular arc structure model with
horizontal inerter mechanism connecting both ends. The beam is fixed at
the end point C while the other end, point A, is subjected to a horizontal
external force of amplitude fe and frequency ω.

6.4.1 Power flow analysis and dynamic properties of

individual components

Power flow analysis (PFA) is a widely accepted method to study vibration

describing the dynamic behaviour of coupled systems and complex struc-

tures (Xing and Price, 1999; Xiong et al., 2003). PFA, which provides a

new perspective for dynamic analysis and new indices to evaluate structural

dynamic characteristics performance (Liu et al., 2022c). The instantaneous

input power pin is defined as the product of the excitation force f̃e and the

velocity ṽA = iωũAe
iωt of the excitation point A. Then the time averaged

input power flow can be further derived as (Goyder and White, 1980; Xiong

et al., 2001; Yang et al., 2016):

pin =
1

2
ℜ(f̃e ṽ ∗

A) =
1

2
ℜ(f̃ ∗e ṽA) (6.13)



6.4. Mathematical model analysis 157

where (•)∗ denotes the operation of taking complex conjugate.

The point receptance function, β̃, relating the complex amplitude of

the horizontal displacement of the excited point A of the arc beam to the

amplitude of a harmonic excitation is (Zhu et al., 2021b)

β̃ =
N∑
j=1

(ϕj)e(ϕj)r
mj(ω2

j − ω2)
(6.14)

where j stands for the j-th mode; ϕj and ωj represent the mode shape and

the corresponding natural frequency, respectively, which can be calculated

based on Appendix 6.2; N denotes the highest mode taken into consider-

ation; mj is the modal mass; the subscript e and r denote the excitation

point and the response point, respectively. Note that for simple structure,

it may be possible to obtain the mode shapes and natural frequencies an-

alytically. For complex structures, the finite element analysis is performed

to obtain the receptance function. For the current system, the excitation

point and the interested response point are both taken as point A and thus

they coincide.

For the horizontally embedded inerter of inertance b, we have the fol-

lowing relationship between the applied force by the arc beam with complex

amplitude f̃b and the relative acceleration ũA

fb(t) = f̃be
iωt = b

d2(ũAe
iωt)

dt2
= −ω2bũAe

iωt , (6.15)

from which we have f̃b = −ω2bũA, where f̃b and ũA are positive pointing

to the right.



6.4. Mathematical model analysis 158

6.4.2 Vibration analysis based on a substructure method

Obtaining a complete analytical solution of the dynamic response is chal-

lenging for complex structures. The finite element method (FEM) is a

widely used method for analysing vibration properties, but its computa-

tional cost is often much higher than that associated with analytical or theo-

retical methods for complex structures, especially for an inerter mechanism-

based model. The substructure method can keep the advantages of both

FEM and theoretical methods, and it has been applied for investigating

the dynamic characteristics of integrated systems (Zhu et al., 2021b; Wang

et al., 2002b,a). The main idea of the substructure method is to divide a

complete system into two or more subsystems, each of which can be solved

using an appropriate analytical method, including experimental, analytical

and numerical methods. Based on the force balance and displacement con-

tinuity conditions, the coupling force and displacements can be solved to

further investigate the dynamic characteristics of the integrated structure.

Here the substructure method is used to investigate inerter based arc

beam structure. For this, the system is divided into two substructures.

Substructure I is the arc beam structure and substructure II is the inerter

device. For the inerter device, the relationship between the interaction

forces and the relative acceleration between two terminals can be expressed

analytically as shown by Eq. (6.15).

For the arc beam without the inerter, the receptance function shown

by Eq. (6.14) can be firstly obtained using FE analysis. The complex

amplitude of the total applied at point A of the arc beam is

f̃1 = f̃e − f̃b = βũA, (6.16)
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where f̃b is the complex amplitude of the force applied by the inerter to

the arc beam. By using Eqs.(6.15) and (6.16), the following relationship is

established:

f̃e = (β − bω2)ũA. (6.17)

Therefore, the complex amplitude of the displacement response at

point A is

ũA =
f̃e

(β − bω2)
. (6.18)

For comparison and method verification, a more complex device can be

considered, replacing the inerter device in Fig.1. For this complex device,

a spring with stiffness coefficient k and a damper with damping coefficent

c are configured in parallel with the inerter. Following the substructure

method, the response at point A would become

ũA =
f̃e

(β + k + iωc − bω2 )
. (6.19)

6.4.3 Results and discussion

Here parameter studies are carried out to demonstrate the use of the the-

oretical and numerical analysis methods. A sine excitation force of ampli-

tude 3 N and frequency ranging from 0 Hz to 450Hz is applied horizontally

to the free end. The 2-node Beam 188 linear element based on Timoshenko

beam theory, which is a first-order shear-deformation theory, is used in

ANSYS FEM with a shear correction factor of 5/6. The shear locking phe-

nomenon may occur when the Timoshenko beam is applied to very thin

beam structures (Rakowski, 1990; Hernández and Vellojin, 2021). The re-

duced integration technique is one of the most commonly used methods to

solve the shear locking problem (Heyliger and Reddy, 1988). In this study,
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the proposed structure is a Aluminium semi-circle arch with the radius of

rs = 45 cm, the width of ts = 5 cm and the thickness of hs = 2.3 mm.

As the thickness to the length ratio of the arc beam is not too small, no

shear locking phenomenon is observed in numerical FE simulations. The

arc structure is discretised into a total number of 50 elements.

By FEM modelling, the response of a spring-based arc structure with-

out inerter can be obtained with relatively low computational cost. The

response results obtained by analytical calculation and FEM can be com-

pared to verify the substructure method. The free end horizontal displace-

ments of the arc structure with and without spring connecting both ends

obtained by analytical calculation in Eq. (6.19) and FEM are plotted in

Fig. 6.6, and here no inerter is considered. The black solid line indicates

the response of the arc structure without spring obtained by FEM, while

the dash-dotted lines and circles are the results of spring attached struc-

tures obtained by FEM and analytical calculation, respectively. Different

colours represent the cases with different stiffness coefficients, where blue,

red and pink are k=5,20,50 N/mm. It can be seen from the results that the

results of the theoretical calculation based on the substructure method are

consistent with the results obtained from using a full finite element model,

which verifies the correctness of the substructure method.

The responses of arc structure with inerter device can be further ob-

tained by substructure method based on Eq. (6.18), which are plotted

in Fig. 6.7(a). It shows that as inertance increases, the peaks move to

lower frequencies while the gap frequencies remain the same. Especially

with a large inertance, the peak amplitude is reduced, and the frequency

range is narrower. Moreover, the dynamic response is much reduced, indi-

cating good vibration control performance of the inerter device-based arc
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Figure 6.6: Responses of arc structure obtained by analytical calculation
and FEM. The black solid line indicates the response of the arc structure
without spring obtained by FEM, while the dash-dotted lines and circles are
the results of spring attached structures obtained by FEM and analytical
calculation, respectively.

structure.

The response diagram for the spring-inerter-based arc structure is plot-

ted in Fig. 6.7(b). The blue, red and pink dash-dotted lines represent the

cases with different stiffness coefficients k = 5, 20, 20 N/mm and inertance

b = 0.001, 0.001, 0.005 kg. It shows that the increase of k can move the

peaks to higher frequencies and reduce the peak amplitude but the effect

decreases as the excitation frequency rises. The response at quais-zero fre-

quency is also reduced while the change of inertance will not influence the

zero-frequency response. As observed from Figs. 6.7(a-b) and a lot of other

research (Dai et al., 2022b; Wagg, 2021) also showed that, a larger iner-

tance can shift the peaks to lower frequencies with lower amplitudes. The

attached spring-inerter device can provide excellent vibration suppression

performance to the host arc structure.

The damper is a vital element for providing energy dissipation mech-
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Figure 6.7: (a)Responses of arc structure with and without an inerter device
calculated by substructure method. The black, blue, red and pink solid
lines represent the cases with inertance of 0, 0.0001, 0.001 and 0.01 kg,
respectively. (b)Responses of arc structure with a spring and an inerter
device calculated by substructure method. The black solid line represent
the inerter deactivated case while the blue, red and pink dash-dotted lines
represent the cases with different stiffness coefficient k = 5, 20, 20 N/mm
and inertance b = 0.001, 0.001, 0.005 kg. (c)Power flow of the arc structure
with the spring-damper-inerter device. The blue, red and pink solid lines
represent the cases with inertance of 0, 0.0001 and 0.001 kg, respectively.
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anism and its effects can be demonstrated directly using power flow anal-

ysis. Here a damper of damping coefficient c = 2 N/(mm/s) and spring

of stiffness coefficient of k = 5 N/mm is considered in the spring-damper-

inerter-based arc structure, whose power flow is shown in Fig. 6.7(c). It

indicates that, under the same excitation, the integrated structure with a

larger inertance has less energy flowing in, which means there is an energy

block band for vibration control.

6.5 Manufacturing, assembly and test setup

The experimental assembly of the arc-shaped metastructure of the Flexn-

ertia structure with energy absorption mechanism is shown in Fig. 6.8. An

optical table is used to mount the dynamic shaker and the arc structure.

The end of the arc structure with the inerter mechanism is clamped to the

table while the other end is allowed to move freely. The dynamic shaker

(Modal Shop 2050) is connected to the free side of the arc structure to

induce horizontal movement. An impedance head (PCB model 288D01)

is introduced between the shaker and the arc mechanism to measure the

force at the input side of the setup. The impedance head has a range be-

tween 1 Hz to 5000 Hz and a sensitivity of 22.4 mV/N. An accelerometer

(PCB 352C65) is attached to the middle top of the arc mechanism. The

accelerometer has a frequency range from 0.5 Hz to 10 kHz and a sensi-

tivity of 10.2 mV/(m/s2). A chirp wave was generated for each test using

a proprietary computer software while triggering and data collection was

done through a Polytec VIB-E-400 junction box.



6.6. Discussion on experimental and numerical results 164

Figure 6.8: Experimental assembly of the arc metastructure comprising
the integrated inerter device. The end of the arc structure with the inerter
mechanism is clamped while the other end is free. The shaker is connected
to the free side to induce horizontal movement

6.6 Discussion on experimental and numer-

ical results

Numerical modelling of the proposed design of the Flexnertia structure

was performed through a full finite element approach using the ANSYS©

software. As with the experimental study, the case where the inerter is

decoupled from the vibrating end of the arch (labelled as ‘No mechanism’

in Fig. 6.9) is compared against the case where the rotational inertia is

activated and coupled to the flexural motion of the structure. A nonlinear

analysis is done for the prestressed structure in two stages. A pretensioning

load is initially applied in 100 steps of equal displacement to prestress the

free end of the master structure from its initial position to dprest = 12

mm (as done in the experimental study). Then the steady-state harmonic

analysis is performed in steps of fresol = 1 Hz with the imposed displacement

applied on the free end of the arc with an amplitude of Aoscil = 3 mm around

the prestressed equilibrium point. A total of 20 loading cycles is imposed

on the structure in order to ensure that it reaches its steady state before
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the frequency response is computed using Welch’s approach by taking into

account the steady-state range of the transient signature at each input

frequency.

Diagrams of experimental and numerical acceleration-to-force ratio

versus frequency are presented in Fig. 6.9, expressed on a logarithmic

scale while the y-axis represents the degrees. The experimental results are

shown with black and red solid lines indicating the activated and deacti-

vated inerter device, respectively. The deactivated system still carries the

inerter device so it has the same mass as the activated system. When the

inerter device is deactivated, the acceleration over force increases with the

excitation frequency and it is relatively stable at around a response value of

2 between 10 Hz to 100 Hz. Some peaks with low amplitude are observed

around 10 Hz, 18 Hz, 27 Hz, 60 Hz and 80 Hz. These are usually associated

with resonance modes of the arc structure. The results of the activated in-

erter have an average overall response value far below 2. Some resonances

shown at 20 Hz, 38 Hz, and 80 Hz took the response to above 2. The

10 Hz resonance of the deactivated system is damped out in the activated

mechanism. The most noticeable behaviour of the activated mechanism

is its extreme attenuation capabilities below 20 Hz in comparison to the

deactivated mechanism. This indicates that the inerter device can achieve

good vibration suppression performance, covering multiple modes of the

arc metastructure.

The activated mechanism can suppress waves of different frequencies

with different effects. Excellent vibration control ability is shown at fre-

quencies between 50 Hz and 70 Hz while weak effects are observed in some

narrow frequency bands near 20 Hz and 40 Hz. More importantly, the wave

in the frequency band from 5 Hz to 20 Hz is clearly attenuated, which indi-
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Figure 6.9: Logarithmic experimental and numerical results for the metas-
tructure having the inerter deactivated (black) and activated (red). The
activated and deactivated systems have exactly the same mass. The solid
lines are the experimental results while the black asterisks and the red
squares are the numerical results calculated through a nonlinear finite el-
ement analysis for the prestressed structure. The steady-state harmonic
analysis is performed in steps of fresol = 1 Hz with the imposed displace-
ment applied on the free end with an amplitude of Aoscil = 3 mm.

Table 6.1: Amplitude percentage reduction of the numerical results be-
tween the deactivated and activated inerter based structures for specific
frequencies.

Frequency
(Hz)

10 20 30 40 50 60 70 80 90 100

No mecha-
nism

20.3 11.7 12.8 11.0 9.9 20.3 19.5 24.5 16.6 10.0

Mechanism 0.8 7.4 3.5 6.0 2.2 3.1 4.6 11.2 4.0 5.5
Amplitude
reduction(%)

96.2 36.7 73.0 45.0 77.8 84.8 76.5 54.3 76.0 44.5

cates its effect is not weakened in the low-frequency band. The amplitude

percentage reduction of the numerical results between the deactivated and

activated inerter based structures for specific frequencies is listed in Ta-

ble 6.1. The activated inerter device shows a good amplitude reduction
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performance. In general, the application of the inerter device reduces the

acceleration-to-force ratio of the proposed arc metastructure by 0.5 on a

logarithmic scale, demonstrating the potential for application in vibration

control.

The numerical results are depicted in Fig. 6.9 and the black asterisks

and the red squares represent the systems with activated and deactivated

inerter device, respectively. The acceleration and force are measured hor-

izontally at the moving end of the structure where the shaker is attached.

Although the excitation settings for experimental and numerical analysis

are slightly different, which are swept sines and multiple sines, a good agree-

ment can be observed from the comparisons between the results depicted.

For the experimental result with inerter device, a small peak and drop can

be observed, which is not shown in numerical results. This may be resulted

from a more complex set-up in the experiment than in the numerical model.

Error may also originate from the effect of friction and backlash of inerter

device influencing the experimental result. The numerical results are more

intuitive to show the wave attenuation ability of inerter device by smooth

curve. It presents the effects over almost all frequencies except for a nar-

row band around 18 Hz and it is remarkable at the lower frequencies. This

attenuation performance is even better than that shown between 40 Hz to

100 Hz. For the proposed inerter based arc metastructure, the experimen-

tal and numerical results analysis can be mutually verified, suggesting that

the inerter has good prospects for vibration control in theory and exhibits

excellent performance in practical applications.

The proposed Flexertia structural concept has the potential to be ap-

plied to the design of engineering structures, such as bridges and aircraft

wings, by coupling inerter with one of the interested modes of vibration.
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With further advances in manufacturing technologies, particularly additive

manufacturing, these interer devices can made in smaller macroscales to fit

within various mechanical systems, which is also potential for the periodical

metamaterial design.

6.7 Summary

This study investigated the advantages and limitations of the Flexnertia

design structure, which involves coupling the structural flexural motion of

a structure to an integrated inerter device. The theoretical analysis based

on the substructure method exhibits the vibration suppression performance

of inerter based arc structure. The research on inerters is mature so the

inertance and effective rotational inertia of the rod-and-pinion device can

be deduced in a straightforward manner. The experimental test is carried

out to demonstrate the vibration attenuation performance of this struc-

ture. The experimental work shows very similar results compared to the

numerical results obtained from the nonlinear FE modeling, indicating that

the numerical and experimental results are in good agreement and can be

verified against each other. The most obvious finding to emerge from this

study is that the average overall response of the metastructure is much

lower with the activated inerter device than that of the deactivated sys-

tem. Moreover, the beneficial effect is predominant in the low-frequency

band, demonstrating good potential for practical application in cases where

constrained damping layers are inactive and tuned mass dampers are too

heavy. With further development of manufacturing technologies especially

additive manufacturing, inerter devices of smaller scales and customised

properties and packaging can be fabricated to fit a large variety of mechan-
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ical systems.



Chapter 7

Enhanced suppression of

vibration response and power

transfer by tailoring contact

hysteresis friction

7.1 Introduction

This study explores enhanced vibration transfer suppression and power

dissipation based on a coupled structure employing a nonlinear friction

damper. The main difference of this study compared to previous studies

on friction dampers is the tailoring of vibration energy transfer by ex-

ploiting hysteresis friction properties. The dynamical characteristics of the

proposed structure are investigated from a new perspective of considering

vibration power flow as a performance index, not restricted to displacement

response and force transfer.

170
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A bilinear hysteresis model based on Jenkins element is considered for

the friction damper model. The study starts by describing the theoretical

calculations and linearization methods on the basis of an SDoF system, and

then develops a 2-DoF coupled structure. Combining phase diagrams, time

and frequency domain responses to analyse the nonlinear vibration and the

effect of maximum displacement versus critical slip displacement on the dy-

namic behaviour of the system. The effect of the parameters of the friction

damper on the vibration attenuation is also discussed. The results show

the friction damper dissipates energy only in the frequency band around

the natural frequency of the system, resulting in high amplitude vibration

attenuation. The friction damper based coupled systems are flexible and

the capacity can be modified for different vibration control purposes. The

rest of the article is organised as follows. Section 7.2 describes the hystere-

sis friction damper. The SDoF system with a bilinear hysteresis friction

damper and its mathematical model is shown in Sec. 7.3, together with the

linearization of the hysteresis and theoretical calculation. In Sec. 7.4, the

2-DoF coupled structure with friction damper is studied assisted by power

flow and wave transmittance analysis. The conclusions of the present study

are given in the last section.

7.2 Hysteresis friction damper

Figure 7.1 depicts the schematic diagram of a hysteresis friction damper and

the corresponding force-displacement relationship. The friction damper is

presented by a macro-slip element with static stiffness, ks, and an element

comprising a spring of kinetic stiffness, kn, and a dry friction element with

slip force, µffn, in series. When the dry friction damper starts to move from
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rest, the pre-sliding stiffness is (ks+kn). Assuming it is anticipated to begin

slipping when the relative displacement between interfaces in a particular

direction surpasses a critical threshold, which is associated with the slip

force of the Coulomb slider, then only static stiffness, ks, is involved. Stick-

ing occurs when the direction of relative motion is reversed, during which

time the pre-sliding stiffness is (ks + kn). Repeating the above movement,

i.e. the relative displacement exceeds a specific sliding threshold, sliding

starts again, during which only static stiffness, ks, is engaged.

Figure 7.1: (a) Schematic diagram of the nonlinear hysteresis friction
damper. (b) Bilinear hysteretic force-displacement relationship of the dry
friction damper.

The corresponding restoring force is mathematically expressed as (Huang

et al., 2018)

fnl(δ, δ̇) =



(ks + kn)δ + sgn(δ̇)kn(δm − δc),

when δm − 2δc ≤ −sgn(δ̇)δ < δm;

ksδ + sgn(δ̇)knδc,

when −sgn(δ̇)δ ≤ δm − 2δc,

(7.1)

where fnl denotes the restoring force of the friction damper, δ = xb − xa

denotes the relative displacement between interfaces, δm is the maximum
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displacement, δc is the critical slip displacement, δc = µffn/kn, µf is the

coefficient of friction, fn is the normal force applied, and sgn(•) represents

the sign function.

7.3 SDoF system with nonlinear hysteresis

friction damper

In this section, the influence of the inclusion of a hysteresis friction element

in a Single-DoF system is investigated. Figure 7.2 provides a schematic di-

agram of an SDoF system with a viscous damper describing the inherent

viscous damping of the mechanical system and a grey box representing the

hysteresis nonlinear friction damper as shown in Fig. 7.1. The implementa-

tions of different friction dampers have been presented in different research

(Paronesso and Lignos, 2021; Qiu et al., 2022; Lee et al., 2016). Based on

the conventional friction damper, piezoelectric actuators can be assembled

with bolts to control the normal force applied to it.

The investigated system is a mechanical system so the harmonic force

excitation is considered. The lumped massm subjected to an external force

with amplitude f and frequency ω, is connected to the left fixed base by a

viscous damper of damping coefficient c and a hysteresis friction damper.

The lumped masses move horizontally without considering the friction with

the horizontal base. The absolute displacement of lumped mass is x and

x = 0 is considered to be the static equilibrium position.

The equation of motion for the corresponding model is
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Figure 7.2: Schematic diagram of the SDoF structure with a nonlinear
hysteresis friction damper and a viscous damper.

mẍ+ cẋ+ fnl(x, ẋ) = f cosωt, (7.2)

where the overdot ˙(•) is the derivative with respect to time and the fnl

denotes the nonlinear dry friction force.

To better analyse the model, non-dimensional variables and parame-

ters are introduced as

X =
x

l
,Xm =

xm
l
,Xc =

xc
l
, F0 =

f

ksl
, ω0 =

√
ks
m
,

Ω =
ω

ω0
, τ = ω0t, ζ =

c

2mω0
, β =

kn
ks

,

(7.3)

whereX, Xm andXc represent the nondimensional absolute, maximum and

critical slip displacement of lumped massm; F0 denotes the nondimensional

amplitude of excitation force; ω0 is the undamped natural frequency of the

system; Ω and τ are the nondimensional excitation frequency and time,

respectively; ζ and β are the nondimensional damping ratio and stiffness
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ratio, respectively.

The equation of motion in Eq. (7.2) can be further nondimensionalised

as

X ′′ + 2ζX ′ + Fnl(X, Ẋ) = F0 cosΩτ , (7.4)

where the primes (•)′ denote differentiation with respect to τ and the nondi-

mensional restoring force updated from Eq. (7.1) is

Fnl(X,X ′) =



(1 + β)X + sgn(X ′)β(Xm −Xc),

when X − 2Xc ≤ −sgn(X ′)X < Xm;

X + sgn(X ′)βXc,

when −sgn(X ′)X ≤ Xm − 2Xc

, (7.5)

7.3.1 Dynamic response analysis

For the nonlinear hysteresis system, analytical and numerical methods are

used to obtain the steady-state response. The harmonic balance method is

used to obtain the response analytically. The fourth-order Runge-Kutta

method based on numerical integration is also employed. The former

method has the advantage of relatively low computational cost. The latter

method, i.e., the numerical integration method, has the merit of providing

accurate results but is more expensive computationally.

The periodic solution of the displacement of lumped mass m can be

approximated by

X = X̂ sin(Ωτ + τ0) = X̂ sin θ, (7.6)

where X̂ represents the relative response amplitudes of m, which means

the maximum displacement Xm can be presented by X̂, and Ωτ ≡ θ. Eq.
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(7.5) can be further written as

Fnl(X̂, θ) =



(1 + β)X̂ sin θ + sgn(cos θ)β(X̂ −Xc),

when θ ∈ [θA, θB) ∪ [θc, θD)

X̂ sin θ + sgn(cos θ)βXc,

otherwise

, (7.7)

where

θA =
π

2
, θB = π − sin−1(1− 2Xc

X̂
), θc =

3π

2
,

θD = 2π − sin−1(1− 2Xc

X̂
).

(7.8)

The approximation of the restoring force of the nonlinear friction

damper is obtained by considering the fundamental harmonic component

of its Fourier series expansion, represented as

Fnl(X,X ′) ≈ F̂nl sin (θ + ϕ) = F̂a sin θ + F̂b cos θ, (7.9)

where the symbols F̂nl and ϕ denote the nondimensional amplitude and

phase shift, respectively, of the restoring force. F̂a and F̂b represent the

Fourier coefficients involved in the analysis:

F̂a =
1

π

∫ 2π

0

Fnl(X̂, θ) sin θ dθ,

F̂b =
1

π

∫ 2π

0

Fnl(X̂, θ) cos θ dθ.

(7.10a)

(7.10b)

As the restoring force can be written as (Liu et al., 2021)

Fnl(X,X ′) = K̂X + ĈX ′ = K̂X̂ sin θ + ĈΩX̂ cos θ, (7.11)

where K̂ and Ĉ denote the effective stiffness coefficient and damping coef-
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ficient of the hysteresis system. Based on Eqs. (7.9) and (7.11), it shows

that

K̂ =
F̂1

X̂
,

Ĉ =
F̂2

ΩX̂
.

(7.12a)

(7.12b)

Based on Eqs. (7.10) and (7.12), it can be derived that

K̂(X̂) =


1 + β, X̂ ≤ Xc

2+β
2 − β

π [sin
−1(1− 2Xc

X̂
)+

2Xc

X̂
(1− 2Xc

X̂
)
√

X̂
Xc

− 1], X̂ > Xc

, (7.13)

and

Ĉ(X̂) =

 0, X̂ ≤ Xc

4β
πΩ

Xc

X̂
(1− Xc

X̂
), X̂ > Xc

. (7.14)

According to Eq. (7.14), the hysteresis model’s effective stiffness coeffi-

cient depends on the displacement amplitude X̂, while the effective damp-

ing coefficient is affected by both the frequency Ω and the displacement

amplitude X̂.

For the proposed SDoF model, the instantaneous input power Pin is

Pin = ℜ(X ′)ℜ(F0 cosΩτ), (7.15)

and the corresponding time averaged input power is

P in =
1

τs

∫ τ0+τs

τ0

Pindτ. (7.16)
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The instantaneous dissipated power Pd and Pdf by the damper and the

friction damper are respectively written as

Pd = 2ζ(ℜ(X ′))2, Pdf = ℜ(X ′)ℜ(Fnl), (7.17)

and the corresponding time averaged dissipated power are

P d =
1

τs

∫ τ0+τs

τ0

Pddτ, P df =
1

τs

∫ τ0+τs

τ0

Pdfdτ. (7.18)

The numerical time-marching Runge–Kutta (RK) method can be used

for obtaining the forced response of the above SDoF system, which is a

common method for solving the nonlinear problem. As the dry friction

damper behaves hysteretic nonlinear force-displacement relationship, the

equation of motion is different when the displacement and movement di-

rection change as shown in Eq. (7.5). Therefore, the calculation follows

the flow chart logic as shown in Fig. 7.3. The critical slip displacement

Xc is a constant as long as the slip force µffn remains unchanged, while

the maximum displacement Xm varies after each circle. Depending on the

direction of movement and the current position of the object in the corre-

sponding hysteresis force-displacement relationship, the lumped mass m1

is subjected to different nonlinear forces.

7.3.2 Results and discussion

With the non-dimensional parameters selected as ω0 = 141 rad/s, ζ = 0.03,

F0 = 5× 10−4 and β = 0.5, the figures for nondimensional forced response

and the ratio of maximum and critical slip displacement are depicted in Fig.
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Figure 7.3: Flow chart of the solving process of the hysteresis nonlinear
system based model.

7.4. The solid lines represent the results obtained from the linearization

calculation and the star markers are the results from the RK method. Since

the critical slip displacement xc leads a significant role in the nonlinear

hysteresis force-displacement relationship, the normal force applied to the

dry friction damper, fn, is controlled for analysis with the friction factor

µf keeping constant.

When the normal force infinitely approaches 0, which is the same as

the case with no dry friction damper attached, the response shows a very
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Figure 7.4: (a) Nondimensional response of the lumped mass with harmonic
excitation. The colours of the lines represent the cases with different normal
forces, and the markers indicate the results obtained by the RK method.
(b) The ratio of maximum and critical slip displacement. The black solid
line lg(Xm/Xc) = 0 is the reference line.

high peak with frequency Ω = 1. And the case where normal force ap-

proaches infinity can be regarded as a linear model without a frictional

element, but with both springs of static stiffness of ks and kn, which also

has a high response amplitude with frequency Ω = (ω0

√
1 + β)/ω0 = 1.22.

As the normal force increases, the peak frequency moves from Ω = 1.00

towards higher frequency Ω = 1.22, and the peak amplitude exhibits an

initially decreasing and then increasing trend. For instance, the amplitude

for the case with no dry friction damper is 7.06 while that for fn = 30 is

2.15, which is a reduction of 69.55%, indicating excellent wave attenuation
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performance and demonstrating the potential of applying hysteresis mod-

els for vibration suppression. What’s more, it can be observed that some

parts of different cases share the same curve. Based on the logic of the dry

friction model, the response of the lumped mass with the same excitation

amplitude will be the same if the maximum displacement is less than the

critical slip displacement. The corresponding ratios of Xm and Xc in Fig.

7.4(b) give a clear indication of the transition points between the linear and

nonlinear regions. When lg(Xm/Xc) is below the black zero reference line,

which means the maximum displacement of the lumped mass is lower than

the critical slip displacement and therefore there is no nonlinear behaviour

involved, the curve follows the trend of the linear damper model. We find

that each set of boundary points under different parameters has the same

amplitude, as shown by the dashed lines of the corresponding colours in

the figure. Among all shown cases, when the normal force is equal to 60N

and 100N, the peak amplitudes are substantially reduced compared to the

linear damper case, while the response in the other frequency regions is

almost unaffected. It demonstrates that the friction damper can not only

significantly reduce the forced response of the system but can even simul-

taneously maintain or modulate the peak frequency when the appropriate

parameters are selected.

An in-depth study of the specific time-domain response and its corre-

sponding force-displacement relationship when different frequency excita-

tions are applied can assist in understanding the role of friction dampers in

this system. The responses are shown in Fig. 7.5(a,c) and the black dashed

lines indicate the critical slip displacements in both directions. The force-

displacement relationships are shown in Fig. 7.5(b,d) and the red lines

represent their force-displacement relationship in the steady states. When
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the excitation frequency Ω = 0.7, as the response amplitude of the lumped

mass does not exceed the value of the critical slip displacement until the

relative steady state is reached, the friction damper is linear as seen from

the force-displacement diagram. When Ω = 1.1, the response amplitude

exceeds the critical slip displacement and remains above it until it reaches

the relative steady state. The corresponding force-displacement curve also

exhibits a hysteresis curve similar to that of Fig. 7.1. As the maximum

displacement changes, its shape also changes and tends to stabilise in the

end.

Figure 7.5: (a,c) The time domain response and (b,d) corresponding force-
displacement relationship of the SDoF system for a normal force fn = 30
applied on the friction damper at different harmonic excitation frequen-
cies (a,b) Ω = 0.7 and (c,d) Ω = 1.1. The red lines indicate the force-
displacement relationship in the steady states.
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The investigation of the system using PFA can deepen the understand-

ing and reveal the behaviour of structural vibration control from a differ-

ent perspective. Figure 7.6 presents the time averaged vibration power

flow characteristics of the SDoF structure with varying normal force on the

friction damper. In each subplot, the black solid line and yellow dashed

line represent the input power and the power dissipated by the damper,

respectively, while the red solid line represents the power dissipated by the

friction damper. The figures show that there is almost no energy dissi-

pation by the friction damper in the two extreme cases where the normal

force is close to 0 and infinity. With appropriate force values, such as 30N

and 60N, the friction damper is involved in energy dissipation in certain

frequency bands, which indicates that the friction damper participates in

energy dissipation only when it begins to slip. The boundaries are also

determined by the ratio of the maximum slip displacement to the critical

slip displacement. The working frequency bands all cover the peaks of the

response, providing a softening effect.

7.4 2DOF model with dry friction damper

7.4.1 Mathematical modelling

The coupled structure can be characterised by two SDoF systems con-

nected, each representing a dominant mode of a substructure (Dai et al.,

2022c; Shi et al., 2019). The schematic diagram of a coupled mechanical

structure connected by a hysteresis nonlinear friction damper is depicted

in Fig. 7.7. In subsystem I, the lumped mass m1 subjected to an external

force with amplitude f and frequency ω, is connected to the left fixed base
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Figure 7.6: Power flow behaviour of the SDoF structure with hysteresis
nonlinear friction damper. Figures (a-d) represent the four cases when
the normal force applied to the friction damper tends to 0, equals 30,
60 and tends to infinity, respectively. Pin, Pd and Pdf represent the input
power, the power dissipated by the viscous damper and the friction damper,
respectively.

by a damper of damping coefficient c1 and a spring of stiffness k1. While

subsystem II is composed of mass m2 connected to the right fixed base by

a damper of damping coefficient c2 and a spring of linear stiffness k2. The

hysteresis friction damper between the two subsystems is presented by a

macro-slip element with static stiffness ks, kinetic stiffness kn, and the slip

force µffn. The lumped masses move horizontally without considering the

friction with the horizontal base. The absolute displacements of masses are

x and y and the relative displacement of m2 is δ = y − x. Displacements
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x = y = 0 are considered to be the static equilibrium position.

Figure 7.7: Schematic diagram for a coupled structure with a nonlinear
hysteresis friction damper.

The equations of motion for this model are

m1 0

0 m2


ẍ

ÿ

+

c1 0

0 c2


ẋ

ẏ

+

k1 0

0 k2


x

y


+

−fnl(δ, δ̇)

fnl(δ, δ̇)

 =

f cosωt

0


(7.19)

where the overdot ˙(•) is the derivative with respect to time and the fnl is

the nonlinear dry friction force.

To better analyse the model, nondimensional variables and parameters

are introduced as

Y =
y

l
,∆ =

δ

l
,∆m =

δm
l
,∆c =

δc
l
, F =

f

k1l
,

ω0 =

√
k1
m1

, ζ1 =
c1

2m1ω0
, ζ2 =

c2
2m1ω0

, α =
m2

m1
,

β1 =
k2
k1

, βs =
ks
k1

, βn =
kn
k1

,

(7.20)

where Y and ∆ denote the nondimensional absolute and relative displace-
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ment of the lumped massm2; ∆m and ∆c are the nondimensional maximum

and critical slip displacement of m2; F denotes the nondimensional ampli-

tude of excitation force; ω0 is the natural frequencies of the lumped mass

m1; ζ1 and ζ2 are the nondimensional damping ratio; α is the mass ratios;

β1, βs and βn are the stiffness ratios.

The equations of motion in Eq. (7.19) can be further nondimension-

alised as

1 0

0 α


X ′′

Y ′′

+

2ζ1 0

0 2ζ2


X ′

Y ′

+

1 0

0 β


X

Y


+

−Fnl(∆,∆′)

Fnl(∆,∆′)

 =

F cosΩτ

0


(7.21)

where the primes (•)′ represent differentiation with respect to τ and the

nondimensional restoring force updated from Eq. (7.1) is

Fnl(∆,∆′) =



(βs + βn)∆ + sgn(∆′)βn(∆m −∆c),

when ∆− 2∆c ≤ −sgn(∆′)∆ < ∆m

βs∆+ sgn(∆′)βn∆c,

when −sgn(∆′)∆ ≤ ∆m − 2∆c

, (7.22)

7.4.2 Forced response and power flow analysis

Based on the same approach as introduced in Sec. 7.3.1, the approximation

of the restoring force of the nonlinear friction damper in Eq. (7.22) can

be presented by the effective stiffness coefficient and damping coefficient.

The forced response of the proposed 2DoF coupled system and the corre-

sponding ratio of maximum and critical slip displacements can be further

derived. Following the same process in Sec. 3.2, the instantaneous input
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power Pin, dissipated power Pd and Pdf by the dampers and the friction

damper are respectively written as

Pin = ℜ(X ′)ℜ(F cosΩτ);

Pd = 2ζ1(ℜ(X ′))2 + 2ζ2(ℜ(Y ′))2;

Pdf = ℜ(∆′)ℜ(Fnl).

(7.23)

The corresponding time averaged power during one excitation cycle are


P in

P d

P df

 =
1

τs

∫ τ0+τs

τ0


Pin

Pd

Pdf

dτ. (7.24)

Here the nondimensional parameters for the equations of motion in

Eqs. (7.21) and (7.22) are stated in Table 7.1, with partially selected

parameters refer to references (Huang et al., 2018; Wu et al., 2019).

Table 7.1: Model parameters of the coupled structures with hysteresis non-
linear friction damper.

Parameter Value Parameter Value

F 0.5 ω0 141 Hz
ζ1 0.0035 ζ2 0.0035
α 0.5 β1 0.5
βs 0.5 βn 0.5

The plot Fig. 7.8(a) shows the nondimensional forced response of the

lumped mass m2 when varying normal forces are applied to the dry friction

damper connecting the two subsystems. The solid line and the markers in-

dicate the results from the theoretical calculations and the RK method,

respectively, and the results match very well. The first peak near Ω = 1 is

almost unaffected by the applied normal force, which is related to the fact

that the natural frequency of subsystem I remains almost constant. It is
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Figure 7.8: (a) Response of the coupled system with different normal forces
represented by colours, and the markers indicate the results obtained by
RK method. (b) The ratio of maximum and critical slip displacements.
The black solid line is the zero reference line.

evident that the second peak on the right is affected by the friction damper.

As the normal force increases, the resonance peak moves to higher frequen-

cies and the peak amplitude shows a decreasing and then increasing trend,

which is similar to the SDoF system. Figure 7.8(b) shows the relationship

between maximum and critical slip displacements. It can also be found that

in the frequency band where the maximum displacement is greater than

the critical slip displacement, the response is varied by the influence of the

friction damper, which in general serves to soften the response amplitude

and reduce the frequency of the response. However, unlike single-degree-

of-freedom systems, the response amplitudes at the boundary points where
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the change occurs are not the same, due to the fact that the change in

the parameters of the friction damper is determined by the relative dis-

placement of the two subsystems. Meanwhile there is a small peak in the

displacement ratio curve at Ω = 1, which is also due to the resonance at

the natural frequency of subsystem I.

To examine the effects of the normal force on the response of the

lumped mass m2 in the proposed system, the top view of a surface plot of

its response with varying normal force from 0 to 50 is shown in Fig. 7.9.

The first peak around Ω = 1 is almost not influenced while the other peak is

controlled by the normal force. For normal forces less than 10, the response

has a very high amplitude at around Ω = 1.58, and it quickly decreases and

moves to a higher frequency after the force continues to increase. When

the normal force is around 25, the friction damper exerts better dynamic

performance in wave suppression. Its advantages are the absence of high

amplitude peaks compared to the two extreme linear conditions, in which

the friction damper acts as a high amplitude filter. More importantly,

compared to the infinitely normal force case, the softening effect occurs

only in the frequency band where the peak is located and does not affect

the response at other frequencies, demonstrating excellent vibration control

performance in specific frequency bands covering the resonance frequency.

In Fig. 7.10, the nondimensional forced response of the lumped mass

m1 with varying normal force applied to the dry friction damper is shown

with the dynamic information including force-displacement relationships in

steady states, phase diagrams and the time domain input power of two spe-

cific excitation frequencies. Figure 7.10(b-d) and (e-f) presents the dynamic

behaviour of two cases with excitation frequency Ω = 1.65 and Ω = 2.00
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Figure 7.9: Top view of a surface plot of response ofm2 with varying normal
force from 0 to 50.

when the normal force is equal to 10 and 60, which are represented by

orange and purple lines, respectively. The force-displacement relationships

indicate that the slipping of friction damper will influence the responses.

When Ω = 1.65 and fn = 60, the response amplitudes of the relative

displacement between two masses ∆ don’t exceed the critical slip displace-

ment, thus indicating an absence of expected hysteresis. Meanwhile, when

fn = 10, as the amplitude exceeds the critical slip displacement, a clear

hysteresis curve can be observed, which results in a nonlinear effect. When

Ω = 2, it can be noted that both cases exhibit hysteresis, but have different

shapes due to their different values of critical slip displacements, which in

turn has different effects on the dynamics of the systems. Similar properties

can also be observed in the phase and time-domain power flow diagrams,

where at Ω = 1.65, the fn = 10 case has greater velocity and displacement

amplitude and variations, and correspondingly greater power flow, whereas

these are reversed at Ω = 2.

The detailed time domain responses of the relative displacement ∆
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Figure 7.10: (a) Forced response of the lumped mass, m1, with different
normal force applied to the friction damper. Lines: Theoretical calculation;
Markers: RK method. Force-displacement relationships, phase diagrams
and time domain responses of the input power with (b-d) Ω = 1.65 and
(e-g) Ω = 2.00.

with applied normal force fn close to 0, fn = 30 and fn = 60 for a harmonic

excitation frequency of Ω = 2 are shown in Fig. 7.11. The plot (a) shows

its response in the period from τ = 0 to τ=100 T while the panel (b) is a

zoomed-in view of its response at times 0 to 12 T, which has been marked

with a dotted box. As it can be seen from the above figure, since one of

the resonant frequencies of the system is Ω = 2 as fn approaches infinity,

the result represented by the black line keeps getting larger and takes more

time to reach the steady state with a large amplitude. While the friction

damper acts, for instance, when fn = 30 and 60, it reaches the steady

state faster with a smaller amplitude. In the enlarged figure below, the

corresponding critical slip displacements are also marked with dashed lines
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of the respective colours. It demonstrates clearly that when the response

amplitude does not exceed the critical slip displacement, the responses are

exactly the same for all three cases. However, once the response exceeds

the critical slip displacement, the friction damper is involved in influencing

the system dynamics and a stable state is quickly reached.

Figure 7.11: (a) Time domain result of the response of the relative dis-
placement ∆ for the cases of different normal force applied in the period
from τ = 0 to τ = 100 T. (b) Partial enlarged detail of the response of ∆
of m2 in the period from τ = 0 to τ = 12 T.

The steady-state friction behaviours are shown in Fig. 7.12. Subplot

(a) shows the corresponding force-displacement relationship when the nor-

mal force is 10, where the blue curve represents all the nonlinear forces

in the friction damper, including both kinetic and static friction induced

by kn and ks and the orange curve represents the kinetic friction induced
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by kn. Subplot (b) shows the time histories of the friction force with the

corresponding colours marked. Subplots (c) and (d) show similar force-

displacement plots and time-domain plots, respectively, for a normal force

fnl = 60. When the relative displacement exceeds the critical slip displace-

ment, slip occurs and the kinetic friction remains constant while the total

friction continues to increase. When the relative displacement reaches its

maximum value, which means the relative velocity goes to 0 and the direc-

tion of the velocity is about to change, the sticking effect occurs. The nor-

mal force applied to the friction damper changes the magnitude of critical

slip displacement, which in turn affects the shape of the force-displacement

hysteresis curve. It can be observed in the figures that at the same har-

monic excitation frequency Ω = 2, the friction can be controlled by simply

changing the magnitude of the normal force fn, thus affecting the system

response.

The figures in Fig. 7.13 depict the time averaged power flow behaviour

of the proposed system. The black solid lines and yellow dashed lines rep-

resent the input power and the power dissipated by the viscous damper,

and the red dash-dotted lines indicate the power dissipated by the friction

damper. It can also be observed that the proposed model can be considered

as a linear model under two boundary conditions when the normal force is

close to zero and infinite. When the friction damper has suitable parame-

ters, such as fn = 8 and 20, it will show energy dissipation characteristics

in a specific frequency band that is related to the relative displacement

of the two ends of the friction damper. And it works when the relative

displacement is large, effectively reducing the amplitude and frequency of

the resonance peaks of the system. By comparing the two examples with

fn = 8 and 20, it is found that the width of the frequency band in which the
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Figure 7.12: Steady state force-displacement relationship diagrams with (a)
fn = 10 and (c) fn = 60. Steady state time history of friction force with
(b) fn = 10 and (d) fn = 60. The excitation frequency Ω = 2. The blue
curves indicate the static and kinetic friction of the whole friction damper
including ks and kn while the orange curves indicate the kinetic friction,
which is only related to kn.

friction damper acts is adjustable, but the damping effect is not uniform

across the frequencies in the wide band. The results have demonstrated its

advantages in energy dissipation as well as vibration control, proving its

potential for adjustable damping bands.

To further investigate the effect of the parameter of the normal force

applied to the friction damper on its energy dissipation performance in the

proposed coupled system, Figure 7.14(b) exhibits a top view of the time

averaged power consumed by the friction damper for normal forces from
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Figure 7.13: Time averaged power flow with different normal force applied
to the friction damper, (a) fn approaching zero, (b) fn = 8, (c) fn = 20 and
(d) fn approaching infinite. The black solid lines and yellow dashed lines
represent the input power and the power dissipated by the viscous damper,
and the red dash-dotted lines indicate the power dissipated by the friction
damper.

0 to 50. It can be found that as the normal force grows from 0 to about

10, the width of the band in which the friction damper is active gradually

increases, but its peak frequency remains almost the same and maintains a

large amplitude. As the normal force grows a little more, the peak suddenly

drops and shifts to higher frequencies, and while it continues to increase,

the bandwidth gradually decreases and the peak shows a gentle trend of

decreasing and then increasing. Based on the current top view plot and

Fig. 7.13, it can be predicted that as the force continues to increase beyond

50, the bandwidth will become narrower and narrower until it disappears.
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Figure 7.14(a) exhibits a top view of the time averaged input power flow

over the same normal force range. It can be seen that the first peak of the

input power is also virtually unaffected, while the second peak has a similar

trend to the response, with the difference that there is a gap at the lower

frequency of the second peak. This gap is also shallower and narrower at

a normal force of about 10. Summarising the above results, a normal force

of around 20 is optimal for the friction damper as a high amplitude filter

to reduce the response of the proposed coupled system.

Figure 7.14: Top view of a surface plot of time averaged (a) input power
and (b)power dissipated by friction damper with varying normal force from
0 to 50.

The wave transmission within the coupled system provides another

perspective for analysing the dynamic performance of the proposed struc-

ture. The different coloured solid lines in Fig. 7.15 indicate cases where the

normal force applied to the dry friction damper is different. The top view

of a surface plot of wave transmission for the proposed coupled system with

varying normal force from 0 to 50 is drawn in Fig. 7.15 the detailed and

clear effects of parameter changes. All the curves show only a single peak,

and the peak frequency is correlated to the gap frequency between the two

peaks in the forced response curve. As the normal force increases from 0 to
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16, the peak frequency increases from Ω = 1.41 and the amplitude shows a

similar decrease and then increase trend as the forced responses. Approx-

imately after a normal force greater than 8, there is a sharp drop in the

trough after the peak and a levelling off after a short period of frequency. As

the normal force continues to increase beyond 17, the results show that the

peak remains constant after the frequency reaches Ω = 1.73 and the normal

force will only influence the drop position. Meanwhile, compared with the

boundary case coloured in black, the width of the transmittance drop gap

becomes narrower and shallower around Ω=2, which means that the effec-

tiveness of friction damping in reducing the transmissibility is decreasing.

From this we can conclude that a more desirable low transmittance can be

achieved in the proposed coupled system at a normal force of 10.

Figure 7.15: (a) Wave transmission diagram for the proposed coupled sys-
tem with varying normal force. (b) Top view of a surface plot of wave
transmission for the proposed coupled system with varying normal force
from 0 to 50.

The mass ratio between the two substructures of the investigated cou-

pled structure also has an effect on its response and vibration power flow.

The forced response amplitudes of the lumped masses of two substructures

are shown in Fig. 7.16, where the solid lines in different colours indicate the

cases with different mass ratios α = 0.6, 0.5, 0.4 and 0.3, respectively. It can
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be observed that as the mass ratio decreases, the first peak of the lumped

mass m1 response amplitude shifts slightly towards higher frequencies and

its peak also rises a bit, while the second peak is substantially shifted to

higher frequencies and its peak is considerably lower and flatter. At the

same time, the gap moves to higher frequencies and becomes deeper. For

the response amplitude of the lumped mass m2 of substructure II, both

of its peaks move towards the high-frequency region as the mass ratio de-

creases, as the response of m1, but with the difference that the peak of the

first peak shows a slight downward trend and, as described above, there is

no gap between the two peaks.

Figure 7.16: Forced response amplitude of lumped masses (a) m1 and (b)
m2 with different mass ratio α. The blue, red, purple and green solid lines
indicate the cases with α = 0.6, 0.5, 0.4 and 0.3, respectively.

As the response varies as a result of the mass ratio, it can be surmised

that its power flow varies accordingly, and thus an attempt can be made

to explain the effect caused by the mass ratio on it. The time averaged

power flow of the proposed coupled structure with different mass ratios are

shown in Fig. 7.17. The solid and dashed lines in Fig. 7.17(a) represent the

input power and the power dissipated by the linear damper, respectively,

while the power dissipated by the friction damper is presented in (b). As α
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decreases, from 0.6 to 0.3 as shown in the figure, it is observed that the first

peak is slightly shifted towards higher frequencies and the peak becomes

a little larger. At the same time, the second peak moves substantially

towards the high frequency region and the peak decreases and becomes

less sharp. The power dissipated by the friction damper is mainly around

two peaks, where it should be noted that at alpha = 0.5, the friction damper

dissipates almost no power in the first peak. The power dissipated by the

friction damper reaches its peak at the peak of the input power at the

same time. Although the amplitude of the power dissipation increases in

the first peak and decreases considerably in the second peak as α decreases,

the ratios of the dissipated power relative to the input power provide more

information, as can be seen in Fig. 7.17(c). In the vicinity of the second

peak, the power consumed by the friction damper can reach more than 90%

of the input power. Around the first peak, the percentage is smaller in all

cases except for α = 0.6, where the two parts merge.

A more detailed variation of the power flow dissipated by friction

damping due to the mass ratio α is shown in Fig. 7.18. Fig. 7.18(a)

and (b) indicate the power dissipated by the friction damper and its per-

centage to the input power, respectively. At α = 0.5, it dissipates almost

no power at the first peak, its band broadens and the proportion of con-

sumption increases as α moves away from 0.5. Around the second peak, the

ratio is maintained over 90% as long as the friction damper is involved in

the power dissipation. At α greater than 0.6, the two components involved

in power consumption show a tendency to merge.

The dynamic behaviour of the investigated coupled system is con-

trolled by the friction damper. It is apparent that in addition to the normal

force acting on the damper, the sliding stiffness also affects the hysteresis
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Figure 7.17: (a) Time averaged power flow where the solid and dashed lines
represent the input power and the power dissipated by the linear damper,
respectively. (b) Time averaged power dissipated by the nonlinear friction
damper. (c) The percentage of power dissipated by the nonlinear friction
damper in the input power.

loop, which is related to the sliding force and can be varied by changing

the friction coefficient µf . The influence of varying the stiffness ratio βn

from 0.5 to 1.5 on the forced response of the lumped masses m1 and m2 is

shown in Fig. 7.19. It can be found that the first peak frequency of the

two concentrated masses does not change with the stiffness ratio βn, which

is similar to the parametric study based on the normal force in Fig. 7.9.

The frequencies of the second peaks shift continuously to higher frequencies

as βn increases, while its width increases and its amplitude decreases. As

distinct from the above results based on normal force fn and mass ratio
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Figure 7.18: (a) Power flow map of the time averaged power dissipated
by the nonlinear friction damper. (b) Power flow map of the percentage
of time averaged power dissipated by the nonlinear friction damper in the
input power.

α, the frequency shift and width change of the second peak in the current

result follows a linear-like trend.

Figure 7.19: Forced response amplitude map of lumped masses (a) m1 and
(b) m2 with different stiffness ratios βn from 0.5 to 1.5.

7.5 Summary

This study investigated the vibration control performance of the dry fric-

tion damper based systems. By using the harmonic balance method and the
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Runge–Kutta method, the hysteretic nonlinearity of the friction damper is

described. Based on the forced response and vibration power flow analysis,

the friction damper applied to a single-degree-of-freedom system demon-

strated the ability to significantly reduce vibration amplitude and control

resonant frequency, showing potential as a high-amplitude vibration filter.

For further research about the proposed friction damper based coupled

structure, the following conclusions are drawn:

• The forced response amplitude of subsystem II is well controlled by

choosing the appropriate parameters of the normal force applied to

the dry friction damper. The peak frequency is tunable within a

certain range, which is between the resonance frequencies of the two

boundary cases.

• Based on the power flow analysis, the friction damper exhibits energy

dissipation in the frequency band controlled by the normal force, and

this frequency band surrounds the natural frequency of substructure

II, which achieves high-amplitude vibration filtering.

• The transmission analyses show that the parameters chosen for the

normal force in order to realise low transmittance between the subsys-

tems are distinct from the objective of high amplitude filtering. The

friction dampers are flexible and can be adapted to alter capacity for

different vibration control purposes.

The dry friction damper based coupled structure is investigated and

the vibration power flow analysis is utilised to explain and deepen the un-

derstanding of the vibration suppression effect of the device from the energy

transfer and dissipation perspective. In addition, while the normal force is

conventionally designed as a constant force, this study has demonstrated
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that it has the potential to be designed to be adjustable to suppress peaks

in vibration response and to reduce vibration energy transfer.



Chapter 8

Conclusions and further work

8.1 Conclusions

In conclusion, this project has explored various aspects of mechanical vibra-

tion control and presented novel linear and nonlinear advanced mechanisms

for mitigating vibrations in mechanical systems. It aimed to enhance the

understanding of vibration phenomena, develop innovative control strate-

gies, and optimise the design of vibration control devices, based on the

forced response, vibration transfer and power flow analysis. The study be-

gan by exploring the synergistic effects of combining inerters and LRAMs

and proposes linear and geometrical nonlinear inerter based LRAM config-

urations, which extend the original material parameter restrictions, lead-

ing to lower-frequency bandgap. Then a diatomic LRAM configuration

was investigated to obtain extra bandgaps compared with the monatomic

configuration, and the application of NSM induces an ultralow frequency

bandgap effective from zero frequency. In addition, this study proposed a

novel Flexnertia metastructure concept to perform vibration suppression

204
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through coupling rotational inertia to structural flexural motion. The ex-

perimental and numerical results were in good agreement, both confirming

that the average overall response of the metastructure is significantly re-

duced. At last, a coupled structure based on a nonlinear hysteresis friction

damper subjected to harmonic forces for vibration suppression was studied.

The results indicated that the friction damper participates in the energy

dissipation in the frequency band around the resonance frequency, thereby

enabling high-amplitude vibration filtering, and they have the potential

to be designed to be adjustable and respond to different vibration control

objectives.

Through a comprehensive investigation and analysis, several key find-

ings and contributions have been made:

• The potential of metamaterials in low-frequency vibration control is

demonstrated. The unique properties of metamaterials, such as neg-

ative effective mass and bandgap characteristics, were leveraged to

design and develop novel devices capable of attenuating vibrations.

The research highlighted the importance of structural design and op-

timisation techniques to maximise the effectiveness of metamaterial-

based vibration control systems.

• The application of inerters is explored in mechanical vibration con-

trol. The design and optimisation of inerter-based systems were in-

vestigated to achieve enhanced vibration isolation and damping ca-

pabilities. The findings emphasised the significance of proper config-

uration and control strategies to leverage the inertial force of inerters

for effective vibration control.

• The investigation into friction dampers revealed their potential for
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enhanced suppression of vibration response and power transfer. The

nonlinear hysteresis behavior and preload mechanisms were analysed

to improve the energy dissipation capabilities of friction dampers.

The research highlighted the importance of advanced friction damper

designs to effectively attenuate vibration amplitude by tailoring con-

tact hysteresis friction.

• As artificial periodic structures, due to their excellent customizability,

metamaterials can be well combined with other advanced elements

and mechanisms, such as inerters and nonlinear mechanisms, to of-

fer improved vibration control performance compared to traditional

passive systems.

• These advanced vibration control mechanisms exhibit broad frequency

ranges of operation. Inerters, for example, can provide effective con-

trol across a wide frequency spectrum, including low-frequency vibra-

tions that are challenging to address with conventional approaches.

Nonlinear mechanism-based metamaterials can also exhibit frequency-

dependent properties, allowing for tailored vibration control across

different frequency bands. The friction damper can also be controlled

to affect hysteresis behavior and thus adjust the amplitude suppres-

sion band.

• The proposed advanced mechanisms offer flexibility and versatility

in their application. The inerter, as a mechanical element, has been

proven to have a wide range of applications. One of the biggest

advantages of metamaterials is that the bandgap can be customised.

The nonlinear mechanisms can extend the original material parameter

restrictions. While their synergistic effects show the ability to be

tailored and optimised for specific vibration control requirements,
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enabling adaptability to different applications and environments.

8.2 Recommendations for future research

While this thesis has made significant contributions to the field of me-

chanical vibration control through the exploration of linear and nonlinear

advanced mechanisms, there are several areas that warrant further investi-

gation. These avenues for further work can provide a foundation for future

research and advancements in this field. The following suggestions outline

potential directions for future investigations:

• optimisation of Design Parameters: The optimisation of design pa-

rameters for inerters or nonlinear mechanism-based metamaterials

can be further explored. This can involve the development and appli-

cation of advanced optimisation algorithms to determine the optimal

design configurations and parameters for improved vibration control

performance. Additionally, considering different constraints, such as

weight, size, and cost, can help develop practical design guidelines for

the implementation of these control mechanisms in real-world appli-

cations.

• Combined with Semi-active Control: Current research and designs

can be incorporated into semi-active control systems, allowing for

further enhancement of vibration control capabilities. By combining

their inherent passive characteristics with semi-active control strate-

gies, these mechanisms can adaptively respond to changing vibration

conditions in real time, providing optimal control performance.

• Experimental Validation and Verification: Conducting extensive ex-
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perimental studies to validate and verify the performance of inerters

or nonlinear mechanism-based metamaterials is crucial. Laboratory-

scale experiments can be designed to investigate the vibration atten-

uation capabilities under various excitation conditions. Field-scale

experiments can be conducted to assess the effectiveness of these con-

trol mechanisms in real-world applications. The results obtained from

such experiments will provide empirical evidence and further validate

the theoretical findings presented in this thesis.

• Comparative Studies: Conducting comparative studies between in-

erters or nonlinear mechanism-based metamaterials and other vi-

bration control techniques will provide valuable insights into their

relative advantages and limitations. Comparisons with traditional

passive systems, semi-active control approaches, or other emerging

vibration control technologies will help in understanding the trade-

offs and selecting the most suitable solutions for specific applications.

These comparative studies can be conducted based on performance

metrics such as vibration reduction, energy consumption, and cost-

effectiveness.

By pursuing these avenues for further work, researchers can extend

the findings presented in this thesis and contribute to the advancement of

the field of mechanical vibration control. Addressing these research direc-

tions will enable the development of more efficient, reliable, and practical

solutions based on linear and nonlinear advanced mechanisms, ultimately

benefiting various industries and improving the performance and longevity

of mechanical systems.
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