
Advancing Indoor
Multi-person Localisation
System based on Sensor

Fusion Method

Renjie Wu
20319414

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, 2024.

Supervised by
Dr. Boon Giin Lee
Dr. Matthew Pike
Dr. Liang Huang

February 2024



I, Renjie Wu, hereby con�rm that the work

presented in this thesis is my own. Where

information has been derived from other sources, I

con�rm that this has been indicated in the thesis.

This thesis is written by LaTeX based on the

template provided by Chao Zhang [1].



Abstract

Indoor positioning systems (IPS) have garnered increasing attention in the

field of positioning research in emergency services such as firefighting sce-

narios. The capability to deliver precise and comprehensible positioning

information for multiple firefighters in harsh environments is a promising

technology. It will effectively save their lives via timely and accurate loca-

tion information for evacuation and reinforcement. The sensor fusion-based

dead reckoning (DR) method is one of the typical techniques in IPS. Due

to its little reliance on layout knowledge and pre-installed positioning hard-

ware in the building, it is regarded as one of the most promising methods

for IPS in firefighting. Existing research on DR has not adequately ad-

dressed the challenges of positioning accuracy, surrounding reconstruction,

and multi-person positioning in firefighting scenarios. In order to address

these problems, this thesis explores advanced DR based multi-person local-

isation and mapping. The research work consists of five associated studies

that aim to answer the formulated research questions. The first three stud-

ies explore the novel approaches in gait analysis-based heading estimation,

dual foot synergistic step detection and dynamic minimum stride length

constraint-based positioning optimisation. The objective of these studies

is to improve the precision of positioning by optimising parameters in the

DR calculation process. The next study presents a geometry algorithm

that utilises a polar projection strategy to determine the coordinates of

map points and reconstruct the user’s surrounding map. The last study

explores an innovative approach for integrating multiple trajectories via

online magnetic fingerprint matching. By doing so, the position of each

individual is updated by combining fingerprint information. This thesis

conducts experiments to evaluate the performance of the systems proposed

in each study. Each experiment is tailored with specifically designed realis-

tic indoor scenarios, data collection hardware, and evaluation metrics. The

quantitative assessment results illustrate improved positioning accuracy in

comparison to conventional methods. The displayed trajectory and map

demonstrate accurate results that exhibit high consistency with the ground

truth.

Key Words: Indoor positioning system (IPS); Dead reckoning (DR); Gait

analysis; Sensor fusion; Kalman Filter; Multi-person localisation; Firefight-

ing Scenarios.
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Chapter 1

Introduction

1.1 Overview

Indoor positioning system (IPS) [2] is a promising technology which aims

to locate people where the widely used global navigation satellite system

(GNSS) [3] lacks precision or fails entirely, such as inside multistory build-

ings and underground locations. IPS exhibits signi�cant application po-

tential in various scenarios involving industry [4], extended reality [5] and

emergency services [6] which has garnered considerable attention from the

research community.

IPS methods can be categorised into two groups: building dependent and

building independent techniques. The majority of building dependent IPS

requires hardware or pre-installation of hardware during the building con-

struction with the dedicated layout information acknowledged. These meth-

ods track the targeted people and objects by triangulation and trilater-

ation [7] using the measured geographic distance or angle between the

transmitters (within the building) and the receiver (placed on the mov-

ing platforms e.g. people and vehicles). Various wireless sensor network

(WSN) approaches using di�erent radio frequency (RF) based measure-
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1.1. OVERVIEW

ment tools, including wireless local area network (WLAN) [8], Bluetooth

low energy (BLE) [9], ultra-wide band (UWB) [10], radio frequency iden-

ti�cation (RFID) [11] and narrow band internet of things (Nb-IoT) [12].

Building independent IPS methods, however, do not require prior informa-

tion about the building or placing any hardware in the building. Typical

building independent IPS methods include simultaneous localisation and

mapping (SLAM) [13, 14] and dead reckoning (DR) approaches [15, 16].

SLAM based building independent methods use cameras [17], light de-

tection and ranging (Lidar) [18] and millimetre wave radio detection and

ranging (mmWave Radar) [19] for optical, laser and radio imaging, en-

abling the simultaneous indoor structure reconstruction or updating of a

map in an unfamiliar location while keeping track of it. In DR methods,

after determining the initial position via the calibration process, the cur-

rent position of the user can be iteratively calculated by knowing the last

calculated position and current measured kinematic parameters.

Environmental factors [20], user motion [21], and knowledge of the in-

door structure [22] pose serious challenges to the performance and relia-

bility of IPS. IPS utilised in indoor �re�ghting scenarios is a typical case

afore described. Fire�ghters often encounter dangerous missions of rescu-

ing trapped people from burning buildings [23]. The power outage and

high temperature in the burning building will impede the regular function-

ing of the transmitter nodes in WSN which poses signi�cant challenges to

the WSN based approach for localisation [24]. Considering the character-

istics of the DR method, it has great advantages utilised in the �re�ghting

scenario [25]. Compared with building dependent methods, DR methods

work independently without external hardware pre-installed in the build-

ings, which reduces the setup time. This advantage enables �re�ghters to

2



1.1. OVERVIEW

rescue in any building with no WSN deployment installed. Compared with

SLAM which also belongs to building independent methods, DR methods

are less susceptible to environmental conditions where the imaging quality

of SLAM is easily a�ected by rapid motion, ionising radiation and weather

conditions [26]. Consequently, DR methods outperform SLAM based meth-

ods with usage exibility. Bene�ting from these particularities, DR meth-

ods are identi�ed as the most promising approach for �re�ghting scenarios.

Figure 1.1: Schematic of DR calculation with three continual steps (No. i to
No. i + 2 ).

DR based navigation method has been one of the major research focus of

IPS for over decades. The term DR is a process of computing the current

position of a moving object by using a last calculated position with the

incorporation of estimating step length, heading, and elapsed time [16] as

visualised in Fig. 1.1. Speci�cally, the DR methods comprise of two major

implementations: pedestrian dead reckoning (PDR) and inertial naviga-

tion system (INS) as visualised in Fig. 1.2. In PDR, the sampling rate

is followed by the frequency of the step rate. The heading value and step

length value for each detected step are the direct factors that a�ect the

positioning accuracy. Another implementation INS, however, updates the

3



1.1. OVERVIEW

positioning results following the sampling rate of the sensors which could

achieve a higher rate than PDR. An optimisation approach is adopted to re-

duce the positioning bias and cumulative error. Both PDR and INS require

accurate step detection for determining the optimal instant of positioning

and optimisation. The heading estimation accuracy of PDR, optimisation

performance of INS and precision of DR methods are the most signi�cant

research objectives in this �eld. In improving these, the cumulative error of

DR would be decreased while the positioning accuracy at each time instant

is improved.

Figure 1.2: The relationship diagram of DR, PDR, and INS.

To narrow down the research objectives, this thesis focuses on the DR

method using inertia data. The inertial measurement unit (IMU) [27] is

one of the most commonly used sensors to measure inertia data. As il-

lustrated in Fig. 1.3 [21], there are many options for the IMU placement

for DR methods implementations. Speci�cally, foot-mount DR shows the

lowest average positioning error compared with others. To achieve better

positioning performance, DR methods with foot-mounted sensors for data

collection will be mainly focused on in this thesis.
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Figure 1.3: Average positioning error of DR methods with di�erent sensor
placement [21].

In light of the prospective �re�ghting applications of the DR method, three

signi�cant research gaps are identi�ed. First, the �re�ghters' gait type

changes due to the unpredictable and dangerous rescuing conditions, which

hampers the accuracy of positioning utilising classic DR methods that rely

on �xed thresholds [28] in motion estimation. Second, given the urgent

need to rescue people, �re�ghters do not have the time to familiarise them-

selves with the structure of buildings beforehand, thereby heightening the

likelihood of being disoriented. Being disoriented in such dangerous sce-

narios poses an immense peril that signi�cantly jeopardises the safety of

�re�ghters [29]. Finally, �re�ghters typically employ a collaborative ap-

proach [30] including multiple individuals to enhance support and promote

collaboration among team members [31]. Existing literature indicates that

few complete and speci�c DR methods address the enhancement of posi-

tioning accuracy, the reconstruction of layout and multi-person positioning.
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Figure 1.4: An embedded sensor array platform holding 18 IMUs (9 on the top
side and 9 on the bottom side) [32].

Existing DR researches considered utilising sensor fusion methods to solve

some of the presented problems. Building sensor array [32] for accuracy

improvement is a typical solution. This design (refer to Fig. 1.4) enables

multiple associated inertia data collection at the same time. By doing this,

the measurement error over a short period is decreased. However, not only

does the sensor array measurement provide di�culty in data fusion and

global calibration because of the placement and the tiny di�erences in spec-

i�cations of each sensor unit, but also causes implementation problems in

the heavy onboard data processing load and di�culty in data transmission.

Therefore, this design is impractical in real-world applications. Utilising

high-quality IMU such as Xsens inertial motion capture module [33] can

also achieve improved positioning accuracy. However, this module requires

expensive module prices with high computing resources for motion calcula-

tion, which is not a�ordable and practical in pervasive application scenarios

Other sensor fusion based methods combine data readings from di�erent

sensors such as \IMU+UWB" [34], \IMU+WLAN" [35] and \IMU+BLE"
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[36]. Though these methods improve positioning accuracy and reduce error

cumulation, these improvements are bene�cial from the WSN based posi-

tioning while not suitable to the assumed �re�ghting scenario that requires

applying IPS without sensor pre-installation in the building. This thesis

presents studies that aim to develop an advanced multi-person DR sys-

tem with improved accuracy and surrounding map reconstruction, which

is anticipated to �ll the research gaps presented above, provide a practical

system suitable for �re�ghting scenarios and facilitate the development of

IPS for �re�ghters.

It is worth declaring that due to the challenges associated with environmen-

tal setups and the beyond-the-scope technology, such as wearable design,

waterproof and heat resistant housing and wireless data transmission in

real �re-rescuing scenarios, this thesis mainly focuses on enhancing the DR

method under assumed conditions in burning buildings, such as low visibil-

ity, WSN and SLAM unavailability and gait variety [37, 38]. Consequently,

the research questions and presented studies are carried out to ful�l the

demands within these limited factors. The techniques employed in each

study are also assessed under simulated experimental settings.

1.2 Research Questions

Having established the focus of applying the sensor fusion method in the

DR system to perform improved indoor multi-person DR localisation, the

scienti�c research questions presented in this thesis are listed below.

RQ1 : What practical techniques can mitigate the cumulative errors in in-

ertial based DR methods?
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RQ2 : What techniques can be utilised to reconstruct the layout of the

surroundings in the DR method?

RQ3 : What techniques can DR methods adopt to e�ectively update posi-

tioning results via common attributes from multiple persons?

To investigate and answer the research questions presented above, this the-

sis conducts speci�c studies.

To answer RQ1 , this thesis explores three novel studies for DR system

positioning accuracy improvement from di�erent perspectives. Speci�cally,

Study 1 presents a gait analysis (GA) algorithm in heading estimation.

By doing this, the heading value in DR calculation is enhanced which

contributes to more accurate positioning results. The gait analysis-aided

pedestrian dead reckoning (GA-PDR) is implemented for algorithm eval-

uation. Study 2 focuses on the quality of step detection, another gait

characteristic in DR systems. A dual foot synergistic method is investi-

gated by analysing dual foot generalised likelihood ratio test (GLRT) [39]

sequences. The objective is to establish the optimal timing for transition-

ing to the zero velocity phase, resulting in enhanced positioning accuracy.

Study 3 concentrates on the limited performance of dual foot optimisation

when employing a �xed threshold in the dual foot stride length model. By

detecting minimum stride length parameters in each gait using ultrasonic

sensors, the dual foot optimisation performance is improved, which results

in improved positioning accuracy. These studies concentrate on the dis-

parity and distinctive characteristics of gait. The utilisation of adaptive

methods throughout various stages of DR calculation yields superior posi-

tioning results compared with conventional methods.

To answerRQ2 , Study 4 explores the integration of the IMU and ultra-
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sonic sensors through geometry calculation. The idea of this method is in-

spired by the occupancy grid map [40] where the coordinates of map points

are calculated based on the estimated position and pose of the people with

the measured distance data. Similarly,Study 4 adopts this mechanism

by exploring a polar projection based geometry algorithm for coordinate

calculation. By doing this, the coordinates of map points are updated with

positioning updates. It is worth noticing that the Study 3 and Study 4

are conducted together which implements inertial odometry and mapping

(IOAM) system where the outcome ofStudy 3 contributes to the inertial

odometry and the one ofStudy 4 contributes to the mapping.

In the �nal exploration study, Study 5 explores the use of the magnetic

�eld at the calculated positioning spot for detecting the timing of posi-

tioning updating relying on either self or others' original positional data.

The implemented system in this study is called a multi-person inertial nav-

igation system (Multi-INS). It is implemented through the sensor fusion

method between IMUs and magnetometers from individuals and others.

Multi-INS introduces a novel technique for calculating the trajectory of

several individuals. It utilises an online process of comparing magnetic

�ngerprints (MF) to update the inertial state. Building upon an o�ine

localisation technique that relies on magnetic �elds, a new online method

for organising magnetic �eld data is implemented to replace the current

o�ine determination strategy. In addition, it proposes a method for select-

ing a region of interest in target MF data to improve the performance of

MF matching by concentrating on the most relevant MF.Study 5 devel-

ops two positional update mechanisms based on MF: individual self-update

and multi-person cross-update which divides the position update into two

cases where the individual's location is updated at certain reference points

by utilising target MF data from the individual or another participant. The
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calculation result of Study 5 is a single map which demonstrates updated

locations from multiple users in a shared canvas. This means every user

can identify the position of themselves and others in one fused map.

Table 1.1: Description of the Main Studies in the Thesis.

Research
Questions

Study Sensors Frameworks Methods

RQ1 1. GA-PDR IMU PDR
GA for heading

estimation drift constraint;

RQ1
2. Dual foot

synergistic method
IMUs INS

Dual foot synergistic method
in zero velocity detection;

RQ1
3. IOAM -

Inertial Odometry

IMUs;
ultrasonic sensors

(stride length measuring)
INS

Dynamic minimum
stride length

based constraint for dual foot
trajectory optimisation;

RQ2
4. IOAM -

Ultrasonic Mapping

IMUs;
ultrasonic sensors

(surrounding range �ner)
INS

Polar projection
based map point modelling;

RQ3 5. Multi-INS
IMUs;

Magnetometers
INS

Online magnetic �ngerprint
matching for multi-trajectory integration;

Within the majority of the work this thesis presents as shown in Table 1.1,

an advanced DR system built upon the existing DR frameworks is devel-

oped. Experimental results indicate that the proposed DR system outper-

forms the state-of-the-art in terms of positioning accuracy and practical

capabilities. The contributions this research work achieved in associated

sensor fusion algorithms would facilitate the research of DR based methods

and inspire new interests in IPS developments.

1.3 Thesis Outline

An overview of how the contents of this thesis is presented below.

Chapter2: literature Review The literature review chapter provides a

wide overview of typical approaches to IPS. This chapter provides a com-

prehensive description of the advantages and disadvantages of each method,
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highlighting the technical description for considering the DR method. The

limitations of the DR method using sensor fusion are also discussed.

Chapter 3: Methodology This chapter provides a detailed methodol-

ogy descriptions of presented fromStudy 1 to Study 5 . Speci�cally, the

system overview, notation de�nition and derivation of formulas including

the detailed calculation process are comprehensively presented. In addi-

tion, this chapter provides a detailed description of the experimental setup

section including sensor speci�cations, experimental situations, participant

details and the design of the experiment, for evaluating the performance of

the methods presented above.

Chapter 4: Results and Discussion This chapter examines the results

of the proposed systems in terms of positioning and mapping, utilising error

evaluation metrics and visualisation. The subjective and objective views

are both considered while discussing the performance of the trajectory and

map.

Chapter 5: Conclusion In this chapter, a comprehensive summary of

contributions derived from the presented research is described. The lim-

itations of this research work are discussed thoroughly. And future work

section describes how the new ideas might be applied in the design, devel-

opment and evaluation of multi-person localisation research.

Appendix A provides a comprehensive list of the abbreviations presented

in this thesis. Appendix B presents a preliminary investigation of the

progress and mapping capabilities of INS. The content of Appendix B con-

sists of information extracted from a peer-reviewed study, which serves to

better elucidate the advancements made in the research.
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Chapter 2

Literature Review

This chapter presents the state-of-the-art in the research �eld of IPS. IPS

approaches are classi�ed into two categories: building dependent and build-

ing independent. The limitations of applying WSN and SLAM technologies

in simulated environments are explored. Subsequently, this thesis presents

a thorough investigation of DR methods utilising sensor fusion techniques.

Figure 2.1: Classi�cation of IPS Technologies.
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2.1 WSN based IPS

RF navigation systems are widely used for localisation, making them one of

the most popular methods in this �eld [41]. Wireless transmission protocols

employing distinct RF possess varying capacities in terms of transmission

range, resistance to interference and capacity to penetrate obstacles. WSN

[42] is a common building dependent approach of IPS, in which multiple

routers (referred to as nodes in WSN) communicate inside a given WSN

using a shared protocol to exchange data. The position of moving nodes

in a WSN is typically determined using the triangulation approach, as de-

scribed in the study by Kuriakoseet al. [43]. Before the calculation, the

positions of static reference nodes are measured as prior information. Tri-

angulation is conducted to ascertain the location by creating triangles using

both the mobile nodes and the nodes with known positions. Typical RF

in WSN methods include WLAN [44], BLE [45], Zigbee [46], Nb-IoT [12],

UWB [10], 5G [47], RFID [48] which function positioning in di�erent using

cases.

WSN based IPS methods hold well-developed technology that achieves high

accuracy and stability in ideal scenarios. However, WSN approaches need

to pre-install the transmitters or access tags before use. This operation usu-

ally has high labour cost which requires the initial mapping of the building

with optical calculations to �nd the best placement positions. This issue

makes the WSN method hard to cover all the buildings such as massive

residential buildings. Additionally, some WSN transmitters necessitate a

continuous power supply, which might be inconvenient in speci�c scenarios

e.g. �re�ghting where the power is cut.
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2.2 SLAM based IPS

SLAM has emerged as a highly promising option for indoor positioning in

service areas[49]. This technique utilises the detection of sequential fea-

tures to gather surrounding data and simultaneously determine the trajec-

tory and surrounding map. SLAM utilises a comprehensive system struc-

ture that involves extracting features, modelling geography, reconstructing

space and optimising the system to build a map and track people or ob-

jects. SLAM aims to tackle the mapping problem in the absence of any

prior knowledge about the environment. SLAM has found extensive appli-

cations in various �elds, including the sweeping robot [50], autonomous ve-

hicles [51], augmented reality (AR) [52], minimally invasive surgery (MIS)

[53] and Unmanned Aerial Vehicle (UAV) [54].

Visual simultaneous localisation and mapping (vSLAM) [55] plays an im-

portant role in the SLAM area. Visual imaging from a digital camera

provides informative data in an ideal environment to estimate position

and mapping. However, limited by the characteristics of cameras, the vS-

LAM method is highly a�ected by dynamic changes in the environment

[26] where images with mass blur provide less valuable feature information.

Thermal-infrared SLAM [56] uses thermal infrared imaging from a thermo-

graphic camera to track the user and reconstruct the surrounding structure.

However, in �re�ghting scenarios, the temperature of the object's surface

is dynamic and the ow and heat radiation in the environment adversely

a�ect the imaging quality and SLAM performance. Alternatively, Lidar-

based SLAM constructs the trajectory and surrounding layout [57] from

the pose graph and occupancy grid map via a 360-degree laser ranging

strategy. However, this method is vulnerable to interference from external

light sources and the measuring range is short. These disadvantages a�ect
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the reliability of Lidar SLAM in �re�ghting scenarios. Radar SLAM [58]

bene�ts from millimeter-wave radar ranging, having fewer environmental

conditions than visual cameras and Lidar. However, the enormous radar

node rendering and low measurement resolution limit its widespread usage.

In summary, in �re�ghting scenarios with harsh environmental conditions,

it is quite hard for SLAM to collect high quality data for tracking and

mapping. Also, in the cases where �re�ghters move fast, the motion blur

makes the SLAM system very di�cult to calculate the accuracy position.

Therefore, the SLAM system is not suitable for the presented scenario and

it is consequently not considered in this thesis.

2.3 DR based IPS

DR methods analysis utilises the characteristics of body inertia to iter-

atively compute the individual position over time. Inertia data provides

information on the force vector and angular rate of an object, revealing

its current motion state. The IMU is a commonly used sensor for mea-

suring inertia data. This sensor utilises a MEMS construction to convert

the physical deformation of micromechanics into an electronic signal. An

IMU typically comprises an accelerometer and a gyroscope, which is used

to monitor 3-axis acceleration and 3-axis angular rate data. This section

will introduce the inertial DR based method with its application.

2.3.1 Development and Improvements of DR

Heading Estimation

The DR system employs data from IMUs to anticipate the trajectory of

user movements. This technique consists of three components: step detec-
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tion, step-length estimate and heading estimation [21]. PDR is a traditional

implementation of DR methods. The e�ectiveness of PDR relies heavily

on the precision of the heading estimation [59, 60]. An approach to de-

termine the heading involves utilising magnetometer data to compute the

user's direction in relation to magnetic north [61]. Nevertheless, the calcu-

lation of magnetic heading is susceptible to distortion caused by irregular

magnetic �elds due to external magnetic interferences [62]. Other tech-

niques for estimating headings using gyroscopic data have also been found

to be problematic, mostly because of signi�cant biases and drift errors [63].

Several methodologies have been suggested for achieving reliable heading

predictions. Sensor �ltering is a widely used method for combining data

from several sources in order to minimise estimation mistakes. Fanet al.

[61] introduced a novel approach that enhances the precision of heading es-

timation by integrating an adaptive KF with a complementary �lter. Qiu

et al. [64] introduced a PDR technique that relies on inertial and magnetic

sensors. The algorithm utilises an EKF and a clustering-based method

for detecting stance phases to estimate heading. Ashkaret al. [65] con-

ducted an analysis on the performance of a fusion system that combines a

magnetometer and inertial sensor using unscented Kalman �lters (UKFs),

EKFs and error-state EKFs (EEKFs). They demonstrated the e�cacy of

UKFs and EEKFs in this context. Wu et al. [66] proposed a method that

utilises a KF and a maximum-likelihood-type estimator to detect outliers

and enhance the accuracy of heading estimation. Zhanget al. [67] intro-

duced a dual foot-range restriction to facilitate the calculation of adaptive

step length and correction of heading. While these sensor fusion methods

enhanced the precision of the heading estimation, gait errors arose due to

misalignment between the foot's heading direction and the body's heading

direction. Some studies have explored the use of machine learning tech-

niques to achieve precise estimations of heading with great accuracy. In
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their study, Wang et al. [68] introduced a convolutional neural network to

identify walking patterns and match magnetic �nger trajectories for direc-

tion correction. Wanget al.[69] employed a support vector machine (SVM)

for motion identi�cation and a decision tree method for reducing localisa-

tion error. In their study, Wu et al. [70] introduced an adaptive approach

that utilises human action to adjust the heading direction. An alterna-

tive optimisation strategy, based on non-steady-heading operations, was

developed to reduce the accumulation error in PDR. While the �ndings

of these studies enhanced the precision of heading calculations, machine

learning-based methods are not feasible due to the time-sensitive nature of

�re rescue scenarios.

In addition to employing �ltering and machine learning techniques, certain

research has included RF and RSSI-related technologies to enhance the ac-

curacy of heading calculations. Zhanget al. [67] introduced a technique for

estimating headings using anchor points that has predetermined position

coordinates. The anchor points were employed for the initial calibration

and subsequent correction of the heading at corners. Tatenoet al. [71]

introduced a technique that utilised WLAN signals and a RSSI algorithm

to enhance the accuracy of heading estimation. Chenet al. [72] introduced

a method that uses UWB technology to address the issue of error accu-

mulation in PDR. The precision of the direction was enhanced by the use

of external sensors, although the practicality of deploying these beacons is

hindered in smoke-�lled buildings during �re rescue operations.

To mitigate the adverse consequences of heading drift, scholars have sug-

gested employing the corridor direction within buildings as a limit on the

trajectory. The heading direction will be adjusted to the nearest dom-

inating direction established in advance to minimise the mistake caused
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by drift in the IMU data. Borenstein and Ojeda [73] proposed a heuris-

tic drift elimination (HDE) method to rectify bias drift and other gradual

errors originating from gyroscopes and accelerometers. Nevertheless, the

precision of the method diminished after a certain duration of prolonged

walking due to excessive correction. To address the issue of misalignment of

HDE in the dominant direction, Jim�enez et al. [74] presented an enhanced

version of HDE known as iHDE (improved HDE). The iHDE utilises move-

ment analysis and a con�dence estimator to minimise heading mistakes.

Nevertheless, this approach is not feasible due to the prevalent usage of

predetermined thresholds for movement analysis. Muhammadet al. [75]

introduced a HDE technique that incorporates a zero-velocity update turn

detector and heading correction for pelvic rotation. While the direction

drifting inaccuracy was mitigated, some walking patterns, including those

that involve turning around (a frequently employed �re�ghting move to

minimise risk by retracing a previously investigated route), were not taken

into account when utilising this approach. Wuet al. [76] employed a heuris-

tic approach. A method for correcting heading using heading reduction and

a cardinal heading-aided inertial navigation technique was proposed. How-

ever, the implementation of this strategy was limited in emergent rescue

scenarios due to the requirement of a complicated multilayer perception

network and an EKF for pre-processing.

Step Detection

Foot-mounted inertial navigation system (FT-INS) is another implementa-

tion of DR methods [77] to track users' walking movement. Di�erent from

PDR which updates position for each step, FT-INS analyses foot motion

characteristics from continual inertia samples which achieve higher posi-

tioning resolution. Compared to widely used passive indoor localisation

methods [78{82], INS o�ers superior performance as it calculates trajec-
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tories without relying on external transmission nodes or initialisation op-

erations. Dual foot INS (DF-INS) is an enhanced version that leverages

data from both feet for more robust and accurate localisation [29, 83]. The

gait cycle in DF-INS is identi�ed through zero-velocity detection [84], dis-

tinguishing the stance and swing phases [85]. During the stance phase,

INS optimises the error in users' states using zero-velocity update and dual

foot fusion calculations. The motion states, including velocity, pose and

location, are then determined during the swing phase. However, accurately

classifying these phases is challenging due to variations and dynamics in

user motion.

Conventional methods like Acceleration-Moving Variance (AMV) [86], Ac-

celeration Magnitude (AM) [87] and Angular Rate Energy (ARE) [88] heav-

ily rely on raw inertia data, which leads to issues such as cumulative error

and motion dynamics. To overcome these limitations, Skoget al. [89]

proposed an improved GLRT method that incorporates prior knowledge of

AMV, AM and ARE. This method e�ectively mitigates false detection by

integrating acceleration and gyroscope data to calculate the likelihood of

the stance and swing phases. However, the existing zero-velocity detection

still relies on a �xed threshold, limiting its adaptability to di�erent users.

Positioning Optimisation

The positioning accuracy of the inertial based DR is susceptible to drift due

to the short-term drift of the IMU [90]. Various methodologies have been

employed to mitigate deviations or prolong the standard measurement du-

ration. The KF is widely regarded as one of the most common methods in

this �eld [91]. The KF is widely utilised in various technological domains

such as navigation, vehicle control and system optimisation. The funda-
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mental premise of the KF is to construct a predictive model of the linear

system state using the system's dynamic model and measurements from ex-

ternal sensors. The prediction model serves as an optimal state estimator

with the minimal mean-square-error (MSE) [92]. In general, the standard

KF method consists of two phases: prediction and update. During the

prediction phase, the object state is updated by taking into account signif-

icant state transitions, such as the physical laws governing the velocity of

automobiles or the walking pattern of individuals. During the prediction

phase, an external sensor will be utilised to observe the condition of the

object. The KF is employed to determine the impact of both major con-

cerns and external observation on state dynamics by calculating weights.

This is necessary due to the varying measurement covariance, which leads

to uncertain state estimation. Following the KF calculation, the two mea-

surements are combined using a tight coupling approach.

Because of the nonlinearity of the parameters and the instability of the me-

chanical speci�cations of the IMU, the linear KF is incapable of addressing

the estimate of nonlinear parameters. The EKF is a more sophisticated

iteration of the KF that enables state estimation on a nonlinear system

[93]. In the context of single-foot mounted INS calculation using EKF,

the objective is to periodically update the IMU state by incorporating ex-

ternal pseudo-measurements derived from speci�c features. These features

include zero speed during the stance phase using ZUPT [94], zero angular

rate during the stance phase using ZARU [95] and other manually con-

�gured methods [96]. The dual foot motion in FT-INS is represented by

the sphere [97] and ellipsoid geometries [98]. The threshold for this rep-

resentation can be either set, as proposed by Prateek [99], or dynamically

measured using the range �nder method, as proposed by Wu [29]. This

approach combines the dual foot INS results, resulting in enhanced posi-
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tioning accuracy and error re�nement performance. This thesis exclusively

focuses on studies about DF-INS. Therefore, this study does not cover

certain KF platforms that incorporate sensor fusion and navigation opti-

misation techniques, such as the UKF [100], adaptive Kalman �lter (AKF)

[101] and multiplicative extended Kalman �lter (MEKF) [102].

\Openshoe" [103, 104] is one of the embedded DF-INS utilising ZUPT in its

implementation. Norrdine A et al.[105] utilised a magnetometer to update

the altitude estimation by KF. Li et al.[106] proposed a UKF for initial

alignment and fuse ZUPT, ZARU and magnetometer readings to correct

the estimation error. However, the tracking performance of these methods

with a single IMU or attitude and heading reference system (AHRS) sensor

used is easily a�ected by mechanical and measurement errors of electronic

components.

Other studies research on dual foot mounted INS for positioning optimi-

sation. Prateek et al. [99] proposed a sphere limit algorithm built upon

the \Openshoe" model to merge the two-foot INS data. Zhaoet al. [97]

proposed a dual gait analysis approach to optimise step length estima-

tion. Wang et al. [107] proposed an adaptive inequality constraint in KF

for sensor fusion of dual foot. A. A. Abdallahet al. [108] presented a

Deep Neural Network (DNN) based synthetic aperture navigation (SAN)

to suppress multipath error of ZUPT based INS platform. These dual foot-

mounted DR systems improve the tracking performance, but they take the

surrounding structure as a priori by default to navigate people which may

be unavailable in some special cases like indoor �re�ghting and cave ex-

ploration. A single trajectory without surrounding geography information

loses the semantics to understand.
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In addition, dual-foot sensor data fusion lacks trajectory fusion, which

renders these systems unsuitable for real-world applications. The mass-

separated trajectories from the left and right feet increase the di�culty of

position estimation. Thus, one body-level trajectory creates more di�er-

ences in the context of the IPS. However, the INS area has no suitable

solution for fusing the dual trajectory. The centre body of mass (CBoM)

[109] is a commonly used model that determines body movement based on

biomechanical concepts [110]. However, most CBoM methods utilise force

platforms [111], visual motion capture systems [112] and magneto-inertial

measurement units (MIMUs) based motion analysis approaches [113] which

are impractical for long-term localisation.

2.3.2 Multi-person Localisation

Apart from the limited accuracy of DR methods, multi-person localisa-

tion is a challenging problem in the �eld of DR, enabling the simultaneous

localisation of multiple users. Traditional methods merely extend individ-

ual localisation functionality. Zhang et al. [114] proposed a WLAN-based

multi-person localisation system using intelligent reecting surfaces (IRS).

Qian et al. [115] implemented a multi-tracking platform based on path-

loss-based adaptive joint probabilistic data association (PLA-JPDA) us-

ing impulse-radio UWB (IR-UWB) radar. These methods utilise di�erent

wireless transmission protocols and tracking algorithms to localise multi-

ple individuals. However, such passive localisation methods are still con-

strained by the initial setup of transmission devices and prior knowledge of

indoor infrastructures, limiting their practicality in real-world applications.

Other research explores device-free methods for multi-person localisation,

allowing localisation without individuals carrying devices. These methods
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simplify tracking operations and expand application scenarios. Wuet al.

[116] adopted millimetre wave radio (MWR) for multi-person localisation.

A multi-target detection approach was proposed to estimate the positions

of individuals and generate trajectories based on continuous tracking op-

erations. This method o�ers high accuracy in small spaces but is limited

in normal indoor buildings due to the maximum range of MWR. Yanget

al. [117] introduced a multi-person localisation method using pyroelectric

infrared (PIR) sensors. A deep learning model with domain knowledge was

applied to count individuals and estimate their locations. However, PIR

sensors require line-of-sight for sensing, limiting their practicality in indoor

scenarios with frequent structural obstructions.

Landmark Recognition Method

The accuracy of INS was prone to accumulating errors from dead reckoning

calculations [118]. While ZUPT and ZARU periodically updated the INS

state and suppressed estimation errors [119], spatial errors in the trajectory

accumulated over time. Several methods have been developed to mitigate

these errors by periodically updating the system state based on speci�c

reference landmark matching. A successful match of landmarks indicated

the detection of a familiar location for loop closure. Following a loop clo-

sure operation, the estimated position was corrected to a previously visited

location, where the cumulative error was minimised [120].

Landmarks were typically categorised as arti�cial or natural. Arti�cial

landmarks included self-de�ned [120, 121] or pre-determined [11, 122] fea-

tures with regular or distinctive environmental and spatial characteristics,

such as elevators, doors, columns, stairs, and other prede�ned locations.

Determining these landmarks usually required an initial survey to obtain
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their positional information, and the matching process often required man-

ual activation [123], increasing the complexity and risk. Conversely, nat-

ural landmarks consisted of inherent environmental factors with regular

dynamics or long-term stability, such as light density [124, 125] and mag-

netic �eld distribution [126, 127]. The characteristics of natural landmarks

made them more convenient for online usage, enhancing timeliness [127].

Compared to arti�cial landmarks, natural landmarks were easier to employ

in various environments but might have required external landmark feature

detection and calibration operations. Among natural landmarks, magnetic

�elds were particularly suitable for multi-person INS due to their long-term

and short-term stability. Additionally, the directional nature of magnetic

values increased the uniqueness of MFs, enhancing their performance in

loop closure.

MF Mapping and Matching

Geomagnetism and indoor infrastructure inuence the magnetic �eld dis-

tribution within a building [128]. Magnetic �elds exhibit high stability in

the presence of long-term and dynamic environmental factors [129, 130],

making them suitable for indoor positioning through magnetic �eld anal-

ysis [131]. Magnetic �eld data typically consists of a 3-D vector obtained

from a 3-axis magnetometer. The magnetic �eld intensity (MFI) [132] is

often normalised based on the 3-D magnetic vector. Both the 3-D magnetic

vector and MFI contribute to the determination of MFs. Many approaches

collect spatial �ngerprints to create �ngerprint maps using space projec-

tion [133] and interpolation [134]. Fingerprint maps can serve as references

for indoor localisation and they can be categorised into o�ine and online

modes.
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O�ine MF matching involves the separation of magnetic �eld collection and

matching operations in a temporal manner [135, 136]. Existing research pri-

marily collects and constructs MF maps prior to localisation. These maps

serve as prior knowledge for the localisation process. In contrast, online

�ngerprinting combines �ngerprint detection and location calculation si-

multaneously [126]. This approach requires no prior initialisation before

position calculation, enhancing e�ciency in scenarios requiring high time-

liness and in unknown environments. However, online �ngerprint maps

typically have lower resolution than o�ine maps, as they lack signal post-

processing and enhancement operations.

Dynamic time wrapping (DTW) [137] is a typical method for signal pattern

matching which is suitable for applying in MF matching. DTW compresses

and stretches two input sequences to align them, calculating the DTW value

based on the distance between these aligned sequences. This value repre-

sents the similarity between the two sequences. Magnetic �eld sequences

di�er from audio signals processed using DTW, as magnetic sequences in-

clude amplitude and direction, increasing the complexity of calculations.

Researchers have proposed various techniques to address these challenges.

Wang et al. [138] introduced a backwards magnetic trajectory detection

method that broadens the range of applications for MF matching. Chen

et al. [139] presented a magnetic sequence segmentation algorithm and a

magnetic feature classi�cation method to address distortion and shifting

issues in original MF sequences. Chenet al. [140] proposed a 3-D DTW

(3DDTW) method to enhance magnetic sequence matching accuracy by

extending the dimensionality of the matching sequences. Guoet al. [141]

introduced a semantic trajectory segmentation and hybrid DTW matching

method to improve magnetic sequence matching in spatial contexts.
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2.4 Summary

Table 2.1: Summary of DR Related Study

Research Topic Sub-topic Typical Approaches Limitations References

Development and
improvement of

DR method

Heading
Estimation

Calculate and optimise
heading from magnetic

and inertia measurements

Accuracy is a�ected
by magnetic interference

[61, 64{67]

Walking pattern
recognition for

heading correction

Time-consuming
model training

[68{70]

UWB and WLAN for heading
estimation enhancement

External device
installation, not convenient

[67, 71, 72]

Make assumption
for corridors' direction

and eliminate
drift accordingly

Walking patterns
are not considered

[73{76]

Step
Detection

AMV, AM, ARE, and GLRT

GLRT utilises
a �xed threshold.
There is no dual

foot synergistic method

[84{89]

Positioning
Optimisation

ZUPT, ZARU;
EKF, UKF, AKF, MEKF.

KF requires accurate
parameter for fusion

and optimisation
[93{95, 100{102]

Fuse dual foot motion
for tracking using sphere
and ellipsoid constrains.

The stride length
constraint is based
on �xed threshold

[97, 98, 107, 108]

Multi-person
Localisation

Existing Multi-person
localisation

WLAN, UWB,
MWR, and PIR

External device
installation, not convenient

[114{117]

Landmark Recognition

lifts, doors,
columns, stairs,
other speci�ed
locations and

pre-determined marks

Hard to measure
the coordinates;
need manually

recording

[142]

Intensity of light;
magnetic �elds

Need to encode the
magnetic �elds data

[124{127]

MF Mapping
and Matching

Magnetic �eld intensity
transformation; DTW

No online
magnetic �ngerprint

for multi-
trajectory fusion

[128{141]

This chapter provides a comprehensive discussion of the state-of-the-art

IPS methods. The advantages and disadvantages of WSN, SLAM and DR

methods are introduced. It is worth noticing that in emergency scenar-

ios such as �re�ghting, DR methods present better performance for de-

ployment due to their minimal hardware pre-installation requirements and

strong resilience to interference from environmental and human factors.

Though DR methods exhibit promising potential, their limitations can not

be overlooked as shown in Table 2.1. Existing research proposes many

sensor fusion approaches to improve positioning accuracy by reducing the

IMU drifting issues. However, few studies considered gait analysis to re-

duce cumulative error. In addition, the lack of mapping and multi-person
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localisation limits its application opportunity in emergency services.

To overcome the limitations presented above, the research work of this the-

sis conducts speci�c studies to answer three research questions presented

in Chapter 1. Study 1 , Study 2 and Study 3 investigate di�erent gait

analysis techniques in DR systems to mitigate heading estimation bias, at-

tain more precise step recognition and accomplish correct dual foot trajec-

tory optimisation, respectively. Study 4 researches a DR based mapping

approach to reconstruct the surroundings together with positioning calcu-

lation. Finally, the implementation of online magnetic �ngerprint based

Multi-INS is explored by Study 5 which presents a novel approach for

multiple person's trajectory integrations. The comprehensive descriptions

of these studies are presented in the following chapters.
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Chapter 3

Methodology

This chapter introduces �ve studies throughout the course of PhD study as

shown in Fig. 3.1, where the �rst three studies focus on the accuracy of the

DR method, Study 4 aims to reconstruct the surrounding map and Study

5 explores the multi-person positioning method. To control variables such

as human and environmental factors in each study performance evaluation,

this chapter also introduces the speci�c experimental setup for each study.

Figure 3.1: The Overview structure of the studies presented in this thesis.

It is worth declaring that all experiments adhered to ethical guidelines and

were approved by the university's research ethics committee. Participants

received information sheets and signed consent forms before the commence-
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ment of the experiments. They were informed of their right to terminate

their participation at any time if they so requested.

3.1 GA-PDR

To address inaccurate heading estimation impacted by the walking patterns

of di�erent users, Study 1 proposes a gait analysis{aided PDR (GA-PDR)

system based on the principle of HDE for locating users in smoke-�lled en-

vironments by analysing an individual's gait. A motion sensor is placed on

protective footwear during data collection. The gait analysis (GA) is pre-

sented in two parts using a gait detection (GD) algorithm for step pattern

determination and a redundant turn elimination (RTE) method for cor-

recting misclassi�ed step patterns. The results indicate the e�ectiveness

of GA-PDR in the gait adaptation for di�erent users and accuracy within

both ideal and smoke-�lled environments.

Typical DR method PDR [21, 143] is a popular technique for computing a

pedestrian's position by measuring their gait information, which includes

step detection, step length and heading direction. This technique can over-

come the limitations of vision-based methods, in which gait measurements

are less frequently a�ected by environmental factors e.g. smoke. The per-

formance of PDR can be a�ected by several factors, including the drifting

problem in the case of motion sensors [144] and distinct individual gait [66].

Their stable wireless transmission and e�cient computation are more prac-

tical in emergencies e.g., �re rescuing. The walking pattern of �re�ghters

is di�erent from that of a typical civilian. Fire�ghters will typically walk

with their bodies leaning forward on the ground and at a slower pace than

a typical civilian due to the low visibility of smoke-�lled environments and
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the heavy equipment they carry. Therefore, it is important to consider non-

standard walking types when studying and developing solutions for various

users, such as �re�ghters.

3.1.1 System Overview

One general notation model of PDR footprint is presented for problem

description. Fig. 3.2 demonstrates the impact of this di�erence in walk-

ing style on PDR performance. The included angle, i.e., �	 , between

the actual walking direction, i.e., 	 gt and the footing direction, i.e., 	 foot ,

is dynamic within a consecutive gait cycle. The preliminary work [145]

showed that PDR heading estimation, when not considering gait, can be

inaccurate. The proposed GA-PDR system is presented in Fig. 3.3. The

Figure 3.2: A schematic clamping angle is shown between the real direction,
i.e., 	 gt and the heading angle of the foot.

normalised acceleration,anorm;raw ) , angular velocity, ! z;raw and unwrapped

heading angle yaw, 	raw information from the IMU data was �rst passed

through a low-pass �lter to eliminate high-frequency noise. Filtered accel-

eration, anorm , was then applied to detect steps [146] and to estimate the

step-length [147]. The heading, estimated using GA, comprised a sequence

of processes, GD and RTE. GD detected the peaks and valleys of! z with

the assistance of the deviance of 	 to determine the step pattern (SP).
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The RTE corrected the SP based on the time-domain analysis for 	 to re-

duce the bias caused by redundant small turns during a complete physical

turn. Finally, the heading direction of each step, i.e., 	
0
, was computed

according to the corrected SP. The position of each step was calculated by

a PDR formula based on the step detection, step length (L) and 	
0
. The

calculated step points were connected along the timestamp to generate a

trajectory which was projected to the (x,y)-Cartesian coordinate system.

The details of the GA method will be discussed further in the following

sections.

Figure 3.3: A system overview of GA-PDR with GA comprising GD and RTE
for heading estimation.

3.1.2 Gait Detection (GD)

GD is the initial stage of GA and determines the SP candidates. This

study assumed that the rooms and corridors in a building were structured

according to the research proposed by [73], where the movements of a

user mainly comprise four dominant directions, i.e., heading forward, left

and right, with 90-degree intervals. The SPs associated with the directions

de�ned in this study are 90-degree turn-left and turn-right 180-degree turn-

around from the left and from the right and no turn (forward heading). To

identify the SP, �rst, the raw angular velocity of the z-axis, i.e., ! z;raw

and 	 raw data are smoothed using a low-pass �lter to reduce the noise

generated from the sensors and electronic circuits. An angle unwrapping

method is also introduced to maintain the continuity of the angle signal as

follows:
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! z = LP (! z;raw ; t ! ) (3.1)

 = UW (LP (  raw ,tyaw )) (3.2)

where LP is a low-pass Butterworth �lter [148] with a �xed minimum height

threshold, i.e., t ! and t 	 for ! z;raw and 	 z;raw , respectively; UW (unwrap-

ping) [149] is a method for solving the angular shifting problem at a 0-

degree to 360-degree junction to guarantee the signal continuity as follows:

psii :m =

8
><

>:

 i :m+2�; j i �  i+1 j > �

 i :m ; otherwise
(3.3)

where i is the index of the signal sample and i :m is the signal segment

indexed from the current instant i to the total length (m) of this signal.

Second, the turn action has a signi�cantly higher angular rate than that of

normal forward motion which shows a pulse in the! z signal. These pulses,

which have the highest absolute value compared with their neighbouring

pulses, could potentially be detected as a turn. Peak and valley detectors

are utilised to de�ne these turns from the left and right sides, respectively.

peak!;L =

8
><

>:

1; ! z;k� 1 < ! z;k ! z;k > ! z;k+1 � !;L > th fs j! zj > th !;L

0; otherwise

(3.4)

valley!;R =

8
><

>:

1; ! z;k� 1 > ! z;k ! z;k < ! z;k+1 � !;R > th fs j! zj > th !;R

0; otherwise

(3.5)
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In the above equations,k is the index number of each sample, � is the

required minimum horizontal distance between neighbouring peaks or val-

leys, th fs is the �xed threshold for � !;L and � !;R and th !;L and th !;R are

the absolute value thresholds for peak and valley detection, respectively.

Then, Pi is utilised to calculate the variation in 	 between two continu-

ous steps to distinguish an invalid turn, a 90-degree turn and a 180-degree

turn-around as follows:

Pi = std
�
 T (i ) :  T (i +1)

�
(3.6)

whereT is a function used to convert the step index number into a times-

tamp. Finally, the value of the SP is de�ned, based on (3.7). Each step is

tagged with SPi to enable heading estimation. The SP with a value greater

than 0 is labelled a \positive SP," which indicates that the corresponding

step is a turning action, as shown below.

Pi =

8
>>>>>>>>>><

>>>>>>>>>>:

1; 9T (Peak!;L ) 2 [T(i ); T(i + 1)] Pi 2 [LT; HT ]

2; 9T (V alley!;R ) 2 [T(i ); T(i + 1)] Pi 2 [LT; HT ]

3; 9T (Peak!;L ) 2 [T(i ); T(i + 1)] Pi > HT

4; 9T (V alley!;R ) 2 [T(i ); T(i + 1)] Pi > HT

0; otherwise

(3.7)

where the SPi values of 1, 2, 3, 4 and 0 represent a 90-degree turn-left

and turn-right, a 180-degree turn-around from the left and the right and

no turn (forward motion), respectively. Moreover, LT and HT are the low

threshold and high threshold for thePi turning judgment. A Pi lower than

the LT value indicates no turning; aPi greater than the LT value but less

than the HT indicates a potential 90-degree turn, while aPi greater than

the HT indicates a potential 180-degree turn.
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As shown in (3.8), the heading estimation, 	
0

i , for each step can be calcu-

lated based onSPi , as follows:

 i
0
=

8
>>>>>>>>>>><

>>>>>>>>>>>:

 i � 1
0
; SPi = 0

�
�
�
�

 i � 1
0
+ 90

�
%360

�
�
� ; SPi = 1

�
�
�
�

 i � 1
0
� 90

�
%360

�
�
� ; SPi = 2

�
�
�
�

 i � 1
0
+ 180

�
%360

�
�
� ; SPi = 3

�
�
�
�

 i � 1
0
� 180

�
%360

�
�
� ; SPi = 4

(3.8)

3.1.3 Redundant Turn Elimination (RTE)

Commonly, a complete turning action requires multiple continuous small

turns, which causes one turn with multiple positive SPs via GD. An exam-

ple of this problem is shown in Fig. 3.4.

Figure 3.4: An experiment segment in which a redundant turn problem oc-
curred.

The SPi calculated by GD is denoted as the peaks and valleys plotted in

the angular velocity series that are demonstrated in Fig. 3.4, where the

green lines serve as a sample of the walking trajectory. Each turn labelled

by a red circle with a lowercase letter is associated with the red box and

corresponding lowercase letter in the angular velocity plot. Left-turning

can be seen at the a and c positions, which are associated with peaks a and
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c, respectively, in the angular velocity data series. Similarly, right-turning

can be identi�ed at position b with the associated valley b from the data

series. However, the left-turning located at positionc is associated with

multiple peaks, i.e.,c1 and c2; the 180-degree turning located at position d

is associated with multiple valleys, i.e.,d1 and d2, during continued steps.

A single turn with multiple peaks or valleys interferes with the normal

heading estimation. To address this problem, the RTE method can be

utilised to verify these redundantSPs.

Figure 3.5: The owchart of RTE method.

Fig. 3.5 illustrates the owchart of the RTE method. The algorithm inputs

the GA-PDR data array, which includesi , 	 and SPi derived from the GD

and outputs the correctedSPi . First, RTE detects the consecutive steps

with positive SPs and de�nes these step segments as step groups. Second,

it calculates the absolute heading di�erence between the starting step and

the ending step in each group. Finally, the method updates theSPs of the

steps in the step groups according to the heading value di�erence within

groups. Thus, one turn including multiple steps with positiveSPs will be

veri�ed to determine the actual SP of each step. Multiple potential turns

computed by GD at one corner will be eliminated into a single turn that

matches the real cases.

3.1.4 Experimental Setup

To evaluate the GA-PDR performance, the experiment preparation section

introduces the hardware setup and layout of the experimental scenario.
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Table 3.1: The IMU (BNO055) Parameters

Parameter Value

Sampling rate 100 Hz
Acceleration 3-axis± 4 g
Gyroscope 3-axis± 2000 dps
Orientation, Yaw 0°{360°

The proposed GA-PDR comprises a BNO055 IMU and a Seeeduino XIAO

micro-computing unit, as shown in Fig. 3.6. The IMU was calibrated util-

ising an internal calibration module in hardware. The sensor components

were assembled and placed on the upper side of a �re�ghter's protective

boot and the sensor data were transmitted to a terminal via long-range

radio communication (Lora). The data analysis was performed using a

desktop terminal equipped with Windows 10, an Intel(R) Core (TM) I5-

8250U @1.60G Hz processor and 8 GB RAM. Table 3.1 summarises the

speci�cations of the IMU sensor that was used in this study. The raw

yaw readings of this IMU were �ltered through the inner calculator [150]

to reduce drifts. The update rate of GA-PDR was 100Hz, following the

sampling rate of IMU.

Figure 3.6: The design and hardware placing of the GA-PDR data collector.
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(a)

(b)

Figure 3.7: The schematics of the experimental site: (a) Layout information
and (b) photo of smoky scenario.

The experiments were examined inside a building comprising multiple struc-

tured rooms on a single oor. A schematic of the indoor structure used for

the experiment is shown in Fig. 3.7a, which comprised 4 rooms of similar

size. The size of the rooms was measured with a laser range �nder; rooms

1, 2, 3 and 4 were 24, 21.64, 24 and 24m2, respectively.

Two male �re�ghters voluntarily participated in the study for data collec-

tion. Fire�ghter 1 (173 cm tall and weighing 82 kg) was instructed to com-
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plete the walking trajectory as shown in Fig. 3.8a (Scenario 1). Fire�ghter

2 (180 cm tall and weighing 85 kg) was asked to complete two scenarios (see

Figs. 3.8b and 3.8c) in a smoke-�lled environment with a visibility range

below 1 m, as shown in Fig. 3.7b, the smoke was produced by a smoke gen-

erator. All the walking plans were made under the guidance of professional

�re�ghting teams which consist of all the walking patterns: forward, left-

and right-turn and around-turn from left or right-side movements referred

to HDE. There was no restriction on the walking pattern that participants

could adopt. Every experiment was conducted three times in order to avoid

subjective issues from human factors.

3.2 Dual Foot Synergistic Method

Dual foot INS (DF-INS) is an enhanced version that leverages data from

both feet for more robust and accurate localisation [29, 83]. Achieving ac-

curate zero-velocity detection is crucial for optimal performance in zero-

velocity updating and trajectory calculation in DF-INS. However, con-

ventional techniques rely on �xed thresholds to identify the zero-velocity

(stance) phase, which is not suitable for dynamic scenarios and diverse

users. Moreover, the step detection of DF-INS regards two-foot as sepa-

rated systems where there was no synergistic pattern recognition considered

in dual foot motion analysis in DF-INS. This design will decrease the ac-

curacy of DF-INS when the dual foot gait cycle is irregular. To address

this problem, Study 2 introduces a dual foot synergistic method to deter-

mine dynamic thresholds for zero-velocity detection in a two-foot system.

Initially, the GLRT sequences from both feet are smoothed using a moving

average �lter. The points of equality within these sequences are then iden-

ti�ed as transition points between the stance phase and the swing phase.
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(a)

(b)

(c)

Figure 3.8: Walking plan routes in ideal and smoky environments: (a) a com-
plicated trajectory and (b) a moderate (c) a turning around{oriented trajectory
in smoke-�lled environments.
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3.2.1 Dual Foot GLRT (DF-GLRT)

In the context of DF-INS, the sensor measurements captured by a dual foot

mounted IMU system can be denoted asys;k 2 R6, as demonstrated in Eq.

3.9,

ys;k =

2

6
4

ya
s;k

y!
s;k

3

7
5 ; s 2 [L; R ] (3.9)

where ya
s;k signi�es the three-axis acceleration vector andy!

s;k represents

the three-axis gyroscope vector in a three-dimensional Cartesian coordi-

nate system at timestampk, as well ass denotes the index of the IMU

placed on the left (L) or right ( R) foot.

In order to assess the likelihood of the measurement sequencezs;n (see

Eq. 3.10) being stationary, a moving detection window with a size ofN

is employed. Within the context of dual foot zero-velocity detection, two

hypotheses,H s;0 and H s;1, are formulated, as expressed in Eq. 3.11.

zs;n ,
�

ys;k

� n+ N � 1

k= n

(3.10)

H s;0 : ThefootmountedIMU s is in a moving state.

H s;1 : ThefootmountedIMU s is in a stationary state.
(3.11)

The GLRT method [89] is employed to compute the probability rate of

the hypothesesL s;G which is essential for determining the states ofzs;n , as

indicated in Eq. 3.12,
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L s;G =
p(zs;n ; � 1; H s;1)
p(zs;n ; � 0; H s;0)

>  (3.12)

wherep(�) represents the probability density function (PDF) [151],� 0 and

� 1 denote the maximum likelihood estimates (MLE) [152] of the unknown

parameters in the IMU system forH s;0 and H s;1 and  is a �xed threshold

value used to discern between the moving and stationary states.

To overcome the computational challenges arising from the logarithmic

nature of Eq. 3.12, the variableL s;G is rede�ned asT(zs;n ) in Eq. 3.13,

T(zs;n ) = �
2
N

ln(L s;G)

=
1
N

X

k2 
 n

0

@ 1
� 2

a






ya

s;k � g �ya
s;n




 �ya

s;n













2

+
1

� 2
!




 y!

s;k






2
1

A < 
0

(3.13)

where 
 n = � 2 N; n � � < N � 1 represents a moving window with a size

of N , 
0

= � 2
N ln  is a �xed threshold in logarithmic form, g represents

the local gravity acceleration parameter, �ya
s;n denotes the average value

of ya
s;k , � a and � ! indicate the standard deviations of the accelerometer

and gyroscope measurement noises respectively. Zero-velocity detection is

computed independently for each foot.

3.2.2 Dual Foot Synergistic Method

In order to improve the computational smoothness of the sequenceT(zs;n )

in Eq. 3.13, a moving average �lter [153] with a window size ofM is utilised

whereT̂i (zs;n ) (see Eq. 3.14) is the smoothed signal at timei .

T̂i (zs;n ) =
1

M

iX

i � M +1

Ti (zs;n ) (3.14)
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(a) (b)

Figure 3.9: Comparison of (a) raw signalTi (zs;n ) and (b) �ltered signal T̂i (zs;n ),
using a moving average �lter.

Figure 3.9 presents the comparison betweenTi (zs;n ) and T̂i (zs;n ), demon-

strating a signi�cant reduction in high-frequency noise achieved by the

�ltered signal.

The gait cycle, as depicted in Fig. 3.10, encompasses various phases such

as heel-o� (HO), heel-strike (HS), foot-at (FF) and toe-o� (TO). Mid-

stance represents the point at which the foot bearing weight functions as a

stabilising support for standing, whereas mid-swing pertains to the inter-

vals during which the foot without weight undergoes a swinging motion.

The transition from the swing phase to the stance phase occurs when both

heel-o� (HO) and heel-strike (HS) events are detected in the dual foot sys-

tem. Conventional methods of identifying the stance phase commonly rely

on predetermined thresholds, which may be a�ected by the dynamics of

the GLRT sequence. This could result in the erroneous rejection of hy-

pothesisHs;1, leading to false rejections and consequently impacting the

performance of the INS. In this study, the conditionT̂(zL; k) = T̂(zR; k)

signi�es that the dual foot GLRT sequences are employed synergistically

to facilitate gait switching. This approach considers the dual foot measure-
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ments as an integrated system, accounting for the interrelationship between

the feet. The equality ofT̂(zs;n ) represents the maximum likelihood when

the gait of both feet reaches the demarcation point.

Figure 3.10: Schematic representation of the gait cycle for the dual foot.

Finally, the stationary hypothesesHs;1 functioning as the primary deter-

mination of the synergistic method are evaluated based on the Eq. 3.15,

H i
L; 1 is true if T̂i (zL;n ) � T̂i (zR;n ) or T̂i (zL;n ) < 

0

min

H i
R;1 is true if T̂i (zL;n ) � T̂i (zR;n ) or T̂i (zR;n ) < 

0

min

(3.15)

where i 2 
 n ; 
0

min represents the minimum threshold for detecting zero-

velocity in the dual foot system at the beginning and end of the gait cycle.

3.2.3 Experimental Setup

The proposed wearable for foot mounting utilises a MPU9250 (200Hz) and

a Seeeduino ESP32 dual-core micro-computing unit for each foot. The sen-

sors were integrated and securely attached to the front of each shoe using

a Velcro strap. The IMU was calibrated utilising an internal calibration

module in hardware. The transmission of inertia data was collected wire-

lessly through Wi-Fi, utilising the On-The-Go (OTG) protocol, from the
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sensors to a handheld ESP32 Wi-Fi kit, which was connected to a smart-

phone (refer to Fig. 3.11). The algorithm responsible for processing the

data was implemented in MATLAB 2022a and executed on a laptop with

an Intel i7-10510U 1.8 GHz processor and 16 GB RAM. The update rate

of DF-INS was 200Hz, following the sampling rate of IMU.

Figure 3.11: System design for data collection

To evaluate how well the system performed, a set of indoor tests was carried

out in a building shaped like a square, which included a central courtyard.

The path for walking spanned around 160 meters and started and �nished

at the same spot, as illustrated in Figure 3.12. Four volunteers took part in

the experiment and the researcher analysed recorded videos to determine

the step count of both the left foot (SCL ) and the right foot (SCR) for each

participant.
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Figure 3.12: Layout of experimental scenario.

3.3 IOAM

With the development of IPS, the DF-INS has been extensively used in

many �elds involving monitoring and direction-�nding. It is a widespread

IPS implementation with considerable application potential in various ar-

eas such as �re�ghting and home care. However, the existing DF-INS is

limited by a high inaccuracy rate due to the highly dynamic and non-stable

stride length thresholds. The system also provides less clear and signi�cant

information visualisation of a person's position and the surrounding map.

To address the aforementioned issues,Study 3 and Study 4 propose a

novel wearable inertial odometry and mapping (IOAM).
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It is worth noticing that, the methods of Study 3 and Study 4 are imple-

mented in the same INS framework to perform IOAM, for calculation and

visualisation. To ensure good coherence of the method presenting, the no-

tation de�nition, experiment and results discussion ofStudy 3 and Study

4 are presented in the same section.

3.3.1 System Overview

Figure 3.13: System overveiw of IOAM.

This part provides a technical overview (Fig.3.13) of the proposed IOAM

implementation. First, IOAM introduces a minimum centroid distance

(MCD) method that calculates the stride length ultrasonic distance mea-

suring data speci�cations and determines the dynamic threshold for centroid-

method-based dual-foot fusion in INS. In doing so, the dynamic threshold

with an accurate stride length constraint improves the tracking estima-

tion performance. Second, IOAM proposes a dual trajectory fusion (DTF)

method to fuse the two separated trajectories from the two feet and com-

bine them into one body-level localisation information. DTF analyses the

centre body of mass (CBoM) speci�cations during movement to determine

the weight for left and right trajectory fusion. Finally, a 2D-plane map
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is projected through outer ultrasonic distance measuring using the polar

projection theory. The map area is obtained via a surrounding occupancy

grid map (S-OGM) [40] to calculate the occupancy status of every pixel

(clearing/irrelevant). The localisation and mapping information is then vi-

sualised using a uniform canvas.

3.3.2 MCD Aided INS for Dual Foot Fusion

EKF Initialisation

Owing to the physical transmission properties of sound and electronic lim-

itations [154], the sampling rate of the ultrasonic sensor is lower than that

of the IMU. The nearest interpolation method [155] was adopted to align

the range data and IMU data, as follows:

u(i )( j ) = interp

 

û(i )( j ) ;
Ts

�
imu (j )

�

Ts(û(i )( j ))

!

(3.16)

where û(i )( j ) and u(i )( j ) represent the original and interpolated ultrasonic

sensor measurement signals, respectively.i 2 f Inner, Outerg represents

the placement, that is, the inner and outer sides of the ultrasonic sensors

attached to one foot. j 2 f R; Lg represents sensors mounted on the right

or left foot. Ts indicates the sampling rate of the sensor data. Two data

sequences from the sensors on each foot were synchronised. The IMU data

D (i )
k 2 R6 is de�ned as:

D (j )
k ,

h
a(j )

k ! (j )
k

i T
(3.17)

where a(j )
k 2 R3 and ! (j )

k 2 R3 represent 3-axis acceleration (m=s2) and

angular rate (rad=s2), respectively. k 2 N + indicates the time stamp of

the data sequence.
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The initial coordinate of the CBoM trajectory from the DTF calculation

(pCOM ) is de�ned as:

pCOM =
�

0 0 0

� T

(3.18)

To separate the dual-foot coordinate calculation, the two-foot initial po-

sition coordinatesp(j )
1 are de�ned as posteriori by inner ultrasonic sensor

distance measuring. The coordinates ofp(L )
1 and p(R)

1 is de�ned as:

p(L )
1 =

�

� �
2 0 0

� � 1

; p(R)
1 =

�
�
2 0 0

� � 1

(3.19)

where � determines the initial x-axis direction stride-length parameter. A

priori IMU state x̂(j )
k in the navigation system is de�ned as [156] :

x̂(j )
k ,

h
p̂(j )

k v̂(j )
k �̂ (j )

k

i
(3.20)

where p̂(j )
k 2 R3, v̂(j )

k 2 R3 and �̂ (j )
k 2 R3 represent a priori position,

velocity and pose estimation on the 3-axis coordinate system [99, 131]. A

step detector [157] classi�es eachD (i )
k sample according to its motion state

as either moving or stationary. When a stationary phase is detected, the

INS sets pseudo-measurements in the EKF to compute the posteriori of the

x̂(j )
k [158{161].

MCD

The centroid method de�nes the relative range between the two feet. In a

typical dual-foot INS, the distance between two feet has a maximum range

constrained by a sphere or ellipsoid model. The distance constraint [156]

is described as:
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Figure 3.14: Schematic of right foot swing and inner ultrasonic sensor scanning
process.



 p̂(R)

k � p̂(L )
k





2
�  k ; 8k 2 N + (3.21)

wherekk2 denotes the two-norm calculator and is a �xed range threshold.

The Lagrange function [162] solution for position pseudo-measurementp(j )
k

under the constrained least squares (CLS) [156, 163, 164] framework is

de�ned as:

p(R)
k =

� 

 p̂(R)

k � p̂(L )
k





2
+ 

�
p̂(R)

k +
� 


 p̂(R)

k � p̂(L )
k





2
� 

�
p̂(L )

k

2


 p̂(R)

k � p̂(L )
k





2

;

p(L )
k =
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 p̂(R)

k � p̂(L )
k





2
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�
p̂(L )

k +
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 p̂(R)

k � p̂(L )
k





2
� 

�
p̂(R)

k

2


 p̂(R)

k � p̂(L )
k





2

(3.22)

Then, the prede�ned maximum range pseudo-measurement is applied to

optimise the foot's position using the EKF. The maximum range constraint

can only address out-of-range drifting problems due to the dynamic stride

length during movement and unpredictable gaits from di�erent users. The

bias error from position and altitude estimation would also cause trajec-

tory coinciding and crossing problems, reducing the tracking accuracy. A
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MCD method is proposed to determine the dynamic stride length con-

straint threshold via inner ultrasonic distance measuring during the mid-

swing phase in the gait cycle. The gait cycle during the swing phase of the

moving state can be categorised into three continual sub-statuses: initial

swing, mid-swing and terminal swing [165] based on the position of the

swinging leg relative to the stationary leg (Fig.3.14). It is assumed that

the normal gait cycle did not involve leg cross-swinging.

In MCD, the mid-swing phase detection can be determined as:

S(j )
k =

8
>><

>>:

1, � min < u (inner )( j )
k < � max

0, others
(3.23)

where� is the stride length parameter.

To reduce inaccurate measurements during the swinging phase, the inner

stride length range is designed to operate in the stance phase of the opposite

foot. The DTF algorithm �rst detects the zero-speed states using the GLRT

[155] which is de�ned as:

ZUPT(j )
k =

8
>><

>>:

1, zero velocity detected

0, others
(3.24)

Each IMU sample is indicated with either one or zero markers representing

the current motion state. The minimum internal sampling strategy (Eq.

3.25) is utilised in this method to reduce the over-optimisation of dual-foot

data fusion.

tk � tLO < � (3.25)

where t is the sample timestamp conversion function,LO represents the
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last operation of the MCD method and� is the parameter of the timestamp

interval. The ow chart of the proposed MCD method is shown in Fig.3.15.

Figure 3.15: Process of MCD algorithm.

In MCD, the x- and y-axis data for pseudo-measurementsPM are utilised

in the EKF, whereas the z-axis data (height) are not considered in the

ultrasonic sensor scanning in the 2D plane, as follows:

PM (j )
k =

2

6
6
6
6
4

PM (j )
k;x

PM (j )
k;y

p(j )
k;z

3

7
7
7
7
5

(3.26)

where PM k indicates the calculated posteriori centroid distance of the

pseudo-measurement in the EKF andp(j )
k;z represents the original z-axis

height information in the INS. Finally, using these pseudo-measurements

in the Kalman �lter platform, the formulas are described as follows [156] :

K (j )
k = P (j )

k (Hp)T
h
HpP (j )

k (Hp)T + Rp

i � 1
(3.27)
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x̂(j )
k = x̂(j )

k + K (j )
k

h
PM (j )

k � Hpx̂(j )
k

i
(3.28)

Hp = [ I 3� 3 03� 3 03� 3 03� 3 03� 3] (3.29)

P (i )
k = [ I 15� 9 � K kHp] P (j )

k (3.30)

where K (j )
k denotes the Kalman gain andHp the observation transition

matrix with pseudo-measurement. I 3� 3 denotes the identity matrix and

03� 3 denotes the zero matrix. Rp denotes the noise-covariance matrix of

Hp.

Projection of CBoM for DTF

In this study, the dual-foot structure is de�ned as a rigid body to sim-

plify the tracking visualisation and transform the footpath to the user's

trajectory [166, 167]. The CBoM is calculated by merging the dual-foot

estimated position using the weight fusion [168] method:

pCOM = g
�
p(R) p(L )

�
= �p (R) + �p (L ) ; � + � = 1 (3.31)

wherepCOM 2 R3 indicates the position of the hypothetical CBoM of the

body of the sensor carrier.� and � are the weight parameters for the right-

and left-foot INS, respectively.

During the swing phase (Fig.3.14), the heading direction is in the sagit-

tal plane (Fig.3.16). The CBoM swings at the frontal plane of the body

during the alternating movement of the two legs during walking, which

can be de�ned as a pendulum model [170, 171]. The pendulum range can

represent the fusion weight, which is de�ned by a sine function [172{174].

The ZUPT clustering method used to calculate the weight is shown in Fig.

3.17, where ZUPT � j n
m denotes the ZUPT cluster containing continual

zero-speed samples (ZUPT = 1), m indicates the order number of ZUPT
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Figure 3.16: Determination of the CBoM [169].

clusters in all input samples, n indicates the order number in a speci�c

ZUPT cluster.

Figure 3.17: Calculation of ZUPT clustering.

Then, the weight of the DTF is de�ned as:

weight =

8
>>>>>>><

>>>>>>>:

0:5 + 0:25� sin
�

n
length (ZUP T � L n

m )

�
; ZUPT(L ) = 1

0:5 ; ZUPT(L ) � ZUPT(R) = 1

0:5 + 0:25� sin
�

n
length (ZUP T � R n

m )

�
; ZUPT(R) = 1

(3.32)
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Thus, the pCOM calculation according to Eq.3.31 would be de�ned as:

pCOM = weight � p(R) + (1 � weight) p(L ) (3.33)

The fused trajectory is then �ltered through a
�
1 � T s

2

�
mean �lter [175]

for small drifting in the motion integral calculation, as follows:

p̂COM;k =
2 �

P
pCOM;k

Ts
(3.34)

3.3.3 Ultrasonic Mapping

Polar projection mechanism

The coordinates of the ultrasonic mapping points are calculated based on

the step position and the pose estimated by the INS. The range direction

of the ultrasonic sensor is parallel to the x-axis of the IMU in each foot. To

project the 3D scanning onto the 2D XOY coordinate, a polar transform

method is described as follows [168, 176, 177]:

M
�

r (i )( j )
k

�
=

2

6
4

cos� cos'

cos� sin'

3

7
5 (3.35)

where� and ' denote the pitch and yaw angles in pose estimation, respec-

tively. The coordinates of the ultrasonic mapping pointUp(i )( j )
k under the

maximum covering principle are calculated as follows:

Up(i )( j )
k =

h
Ux(i )( j )

k Uy(i )( j )
k

i T
=

8
>>>>>>><

>>>>>>>:

h
p(j )

k + u(i )( j )
k diag(1; 1)M

�
r (i )( j )

k

�i T

; i; j = inner; L jjouter; R
h
p(j )

k � u(i )( j )
k diag(1; 1)M

�
r (i )( j )

k

�i T

; i; j = inner; R jjouter; L
(3.36)
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For the ultrasonic range measuring, it should satisfy the condition:

Rmin < u (i )( j )
k < R max (3.37)

whereRmin and Rmax are the ultrasonic sensors' minimum and maximum

available measurement ranges (Table 3.3), respectively. The inner ultra-

sonic mapping points should also be calculated at the initial swinging and

terminal swinging phrases (Fig.3.14) and satisfy theu(inner )( j )
k > � max con-

dition.

S-OGM calculation

Compared with the laser range �nder, the ultrasonic sensor has a lower

cost and wider detection angle, making it more practical for wearable ap-

plications [178]. In addition, ultrasonic sensors are stable under smoke- and

vapour-�lled environments with lower energy consumption among di�erent

range measurement methods [154, 178]. According to ultrasonic speci�ca-

tions, each ranging process is modelled as a rectangular zone (white arrow

in Fig. 3.18) in the occupancy grid map (OGM) [40] follows:

Figure 3.18: Schematic of ultrasonic S-OGM process with �ve footsteps.

The single grid cells of the map are categorised as empty (black) or irrele-

vant (gray) areas. The S-OGM algorithm is de�ned as:
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B
�

p(j )
k ; Up(i )( j )

k

�
(3.38)

whereB denotes the Bresenham algorithm [179],p(j )
k and Up(i )( j )

k indicate

the ultrasonic sensor placement position coinciding with the foot position

and position of the pixel at the clearing area boundary, respectively.

3.3.4 Experimental Setup

A pair of wearable sensor modules was designed for the data collection.

The proposed wearable module is shown in Fig. 3.19a and consists of a

MPU9250 IMU (see Table 3.3), two HC-SR04 ultrasonic sensors (see Table

3.2) and an ESP32 dual-core micro computing unit.

Table 3.2: Speci�cations of HC-SR04 ultrasonic sensor

Speci�cations Values
Operating Voltage DC 5V
Operating Current 15 mA

Operating Frequency 40 kHz
Range 2cm { 5m

Ranging Accuracy 3 mm
Measuring Angle 15 degrees

Trigger Input Signal 10 µS TTL Pulse
Sampling rate 15 Hz

The module was mounted on the front side of each shoe using a hook and

loop tape. The placement of ultrasonic sensors are improved based on the

original design from [168]. Two ultrasonic sensors are mounted in one shoe

for inner and outer side range measurement where the inner ultrasonic sen-

sor are able to make compensation for more accurate map generation. The

inner ultrasonic sensors are staggered and placed separately at the back

and front sides of the two feet to avoid potential ultrasound-emitting inter-

ference. The IMU was calibrated utilising an internal calibration module
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