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Abstract

Indoor positioning systems (IPS) have garnered increasing attention in the

field of positioning research in emergency services such as firefighting sce-

narios. The capability to deliver precise and comprehensible positioning

information for multiple firefighters in harsh environments is a promising

technology. It will effectively save their lives via timely and accurate loca-

tion information for evacuation and reinforcement. The sensor fusion-based

dead reckoning (DR) method is one of the typical techniques in IPS. Due

to its little reliance on layout knowledge and pre-installed positioning hard-

ware in the building, it is regarded as one of the most promising methods

for IPS in firefighting. Existing research on DR has not adequately ad-

dressed the challenges of positioning accuracy, surrounding reconstruction,

and multi-person positioning in firefighting scenarios. In order to address

these problems, this thesis explores advanced DR based multi-person local-

isation and mapping. The research work consists of five associated studies

that aim to answer the formulated research questions. The first three stud-

ies explore the novel approaches in gait analysis-based heading estimation,

dual foot synergistic step detection and dynamic minimum stride length

constraint-based positioning optimisation. The objective of these studies

is to improve the precision of positioning by optimising parameters in the

DR calculation process. The next study presents a geometry algorithm

that utilises a polar projection strategy to determine the coordinates of

map points and reconstruct the user’s surrounding map. The last study

explores an innovative approach for integrating multiple trajectories via

online magnetic fingerprint matching. By doing so, the position of each

individual is updated by combining fingerprint information. This thesis

conducts experiments to evaluate the performance of the systems proposed

in each study. Each experiment is tailored with specifically designed realis-

tic indoor scenarios, data collection hardware, and evaluation metrics. The

quantitative assessment results illustrate improved positioning accuracy in

comparison to conventional methods. The displayed trajectory and map

demonstrate accurate results that exhibit high consistency with the ground

truth.

Key Words: Indoor positioning system (IPS); Dead reckoning (DR); Gait

analysis; Sensor fusion; Kalman Filter; Multi-person localisation; Firefight-

ing Scenarios.
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Chapter 1

Introduction

1.1 Overview

Indoor positioning system (IPS) [2] is a promising technology which aims

to locate people where the widely used global navigation satellite system

(GNSS) [3] lacks precision or fails entirely, such as inside multistory build-

ings and underground locations. IPS exhibits significant application po-

tential in various scenarios involving industry [4], extended reality [5] and

emergency services [6] which has garnered considerable attention from the

research community.

IPS methods can be categorised into two groups: building dependent and

building independent techniques. The majority of building dependent IPS

requires hardware or pre-installation of hardware during the building con-

struction with the dedicated layout information acknowledged. These meth-

ods track the targeted people and objects by triangulation and trilater-

ation [7] using the measured geographic distance or angle between the

transmitters (within the building) and the receiver (placed on the mov-

ing platforms e.g. people and vehicles). Various wireless sensor network

(WSN) approaches using different radio frequency (RF) based measure-
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1.1. OVERVIEW

ment tools, including wireless local area network (WLAN) [8], Bluetooth

low energy (BLE) [9], ultra-wide band (UWB) [10], radio frequency iden-

tification (RFID) [11] and narrow band internet of things (Nb-IoT) [12].

Building independent IPS methods, however, do not require prior informa-

tion about the building or placing any hardware in the building. Typical

building independent IPS methods include simultaneous localisation and

mapping (SLAM) [13, 14] and dead reckoning (DR) approaches [15, 16].

SLAM based building independent methods use cameras [17], light de-

tection and ranging (Lidar) [18] and millimetre wave radio detection and

ranging (mmWave Radar) [19] for optical, laser and radio imaging, en-

abling the simultaneous indoor structure reconstruction or updating of a

map in an unfamiliar location while keeping track of it. In DR methods,

after determining the initial position via the calibration process, the cur-

rent position of the user can be iteratively calculated by knowing the last

calculated position and current measured kinematic parameters.

Environmental factors [20], user motion [21], and knowledge of the in-

door structure [22] pose serious challenges to the performance and relia-

bility of IPS. IPS utilised in indoor firefighting scenarios is a typical case

afore described. Firefighters often encounter dangerous missions of rescu-

ing trapped people from burning buildings [23]. The power outage and

high temperature in the burning building will impede the regular function-

ing of the transmitter nodes in WSN which poses significant challenges to

the WSN based approach for localisation [24]. Considering the character-

istics of the DR method, it has great advantages utilised in the firefighting

scenario [25]. Compared with building dependent methods, DR methods

work independently without external hardware pre-installed in the build-

ings, which reduces the setup time. This advantage enables firefighters to

2



1.1. OVERVIEW

rescue in any building with no WSN deployment installed. Compared with

SLAM which also belongs to building independent methods, DR methods

are less susceptible to environmental conditions where the imaging quality

of SLAM is easily affected by rapid motion, ionising radiation and weather

conditions [26]. Consequently, DR methods outperform SLAM based meth-

ods with usage flexibility. Benefiting from these particularities, DR meth-

ods are identified as the most promising approach for firefighting scenarios.

Figure 1.1: Schematic of DR calculation with three continual steps (No. i to
No. i+ 2).

DR based navigation method has been one of the major research focus of

IPS for over decades. The term DR is a process of computing the current

position of a moving object by using a last calculated position with the

incorporation of estimating step length, heading, and elapsed time [16] as

visualised in Fig. 1.1. Specifically, the DR methods comprise of two major

implementations: pedestrian dead reckoning (PDR) and inertial naviga-

tion system (INS) as visualised in Fig. 1.2. In PDR, the sampling rate

is followed by the frequency of the step rate. The heading value and step

length value for each detected step are the direct factors that affect the

positioning accuracy. Another implementation INS, however, updates the

3



1.1. OVERVIEW

positioning results following the sampling rate of the sensors which could

achieve a higher rate than PDR. An optimisation approach is adopted to re-

duce the positioning bias and cumulative error. Both PDR and INS require

accurate step detection for determining the optimal instant of positioning

and optimisation. The heading estimation accuracy of PDR, optimisation

performance of INS and precision of DR methods are the most significant

research objectives in this field. In improving these, the cumulative error of

DR would be decreased while the positioning accuracy at each time instant

is improved.

Figure 1.2: The relationship diagram of DR, PDR, and INS.

To narrow down the research objectives, this thesis focuses on the DR

method using inertia data. The inertial measurement unit (IMU) [27] is

one of the most commonly used sensors to measure inertia data. As il-

lustrated in Fig. 1.3 [21], there are many options for the IMU placement

for DR methods implementations. Specifically, foot-mount DR shows the

lowest average positioning error compared with others. To achieve better

positioning performance, DR methods with foot-mounted sensors for data

collection will be mainly focused on in this thesis.
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Figure 1.3: Average positioning error of DR methods with different sensor
placement [21].

In light of the prospective firefighting applications of the DR method, three

significant research gaps are identified. First, the firefighters’ gait type

changes due to the unpredictable and dangerous rescuing conditions, which

hampers the accuracy of positioning utilising classic DR methods that rely

on fixed thresholds [28] in motion estimation. Second, given the urgent

need to rescue people, firefighters do not have the time to familiarise them-

selves with the structure of buildings beforehand, thereby heightening the

likelihood of being disoriented. Being disoriented in such dangerous sce-

narios poses an immense peril that significantly jeopardises the safety of

firefighters [29]. Finally, firefighters typically employ a collaborative ap-

proach [30] including multiple individuals to enhance support and promote

collaboration among team members [31]. Existing literature indicates that

few complete and specific DR methods address the enhancement of posi-

tioning accuracy, the reconstruction of layout and multi-person positioning.
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Figure 1.4: An embedded sensor array platform holding 18 IMUs (9 on the top
side and 9 on the bottom side) [32].

Existing DR researches considered utilising sensor fusion methods to solve

some of the presented problems. Building sensor array [32] for accuracy

improvement is a typical solution. This design (refer to Fig. 1.4) enables

multiple associated inertia data collection at the same time. By doing this,

the measurement error over a short period is decreased. However, not only

does the sensor array measurement provide difficulty in data fusion and

global calibration because of the placement and the tiny differences in spec-

ifications of each sensor unit, but also causes implementation problems in

the heavy onboard data processing load and difficulty in data transmission.

Therefore, this design is impractical in real-world applications. Utilising

high-quality IMU such as Xsens inertial motion capture module [33] can

also achieve improved positioning accuracy. However, this module requires

expensive module prices with high computing resources for motion calcula-

tion, which is not affordable and practical in pervasive application scenarios

Other sensor fusion based methods combine data readings from different

sensors such as “IMU+UWB” [34], “IMU+WLAN” [35] and “IMU+BLE”
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[36]. Though these methods improve positioning accuracy and reduce error

cumulation, these improvements are beneficial from the WSN based posi-

tioning while not suitable to the assumed firefighting scenario that requires

applying IPS without sensor pre-installation in the building. This thesis

presents studies that aim to develop an advanced multi-person DR sys-

tem with improved accuracy and surrounding map reconstruction, which

is anticipated to fill the research gaps presented above, provide a practical

system suitable for firefighting scenarios and facilitate the development of

IPS for firefighters.

It is worth declaring that due to the challenges associated with environmen-

tal setups and the beyond-the-scope technology, such as wearable design,

waterproof and heat resistant housing and wireless data transmission in

real fire-rescuing scenarios, this thesis mainly focuses on enhancing the DR

method under assumed conditions in burning buildings, such as low visibil-

ity, WSN and SLAM unavailability and gait variety [37, 38]. Consequently,

the research questions and presented studies are carried out to fulfil the

demands within these limited factors. The techniques employed in each

study are also assessed under simulated experimental settings.

1.2 Research Questions

Having established the focus of applying the sensor fusion method in the

DR system to perform improved indoor multi-person DR localisation, the

scientific research questions presented in this thesis are listed below.

RQ1: What practical techniques can mitigate the cumulative errors in in-

ertial based DR methods?
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RQ2: What techniques can be utilised to reconstruct the layout of the

surroundings in the DR method?

RQ3: What techniques can DR methods adopt to effectively update posi-

tioning results via common attributes from multiple persons?

To investigate and answer the research questions presented above, this the-

sis conducts specific studies.

To answer RQ1, this thesis explores three novel studies for DR system

positioning accuracy improvement from different perspectives. Specifically,

Study 1 presents a gait analysis (GA) algorithm in heading estimation.

By doing this, the heading value in DR calculation is enhanced which

contributes to more accurate positioning results. The gait analysis-aided

pedestrian dead reckoning (GA-PDR) is implemented for algorithm eval-

uation. Study 2 focuses on the quality of step detection, another gait

characteristic in DR systems. A dual foot synergistic method is investi-

gated by analysing dual foot generalised likelihood ratio test (GLRT) [39]

sequences. The objective is to establish the optimal timing for transition-

ing to the zero velocity phase, resulting in enhanced positioning accuracy.

Study 3 concentrates on the limited performance of dual foot optimisation

when employing a fixed threshold in the dual foot stride length model. By

detecting minimum stride length parameters in each gait using ultrasonic

sensors, the dual foot optimisation performance is improved, which results

in improved positioning accuracy. These studies concentrate on the dis-

parity and distinctive characteristics of gait. The utilisation of adaptive

methods throughout various stages of DR calculation yields superior posi-

tioning results compared with conventional methods.

To answer RQ2, Study 4 explores the integration of the IMU and ultra-
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sonic sensors through geometry calculation. The idea of this method is in-

spired by the occupancy grid map [40] where the coordinates of map points

are calculated based on the estimated position and pose of the people with

the measured distance data. Similarly, Study 4 adopts this mechanism

by exploring a polar projection based geometry algorithm for coordinate

calculation. By doing this, the coordinates of map points are updated with

positioning updates. It is worth noticing that the Study 3 and Study 4

are conducted together which implements inertial odometry and mapping

(IOAM) system where the outcome of Study 3 contributes to the inertial

odometry and the one of Study 4 contributes to the mapping.

In the final exploration study, Study 5 explores the use of the magnetic

field at the calculated positioning spot for detecting the timing of posi-

tioning updating relying on either self or others’ original positional data.

The implemented system in this study is called a multi-person inertial nav-

igation system (Multi-INS). It is implemented through the sensor fusion

method between IMUs and magnetometers from individuals and others.

Multi-INS introduces a novel technique for calculating the trajectory of

several individuals. It utilises an online process of comparing magnetic

fingerprints (MF) to update the inertial state. Building upon an offline

localisation technique that relies on magnetic fields, a new online method

for organising magnetic field data is implemented to replace the current

offline determination strategy. In addition, it proposes a method for select-

ing a region of interest in target MF data to improve the performance of

MF matching by concentrating on the most relevant MF. Study 5 devel-

ops two positional update mechanisms based on MF: individual self-update

and multi-person cross-update which divides the position update into two

cases where the individual’s location is updated at certain reference points

by utilising target MF data from the individual or another participant. The
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calculation result of Study 5 is a single map which demonstrates updated

locations from multiple users in a shared canvas. This means every user

can identify the position of themselves and others in one fused map.

Table 1.1: Description of the Main Studies in the Thesis.

Research
Questions

Study Sensors Frameworks Methods

RQ1 1. GA-PDR IMU PDR
GA for heading

estimation drift constraint;

RQ1
2. Dual foot

synergistic method
IMUs INS

Dual foot synergistic method
in zero velocity detection;

RQ1
3. IOAM -

Inertial Odometry

IMUs;
ultrasonic sensors

(stride length measuring)
INS

Dynamic minimum
stride length

based constraint for dual foot
trajectory optimisation;

RQ2
4. IOAM -

Ultrasonic Mapping

IMUs;
ultrasonic sensors

(surrounding range finer)
INS

Polar projection
based map point modelling;

RQ3 5. Multi-INS
IMUs;

Magnetometers
INS

Online magnetic fingerprint
matching for multi-trajectory integration;

Within the majority of the work this thesis presents as shown in Table 1.1,

an advanced DR system built upon the existing DR frameworks is devel-

oped. Experimental results indicate that the proposed DR system outper-

forms the state-of-the-art in terms of positioning accuracy and practical

capabilities. The contributions this research work achieved in associated

sensor fusion algorithms would facilitate the research of DR based methods

and inspire new interests in IPS developments.

1.3 Thesis Outline

An overview of how the contents of this thesis is presented below.

Chapter2: literature Review The literature review chapter provides a

wide overview of typical approaches to IPS. This chapter provides a com-

prehensive description of the advantages and disadvantages of each method,
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highlighting the technical description for considering the DR method. The

limitations of the DR method using sensor fusion are also discussed.

Chapter 3: Methodology This chapter provides a detailed methodol-

ogy descriptions of presented from Study 1 to Study 5. Specifically, the

system overview, notation definition and derivation of formulas including

the detailed calculation process are comprehensively presented. In addi-

tion, this chapter provides a detailed description of the experimental setup

section including sensor specifications, experimental situations, participant

details and the design of the experiment, for evaluating the performance of

the methods presented above.

Chapter 4: Results and Discussion This chapter examines the results

of the proposed systems in terms of positioning and mapping, utilising error

evaluation metrics and visualisation. The subjective and objective views

are both considered while discussing the performance of the trajectory and

map.

Chapter 5: Conclusion In this chapter, a comprehensive summary of

contributions derived from the presented research is described. The lim-

itations of this research work are discussed thoroughly. And future work

section describes how the new ideas might be applied in the design, devel-

opment and evaluation of multi-person localisation research.

Appendix A provides a comprehensive list of the abbreviations presented

in this thesis. Appendix B presents a preliminary investigation of the

progress and mapping capabilities of INS. The content of Appendix B con-

sists of information extracted from a peer-reviewed study, which serves to

better elucidate the advancements made in the research.
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Chapter 2

Literature Review

This chapter presents the state-of-the-art in the research field of IPS. IPS

approaches are classified into two categories: building dependent and build-

ing independent. The limitations of applying WSN and SLAM technologies

in simulated environments are explored. Subsequently, this thesis presents

a thorough investigation of DR methods utilising sensor fusion techniques.

Figure 2.1: Classification of IPS Technologies.
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2.1 WSN based IPS

RF navigation systems are widely used for localisation, making them one of

the most popular methods in this field [41]. Wireless transmission protocols

employing distinct RF possess varying capacities in terms of transmission

range, resistance to interference and capacity to penetrate obstacles. WSN

[42] is a common building dependent approach of IPS, in which multiple

routers (referred to as nodes in WSN) communicate inside a given WSN

using a shared protocol to exchange data. The position of moving nodes

in a WSN is typically determined using the triangulation approach, as de-

scribed in the study by Kuriakose et al. [43]. Before the calculation, the

positions of static reference nodes are measured as prior information. Tri-

angulation is conducted to ascertain the location by creating triangles using

both the mobile nodes and the nodes with known positions. Typical RF

in WSN methods include WLAN [44], BLE [45], Zigbee [46], Nb-IoT [12],

UWB [10], 5G [47], RFID [48] which function positioning in different using

cases.

WSN based IPS methods hold well-developed technology that achieves high

accuracy and stability in ideal scenarios. However, WSN approaches need

to pre-install the transmitters or access tags before use. This operation usu-

ally has high labour cost which requires the initial mapping of the building

with optical calculations to find the best placement positions. This issue

makes the WSN method hard to cover all the buildings such as massive

residential buildings. Additionally, some WSN transmitters necessitate a

continuous power supply, which might be inconvenient in specific scenarios

e.g. firefighting where the power is cut.
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2.2 SLAM based IPS

SLAM has emerged as a highly promising option for indoor positioning in

service areas[49]. This technique utilises the detection of sequential fea-

tures to gather surrounding data and simultaneously determine the trajec-

tory and surrounding map. SLAM utilises a comprehensive system struc-

ture that involves extracting features, modelling geography, reconstructing

space and optimising the system to build a map and track people or ob-

jects. SLAM aims to tackle the mapping problem in the absence of any

prior knowledge about the environment. SLAM has found extensive appli-

cations in various fields, including the sweeping robot [50], autonomous ve-

hicles [51], augmented reality (AR) [52], minimally invasive surgery (MIS)

[53] and Unmanned Aerial Vehicle (UAV) [54].

Visual simultaneous localisation and mapping (vSLAM) [55] plays an im-

portant role in the SLAM area. Visual imaging from a digital camera

provides informative data in an ideal environment to estimate position

and mapping. However, limited by the characteristics of cameras, the vS-

LAM method is highly affected by dynamic changes in the environment

[26] where images with mass blur provide less valuable feature information.

Thermal-infrared SLAM [56] uses thermal infrared imaging from a thermo-

graphic camera to track the user and reconstruct the surrounding structure.

However, in firefighting scenarios, the temperature of the object’s surface

is dynamic and the flow and heat radiation in the environment adversely

affect the imaging quality and SLAM performance. Alternatively, Lidar-

based SLAM constructs the trajectory and surrounding layout [57] from

the pose graph and occupancy grid map via a 360-degree laser ranging

strategy. However, this method is vulnerable to interference from external

light sources and the measuring range is short. These disadvantages affect
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the reliability of Lidar SLAM in firefighting scenarios. Radar SLAM [58]

benefits from millimeter-wave radar ranging, having fewer environmental

conditions than visual cameras and Lidar. However, the enormous radar

node rendering and low measurement resolution limit its widespread usage.

In summary, in firefighting scenarios with harsh environmental conditions,

it is quite hard for SLAM to collect high quality data for tracking and

mapping. Also, in the cases where firefighters move fast, the motion blur

makes the SLAM system very difficult to calculate the accuracy position.

Therefore, the SLAM system is not suitable for the presented scenario and

it is consequently not considered in this thesis.

2.3 DR based IPS

DR methods analysis utilises the characteristics of body inertia to iter-

atively compute the individual position over time. Inertia data provides

information on the force vector and angular rate of an object, revealing

its current motion state. The IMU is a commonly used sensor for mea-

suring inertia data. This sensor utilises a MEMS construction to convert

the physical deformation of micromechanics into an electronic signal. An

IMU typically comprises an accelerometer and a gyroscope, which is used

to monitor 3-axis acceleration and 3-axis angular rate data. This section

will introduce the inertial DR based method with its application.

2.3.1 Development and Improvements of DR

Heading Estimation

The DR system employs data from IMUs to anticipate the trajectory of

user movements. This technique consists of three components: step detec-
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tion, step-length estimate and heading estimation [21]. PDR is a traditional

implementation of DR methods. The effectiveness of PDR relies heavily

on the precision of the heading estimation [59, 60]. An approach to de-

termine the heading involves utilising magnetometer data to compute the

user’s direction in relation to magnetic north [61]. Nevertheless, the calcu-

lation of magnetic heading is susceptible to distortion caused by irregular

magnetic fields due to external magnetic interferences [62]. Other tech-

niques for estimating headings using gyroscopic data have also been found

to be problematic, mostly because of significant biases and drift errors [63].

Several methodologies have been suggested for achieving reliable heading

predictions. Sensor filtering is a widely used method for combining data

from several sources in order to minimise estimation mistakes. Fan et al.

[61] introduced a novel approach that enhances the precision of heading es-

timation by integrating an adaptive KF with a complementary filter. Qiu

et al. [64] introduced a PDR technique that relies on inertial and magnetic

sensors. The algorithm utilises an EKF and a clustering-based method

for detecting stance phases to estimate heading. Ashkar et al. [65] con-

ducted an analysis on the performance of a fusion system that combines a

magnetometer and inertial sensor using unscented Kalman filters (UKFs),

EKFs and error-state EKFs (EEKFs). They demonstrated the efficacy of

UKFs and EEKFs in this context. Wu et al. [66] proposed a method that

utilises a KF and a maximum-likelihood-type estimator to detect outliers

and enhance the accuracy of heading estimation. Zhang et al. [67] intro-

duced a dual foot-range restriction to facilitate the calculation of adaptive

step length and correction of heading. While these sensor fusion methods

enhanced the precision of the heading estimation, gait errors arose due to

misalignment between the foot’s heading direction and the body’s heading

direction. Some studies have explored the use of machine learning tech-

niques to achieve precise estimations of heading with great accuracy. In
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their study, Wang et al. [68] introduced a convolutional neural network to

identify walking patterns and match magnetic finger trajectories for direc-

tion correction. Wang et al.[69] employed a support vector machine (SVM)

for motion identification and a decision tree method for reducing localisa-

tion error. In their study, Wu et al. [70] introduced an adaptive approach

that utilises human action to adjust the heading direction. An alterna-

tive optimisation strategy, based on non-steady-heading operations, was

developed to reduce the accumulation error in PDR. While the findings

of these studies enhanced the precision of heading calculations, machine

learning-based methods are not feasible due to the time-sensitive nature of

fire rescue scenarios.

In addition to employing filtering and machine learning techniques, certain

research has included RF and RSSI-related technologies to enhance the ac-

curacy of heading calculations. Zhang et al. [67] introduced a technique for

estimating headings using anchor points that has predetermined position

coordinates. The anchor points were employed for the initial calibration

and subsequent correction of the heading at corners. Tateno et al. [71]

introduced a technique that utilised WLAN signals and a RSSI algorithm

to enhance the accuracy of heading estimation. Chen et al. [72] introduced

a method that uses UWB technology to address the issue of error accu-

mulation in PDR. The precision of the direction was enhanced by the use

of external sensors, although the practicality of deploying these beacons is

hindered in smoke-filled buildings during fire rescue operations.

To mitigate the adverse consequences of heading drift, scholars have sug-

gested employing the corridor direction within buildings as a limit on the

trajectory. The heading direction will be adjusted to the nearest dom-

inating direction established in advance to minimise the mistake caused
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by drift in the IMU data. Borenstein and Ojeda [73] proposed a heuris-

tic drift elimination (HDE) method to rectify bias drift and other gradual

errors originating from gyroscopes and accelerometers. Nevertheless, the

precision of the method diminished after a certain duration of prolonged

walking due to excessive correction. To address the issue of misalignment of

HDE in the dominant direction, Jiménez et al. [74] presented an enhanced

version of HDE known as iHDE (improved HDE). The iHDE utilises move-

ment analysis and a confidence estimator to minimise heading mistakes.

Nevertheless, this approach is not feasible due to the prevalent usage of

predetermined thresholds for movement analysis. Muhammad et al. [75]

introduced a HDE technique that incorporates a zero-velocity update turn

detector and heading correction for pelvic rotation. While the direction

drifting inaccuracy was mitigated, some walking patterns, including those

that involve turning around (a frequently employed firefighting move to

minimise risk by retracing a previously investigated route), were not taken

into account when utilising this approach. Wu et al. [76] employed a heuris-

tic approach. A method for correcting heading using heading reduction and

a cardinal heading-aided inertial navigation technique was proposed. How-

ever, the implementation of this strategy was limited in emergent rescue

scenarios due to the requirement of a complicated multilayer perception

network and an EKF for pre-processing.

Step Detection

Foot-mounted inertial navigation system (FT-INS) is another implementa-

tion of DR methods [77] to track users’ walking movement. Different from

PDR which updates position for each step, FT-INS analyses foot motion

characteristics from continual inertia samples which achieve higher posi-

tioning resolution. Compared to widely used passive indoor localisation

methods [78–82], INS offers superior performance as it calculates trajec-
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tories without relying on external transmission nodes or initialisation op-

erations. Dual foot INS (DF-INS) is an enhanced version that leverages

data from both feet for more robust and accurate localisation [29, 83]. The

gait cycle in DF-INS is identified through zero-velocity detection [84], dis-

tinguishing the stance and swing phases [85]. During the stance phase,

INS optimises the error in users’ states using zero-velocity update and dual

foot fusion calculations. The motion states, including velocity, pose and

location, are then determined during the swing phase. However, accurately

classifying these phases is challenging due to variations and dynamics in

user motion.

Conventional methods like Acceleration-Moving Variance (AMV) [86], Ac-

celeration Magnitude (AM) [87] and Angular Rate Energy (ARE) [88] heav-

ily rely on raw inertia data, which leads to issues such as cumulative error

and motion dynamics. To overcome these limitations, Skog et al. [89]

proposed an improved GLRT method that incorporates prior knowledge of

AMV, AM and ARE. This method effectively mitigates false detection by

integrating acceleration and gyroscope data to calculate the likelihood of

the stance and swing phases. However, the existing zero-velocity detection

still relies on a fixed threshold, limiting its adaptability to different users.

Positioning Optimisation

The positioning accuracy of the inertial based DR is susceptible to drift due

to the short-term drift of the IMU [90]. Various methodologies have been

employed to mitigate deviations or prolong the standard measurement du-

ration. The KF is widely regarded as one of the most common methods in

this field [91]. The KF is widely utilised in various technological domains

such as navigation, vehicle control and system optimisation. The funda-
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mental premise of the KF is to construct a predictive model of the linear

system state using the system’s dynamic model and measurements from ex-

ternal sensors. The prediction model serves as an optimal state estimator

with the minimal mean-square-error (MSE) [92]. In general, the standard

KF method consists of two phases: prediction and update. During the

prediction phase, the object state is updated by taking into account signif-

icant state transitions, such as the physical laws governing the velocity of

automobiles or the walking pattern of individuals. During the prediction

phase, an external sensor will be utilised to observe the condition of the

object. The KF is employed to determine the impact of both major con-

cerns and external observation on state dynamics by calculating weights.

This is necessary due to the varying measurement covariance, which leads

to uncertain state estimation. Following the KF calculation, the two mea-

surements are combined using a tight coupling approach.

Because of the nonlinearity of the parameters and the instability of the me-

chanical specifications of the IMU, the linear KF is incapable of addressing

the estimate of nonlinear parameters. The EKF is a more sophisticated

iteration of the KF that enables state estimation on a nonlinear system

[93]. In the context of single-foot mounted INS calculation using EKF,

the objective is to periodically update the IMU state by incorporating ex-

ternal pseudo-measurements derived from specific features. These features

include zero speed during the stance phase using ZUPT [94], zero angular

rate during the stance phase using ZARU [95] and other manually con-

figured methods [96]. The dual foot motion in FT-INS is represented by

the sphere [97] and ellipsoid geometries [98]. The threshold for this rep-

resentation can be either set, as proposed by Prateek [99], or dynamically

measured using the range finder method, as proposed by Wu [29]. This

approach combines the dual foot INS results, resulting in enhanced posi-
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tioning accuracy and error refinement performance. This thesis exclusively

focuses on studies about DF-INS. Therefore, this study does not cover

certain KF platforms that incorporate sensor fusion and navigation opti-

misation techniques, such as the UKF [100], adaptive Kalman filter (AKF)

[101] and multiplicative extended Kalman filter (MEKF) [102].

“Openshoe” [103, 104] is one of the embedded DF-INS utilising ZUPT in its

implementation. Norrdine A et al.[105] utilised a magnetometer to update

the altitude estimation by KF. Li et al.[106] proposed a UKF for initial

alignment and fuse ZUPT, ZARU and magnetometer readings to correct

the estimation error. However, the tracking performance of these methods

with a single IMU or attitude and heading reference system (AHRS) sensor

used is easily affected by mechanical and measurement errors of electronic

components.

Other studies research on dual foot mounted INS for positioning optimi-

sation. Prateek et al. [99] proposed a sphere limit algorithm built upon

the “Openshoe” model to merge the two-foot INS data. Zhao et al. [97]

proposed a dual gait analysis approach to optimise step length estima-

tion. Wang et al. [107] proposed an adaptive inequality constraint in KF

for sensor fusion of dual foot. A. A. Abdallah et al. [108] presented a

Deep Neural Network (DNN) based synthetic aperture navigation (SAN)

to suppress multipath error of ZUPT based INS platform. These dual foot-

mounted DR systems improve the tracking performance, but they take the

surrounding structure as a priori by default to navigate people which may

be unavailable in some special cases like indoor firefighting and cave ex-

ploration. A single trajectory without surrounding geography information

loses the semantics to understand.
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In addition, dual-foot sensor data fusion lacks trajectory fusion, which

renders these systems unsuitable for real-world applications. The mass-

separated trajectories from the left and right feet increase the difficulty of

position estimation. Thus, one body-level trajectory creates more differ-

ences in the context of the IPS. However, the INS area has no suitable

solution for fusing the dual trajectory. The centre body of mass (CBoM)

[109] is a commonly used model that determines body movement based on

biomechanical concepts [110]. However, most CBoM methods utilise force

platforms [111], visual motion capture systems [112] and magneto-inertial

measurement units (MIMUs) based motion analysis approaches [113] which

are impractical for long-term localisation.

2.3.2 Multi-person Localisation

Apart from the limited accuracy of DR methods, multi-person localisa-

tion is a challenging problem in the field of DR, enabling the simultaneous

localisation of multiple users. Traditional methods merely extend individ-

ual localisation functionality. Zhang et al. [114] proposed a WLAN-based

multi-person localisation system using intelligent reflecting surfaces (IRS).

Qian et al. [115] implemented a multi-tracking platform based on path-

loss-based adaptive joint probabilistic data association (PLA-JPDA) us-

ing impulse-radio UWB (IR-UWB) radar. These methods utilise different

wireless transmission protocols and tracking algorithms to localise multi-

ple individuals. However, such passive localisation methods are still con-

strained by the initial setup of transmission devices and prior knowledge of

indoor infrastructures, limiting their practicality in real-world applications.

Other research explores device-free methods for multi-person localisation,

allowing localisation without individuals carrying devices. These methods
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simplify tracking operations and expand application scenarios. Wu et al.

[116] adopted millimetre wave radio (MWR) for multi-person localisation.

A multi-target detection approach was proposed to estimate the positions

of individuals and generate trajectories based on continuous tracking op-

erations. This method offers high accuracy in small spaces but is limited

in normal indoor buildings due to the maximum range of MWR. Yang et

al. [117] introduced a multi-person localisation method using pyroelectric

infrared (PIR) sensors. A deep learning model with domain knowledge was

applied to count individuals and estimate their locations. However, PIR

sensors require line-of-sight for sensing, limiting their practicality in indoor

scenarios with frequent structural obstructions.

Landmark Recognition Method

The accuracy of INS was prone to accumulating errors from dead reckoning

calculations [118]. While ZUPT and ZARU periodically updated the INS

state and suppressed estimation errors [119], spatial errors in the trajectory

accumulated over time. Several methods have been developed to mitigate

these errors by periodically updating the system state based on specific

reference landmark matching. A successful match of landmarks indicated

the detection of a familiar location for loop closure. Following a loop clo-

sure operation, the estimated position was corrected to a previously visited

location, where the cumulative error was minimised [120].

Landmarks were typically categorised as artificial or natural. Artificial

landmarks included self-defined [120, 121] or pre-determined [11, 122] fea-

tures with regular or distinctive environmental and spatial characteristics,

such as elevators, doors, columns, stairs, and other predefined locations.

Determining these landmarks usually required an initial survey to obtain
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their positional information, and the matching process often required man-

ual activation [123], increasing the complexity and risk. Conversely, nat-

ural landmarks consisted of inherent environmental factors with regular

dynamics or long-term stability, such as light density [124, 125] and mag-

netic field distribution [126, 127]. The characteristics of natural landmarks

made them more convenient for online usage, enhancing timeliness [127].

Compared to artificial landmarks, natural landmarks were easier to employ

in various environments but might have required external landmark feature

detection and calibration operations. Among natural landmarks, magnetic

fields were particularly suitable for multi-person INS due to their long-term

and short-term stability. Additionally, the directional nature of magnetic

values increased the uniqueness of MFs, enhancing their performance in

loop closure.

MF Mapping and Matching

Geomagnetism and indoor infrastructure influence the magnetic field dis-

tribution within a building [128]. Magnetic fields exhibit high stability in

the presence of long-term and dynamic environmental factors [129, 130],

making them suitable for indoor positioning through magnetic field anal-

ysis [131]. Magnetic field data typically consists of a 3-D vector obtained

from a 3-axis magnetometer. The magnetic field intensity (MFI) [132] is

often normalised based on the 3-D magnetic vector. Both the 3-D magnetic

vector and MFI contribute to the determination of MFs. Many approaches

collect spatial fingerprints to create fingerprint maps using space projec-

tion [133] and interpolation [134]. Fingerprint maps can serve as references

for indoor localisation and they can be categorised into offline and online

modes.
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Offline MF matching involves the separation of magnetic field collection and

matching operations in a temporal manner [135, 136]. Existing research pri-

marily collects and constructs MF maps prior to localisation. These maps

serve as prior knowledge for the localisation process. In contrast, online

fingerprinting combines fingerprint detection and location calculation si-

multaneously [126]. This approach requires no prior initialisation before

position calculation, enhancing efficiency in scenarios requiring high time-

liness and in unknown environments. However, online fingerprint maps

typically have lower resolution than offline maps, as they lack signal post-

processing and enhancement operations.

Dynamic time wrapping (DTW) [137] is a typical method for signal pattern

matching which is suitable for applying in MF matching. DTW compresses

and stretches two input sequences to align them, calculating the DTW value

based on the distance between these aligned sequences. This value repre-

sents the similarity between the two sequences. Magnetic field sequences

differ from audio signals processed using DTW, as magnetic sequences in-

clude amplitude and direction, increasing the complexity of calculations.

Researchers have proposed various techniques to address these challenges.

Wang et al. [138] introduced a backwards magnetic trajectory detection

method that broadens the range of applications for MF matching. Chen

et al. [139] presented a magnetic sequence segmentation algorithm and a

magnetic feature classification method to address distortion and shifting

issues in original MF sequences. Chen et al. [140] proposed a 3-D DTW

(3DDTW) method to enhance magnetic sequence matching accuracy by

extending the dimensionality of the matching sequences. Guo et al. [141]

introduced a semantic trajectory segmentation and hybrid DTW matching

method to improve magnetic sequence matching in spatial contexts.
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2.4 Summary

Table 2.1: Summary of DR Related Study

Research Topic Sub-topic Typical Approaches Limitations References

Development and
improvement of
DR method

Heading
Estimation

Calculate and optimise
heading from magnetic

and inertia measurements

Accuracy is affected
by magnetic interference

[61, 64–67]

Walking pattern
recognition for

heading correction

Time-consuming
model training

[68–70]

UWB and WLAN for heading
estimation enhancement

External device
installation, not convenient

[67, 71, 72]

Make assumption
for corridors’ direction

and eliminate
drift accordingly

Walking patterns
are not considered

[73–76]

Step
Detection

AMV, AM, ARE, and GLRT

GLRT utilises
a fixed threshold.
There is no dual

foot synergistic method

[84–89]

Positioning
Optimisation

ZUPT, ZARU;
EKF, UKF, AKF, MEKF.

KF requires accurate
parameter for fusion
and optimisation

[93–95, 100–102]

Fuse dual foot motion
for tracking using sphere
and ellipsoid constrains.

The stride length
constraint is based
on fixed threshold

[97, 98, 107, 108]

Multi-person
Localisation

Existing Multi-person
localisation

WLAN, UWB,
MWR, and PIR

External device
installation, not convenient

[114–117]

Landmark Recognition

lifts, doors,
columns, stairs,
other specified
locations and

pre-determined marks

Hard to measure
the coordinates;
need manually

recording

[142]

Intensity of light;
magnetic fields

Need to encode the
magnetic fields data

[124–127]

MF Mapping
and Matching

Magnetic field intensity
transformation; DTW

No online
magnetic fingerprint

for multi-
trajectory fusion

[128–141]

This chapter provides a comprehensive discussion of the state-of-the-art

IPS methods. The advantages and disadvantages of WSN, SLAM and DR

methods are introduced. It is worth noticing that in emergency scenar-

ios such as firefighting, DR methods present better performance for de-

ployment due to their minimal hardware pre-installation requirements and

strong resilience to interference from environmental and human factors.

Though DR methods exhibit promising potential, their limitations can not

be overlooked as shown in Table 2.1. Existing research proposes many

sensor fusion approaches to improve positioning accuracy by reducing the

IMU drifting issues. However, few studies considered gait analysis to re-

duce cumulative error. In addition, the lack of mapping and multi-person
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localisation limits its application opportunity in emergency services.

To overcome the limitations presented above, the research work of this the-

sis conducts specific studies to answer three research questions presented

in Chapter 1. Study 1, Study 2 and Study 3 investigate different gait

analysis techniques in DR systems to mitigate heading estimation bias, at-

tain more precise step recognition and accomplish correct dual foot trajec-

tory optimisation, respectively. Study 4 researches a DR based mapping

approach to reconstruct the surroundings together with positioning calcu-

lation. Finally, the implementation of online magnetic fingerprint based

Multi-INS is explored by Study 5 which presents a novel approach for

multiple person’s trajectory integrations. The comprehensive descriptions

of these studies are presented in the following chapters.
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Chapter 3

Methodology

This chapter introduces five studies throughout the course of PhD study as

shown in Fig. 3.1, where the first three studies focus on the accuracy of the

DR method, Study 4 aims to reconstruct the surrounding map and Study

5 explores the multi-person positioning method. To control variables such

as human and environmental factors in each study performance evaluation,

this chapter also introduces the specific experimental setup for each study.

Figure 3.1: The Overview structure of the studies presented in this thesis.

It is worth declaring that all experiments adhered to ethical guidelines and

were approved by the university’s research ethics committee. Participants

received information sheets and signed consent forms before the commence-
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ment of the experiments. They were informed of their right to terminate

their participation at any time if they so requested.

3.1 GA-PDR

To address inaccurate heading estimation impacted by the walking patterns

of different users, Study 1 proposes a gait analysis–aided PDR (GA-PDR)

system based on the principle of HDE for locating users in smoke-filled en-

vironments by analysing an individual’s gait. A motion sensor is placed on

protective footwear during data collection. The gait analysis (GA) is pre-

sented in two parts using a gait detection (GD) algorithm for step pattern

determination and a redundant turn elimination (RTE) method for cor-

recting misclassified step patterns. The results indicate the effectiveness

of GA-PDR in the gait adaptation for different users and accuracy within

both ideal and smoke-filled environments.

Typical DR method PDR [21, 143] is a popular technique for computing a

pedestrian’s position by measuring their gait information, which includes

step detection, step length and heading direction. This technique can over-

come the limitations of vision-based methods, in which gait measurements

are less frequently affected by environmental factors e.g. smoke. The per-

formance of PDR can be affected by several factors, including the drifting

problem in the case of motion sensors [144] and distinct individual gait [66].

Their stable wireless transmission and efficient computation are more prac-

tical in emergencies e.g., fire rescuing. The walking pattern of firefighters

is different from that of a typical civilian. Firefighters will typically walk

with their bodies leaning forward on the ground and at a slower pace than

a typical civilian due to the low visibility of smoke-filled environments and
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the heavy equipment they carry. Therefore, it is important to consider non-

standard walking types when studying and developing solutions for various

users, such as firefighters.

3.1.1 System Overview

One general notation model of PDR footprint is presented for problem

description. Fig. 3.2 demonstrates the impact of this difference in walk-

ing style on PDR performance. The included angle, i.e., ∆Ψ, between

the actual walking direction, i.e., Ψgt and the footing direction, i.e., Ψfoot,

is dynamic within a consecutive gait cycle. The preliminary work [145]

showed that PDR heading estimation, when not considering gait, can be

inaccurate. The proposed GA-PDR system is presented in Fig. 3.3. The

Figure 3.2: A schematic clamping angle is shown between the real direction,
i.e., Ψgt and the heading angle of the foot.

normalised acceleration, anorm,raw), angular velocity, ωz,raw and unwrapped

heading angle yaw, Ψraw information from the IMU data was first passed

through a low-pass filter to eliminate high-frequency noise. Filtered accel-

eration, anorm, was then applied to detect steps [146] and to estimate the

step-length [147]. The heading, estimated using GA, comprised a sequence

of processes, GD and RTE. GD detected the peaks and valleys of ωz with

the assistance of the deviance of Ψ to determine the step pattern (SP).

30



3.1. GA-PDR

The RTE corrected the SP based on the time-domain analysis for Ψ to re-

duce the bias caused by redundant small turns during a complete physical

turn. Finally, the heading direction of each step, i.e., Ψ
′
, was computed

according to the corrected SP. The position of each step was calculated by

a PDR formula based on the step detection, step length (L) and Ψ
′
. The

calculated step points were connected along the timestamp to generate a

trajectory which was projected to the (x,y)-Cartesian coordinate system.

The details of the GA method will be discussed further in the following

sections.

Figure 3.3: A system overview of GA-PDR with GA comprising GD and RTE
for heading estimation.

3.1.2 Gait Detection (GD)

GD is the initial stage of GA and determines the SP candidates. This

study assumed that the rooms and corridors in a building were structured

according to the research proposed by [73], where the movements of a

user mainly comprise four dominant directions, i.e., heading forward, left

and right, with 90-degree intervals. The SPs associated with the directions

defined in this study are 90-degree turn-left and turn-right 180-degree turn-

around from the left and from the right and no turn (forward heading). To

identify the SP, first, the raw angular velocity of the z-axis, i.e., ωz,raw

and Ψraw data are smoothed using a low-pass filter to reduce the noise

generated from the sensors and electronic circuits. An angle unwrapping

method is also introduced to maintain the continuity of the angle signal as

follows:
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ωz = LP (ωz,raw, tω) (3.1)

ψ = UW(LP (ψraw,tyaw)) (3.2)

where LP is a low-pass Butterworth filter [148] with a fixed minimum height

threshold, i.e., tωand tΨ for ωz,raw and Ψz,raw, respectively; UW (unwrap-

ping) [149] is a method for solving the angular shifting problem at a 0-

degree to 360-degree junction to guarantee the signal continuity as follows:

psii:m =

ψi:m+2π, |ψi − ψi+1| > π

ψi:m, otherwise
(3.3)

where i is the index of the signal sample and ψi:m is the signal segment

indexed from the current instant i to the total length (m) of this signal.

Second, the turn action has a significantly higher angular rate than that of

normal forward motion which shows a pulse in the ωz signal. These pulses,

which have the highest absolute value compared with their neighbouring

pulses, could potentially be detected as a turn. Peak and valley detectors

are utilised to define these turns from the left and right sides, respectively.

peakω,L =

1, ωz,k−1 < ωz,k ωz,k > ωz,k+1 ∆ω,L > thfs |ωz| > thω,L

0, otherwise

(3.4)

valleyω,R =

1, ωz,k−1 > ωz,k ωz,k < ωz,k+1 ∆ω,R > thfs |ωz| > thω,R

0, otherwise

(3.5)
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In the above equations, k is the index number of each sample, ∆ is the

required minimum horizontal distance between neighbouring peaks or val-

leys, thfs is the fixed threshold for ∆ω,L and ∆ω,R and thω,L and thω,R are

the absolute value thresholds for peak and valley detection, respectively.

Then, Pi is utilised to calculate the variation in Ψ between two continu-

ous steps to distinguish an invalid turn, a 90-degree turn and a 180-degree

turn-around as follows:

Pi = std
(
ψT (i) : ψT (i+1)

)
(3.6)

where T is a function used to convert the step index number into a times-

tamp. Finally, the value of the SP is defined, based on (3.7). Each step is

tagged with SPi to enable heading estimation. The SP with a value greater

than 0 is labelled a “positive SP,” which indicates that the corresponding

step is a turning action, as shown below.

Pi =



1, ∃T (Peakω,L) ∈ [T (i), T (i+ 1)]Pi ∈ [LT,HT ]

2, ∃T (V alleyω,R) ∈ [T (i), T (i+ 1)]Pi ∈ [LT,HT ]

3, ∃T (Peakω,L) ∈ [T (i), T (i+ 1)]Pi > HT

4, ∃T (V alleyω,R) ∈ [T (i), T (i+ 1)]Pi > HT

0, otherwise

(3.7)

where the SPi values of 1, 2, 3, 4 and 0 represent a 90-degree turn-left

and turn-right, a 180-degree turn-around from the left and the right and

no turn (forward motion), respectively. Moreover, LT and HT are the low

threshold and high threshold for the Pi turning judgment. A Pi lower than

the LT value indicates no turning; a Pi greater than the LT value but less

than the HT indicates a potential 90-degree turn, while a Pi greater than

the HT indicates a potential 180-degree turn.
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As shown in (3.8), the heading estimation, Ψ
′
i, for each step can be calcu-

lated based on SPi, as follows:

ψi
′
=



ψi−1
′
, SPi = 0∣∣∣(ψi−1

′
+ 90

)
%360

∣∣∣ , SPi = 1∣∣∣(ψi−1
′ − 90

)
%360

∣∣∣ , SPi = 2∣∣∣(ψi−1
′
+ 180

)
%360

∣∣∣ , SPi = 3∣∣∣(ψi−1
′ − 180

)
%360

∣∣∣ , SPi = 4

(3.8)

3.1.3 Redundant Turn Elimination (RTE)

Commonly, a complete turning action requires multiple continuous small

turns, which causes one turn with multiple positive SPs via GD. An exam-

ple of this problem is shown in Fig. 3.4.

Figure 3.4: An experiment segment in which a redundant turn problem oc-
curred.

The SPi calculated by GD is denoted as the peaks and valleys plotted in

the angular velocity series that are demonstrated in Fig. 3.4, where the

green lines serve as a sample of the walking trajectory. Each turn labelled

by a red circle with a lowercase letter is associated with the red box and

corresponding lowercase letter in the angular velocity plot. Left-turning

can be seen at the a and c positions, which are associated with peaks a and
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c, respectively, in the angular velocity data series. Similarly, right-turning

can be identified at position b with the associated valley b from the data

series. However, the left-turning located at position c is associated with

multiple peaks, i.e., c1 and c2; the 180-degree turning located at position d

is associated with multiple valleys, i.e., d1 and d2, during continued steps.

A single turn with multiple peaks or valleys interferes with the normal

heading estimation. To address this problem, the RTE method can be

utilised to verify these redundant SP s.

Figure 3.5: The flowchart of RTE method.

Fig. 3.5 illustrates the flowchart of the RTE method. The algorithm inputs

the GA-PDR data array, which includes i, Ψ and SPi derived from the GD

and outputs the corrected SPi. First, RTE detects the consecutive steps

with positive SP s and defines these step segments as step groups. Second,

it calculates the absolute heading difference between the starting step and

the ending step in each group. Finally, the method updates the SP s of the

steps in the step groups according to the heading value difference within

groups. Thus, one turn including multiple steps with positive SP s will be

verified to determine the actual SP of each step. Multiple potential turns

computed by GD at one corner will be eliminated into a single turn that

matches the real cases.

3.1.4 Experimental Setup

To evaluate the GA-PDR performance, the experiment preparation section

introduces the hardware setup and layout of the experimental scenario.
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Table 3.1: The IMU (BNO055) Parameters

Parameter Value

Sampling rate 100 Hz
Acceleration 3-axis ± 4 g
Gyroscope 3-axis ± 2000 dps
Orientation, Yaw 0°–360°

The proposed GA-PDR comprises a BNO055 IMU and a Seeeduino XIAO

micro-computing unit, as shown in Fig. 3.6. The IMU was calibrated util-

ising an internal calibration module in hardware. The sensor components

were assembled and placed on the upper side of a firefighter’s protective

boot and the sensor data were transmitted to a terminal via long-range

radio communication (Lora). The data analysis was performed using a

desktop terminal equipped with Windows 10, an Intel(R) Core (TM) I5-

8250U @1.60G Hz processor and 8 GB RAM. Table 3.1 summarises the

specifications of the IMU sensor that was used in this study. The raw

yaw readings of this IMU were filtered through the inner calculator [150]

to reduce drifts. The update rate of GA-PDR was 100Hz, following the

sampling rate of IMU.

Figure 3.6: The design and hardware placing of the GA-PDR data collector.
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(a)

(b)

Figure 3.7: The schematics of the experimental site: (a) Layout information
and (b) photo of smoky scenario.

The experiments were examined inside a building comprising multiple struc-

tured rooms on a single floor. A schematic of the indoor structure used for

the experiment is shown in Fig. 3.7a, which comprised 4 rooms of similar

size. The size of the rooms was measured with a laser range finder; rooms

1, 2, 3 and 4 were 24, 21.64, 24 and 24 m2, respectively.

Two male firefighters voluntarily participated in the study for data collec-

tion. Firefighter 1 (173 cm tall and weighing 82 kg) was instructed to com-
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plete the walking trajectory as shown in Fig. 3.8a (Scenario 1). Firefighter

2 (180 cm tall and weighing 85 kg) was asked to complete two scenarios (see

Figs. 3.8b and 3.8c) in a smoke-filled environment with a visibility range

below 1 m, as shown in Fig. 3.7b, the smoke was produced by a smoke gen-

erator. All the walking plans were made under the guidance of professional

firefighting teams which consist of all the walking patterns: forward, left-

and right-turn and around-turn from left or right-side movements referred

to HDE. There was no restriction on the walking pattern that participants

could adopt. Every experiment was conducted three times in order to avoid

subjective issues from human factors.

3.2 Dual Foot Synergistic Method

Dual foot INS (DF-INS) is an enhanced version that leverages data from

both feet for more robust and accurate localisation [29, 83]. Achieving ac-

curate zero-velocity detection is crucial for optimal performance in zero-

velocity updating and trajectory calculation in DF-INS. However, con-

ventional techniques rely on fixed thresholds to identify the zero-velocity

(stance) phase, which is not suitable for dynamic scenarios and diverse

users. Moreover, the step detection of DF-INS regards two-foot as sepa-

rated systems where there was no synergistic pattern recognition considered

in dual foot motion analysis in DF-INS. This design will decrease the ac-

curacy of DF-INS when the dual foot gait cycle is irregular. To address

this problem, Study 2 introduces a dual foot synergistic method to deter-

mine dynamic thresholds for zero-velocity detection in a two-foot system.

Initially, the GLRT sequences from both feet are smoothed using a moving

average filter. The points of equality within these sequences are then iden-

tified as transition points between the stance phase and the swing phase.
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(a)

(b)

(c)

Figure 3.8: Walking plan routes in ideal and smoky environments: (a) a com-
plicated trajectory and (b) a moderate (c) a turning around–oriented trajectory
in smoke-filled environments.
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3.2.1 Dual Foot GLRT (DF-GLRT)

In the context of DF-INS, the sensor measurements captured by a dual foot

mounted IMU system can be denoted as ys,k ∈ R6, as demonstrated in Eq.

3.9,

ys,k =

yas,k
yωs,k

 , s ∈ [L,R] (3.9)

where yas,k signifies the three-axis acceleration vector and yωs,k represents

the three-axis gyroscope vector in a three-dimensional Cartesian coordi-

nate system at timestamp k, as well as s denotes the index of the IMU

placed on the left (L) or right (R) foot.

In order to assess the likelihood of the measurement sequence zs,n (see

Eq. 3.10) being stationary, a moving detection window with a size of N

is employed. Within the context of dual foot zero-velocity detection, two

hypotheses, Hs,0 and Hs,1, are formulated, as expressed in Eq. 3.11.

zs,n ≜

{
ys,k

}n+N−1

k=n

(3.10)

Hs,0 : ThefootmountedIMU s is in a moving state.

Hs,1 : ThefootmountedIMU s is in a stationary state.

(3.11)

The GLRT method [89] is employed to compute the probability rate of

the hypotheses Ls,G which is essential for determining the states of zs,n, as

indicated in Eq. 3.12,
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Ls,G =
p(zs,n; θ

1,Hs,1)

p(zs,n; θ0,Hs,0)
> γ (3.12)

where p(·) represents the probability density function (PDF) [151], θ0 and

θ1 denote the maximum likelihood estimates (MLE) [152] of the unknown

parameters in the IMU system for Hs,0 and Hs,1 and γ is a fixed threshold

value used to discern between the moving and stationary states.

To overcome the computational challenges arising from the logarithmic

nature of Eq. 3.12, the variable Ls,G is redefined as T (zs,n) in Eq. 3.13,

T (zs,n) = − 2

N
ln(Ls,G)

=
1

N

∑
k∈Ωn

 1

σ2
a

∥∥∥∥∥yas,k − g
ȳas,n∥∥∥∥∥ȳas,n

∥∥∥∥∥
∥∥∥∥∥
2

+
1

σ2
ω

∥∥∥∥yωs,k∥∥∥∥2
 < γ

′
(3.13)

where Ωn = τ ∈ N, n ≤ τ < N − 1 represents a moving window with a size

of N , γ
′
= − 2

N
ln γ is a fixed threshold in logarithmic form, g represents

the local gravity acceleration parameter, ȳas,n denotes the average value

of yas,k, σa and σω indicate the standard deviations of the accelerometer

and gyroscope measurement noises respectively. Zero-velocity detection is

computed independently for each foot.

3.2.2 Dual Foot Synergistic Method

In order to improve the computational smoothness of the sequence T (zs,n)

in Eq. 3.13, a moving average filter [153] with a window size ofM is utilised

where T̂i(zs,n) (see Eq. 3.14) is the smoothed signal at time i.

T̂i(zs,n) =
1

M

i∑
i−M+1

Ti(zs,n) (3.14)
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(a) (b)

Figure 3.9: Comparison of (a) raw signal Ti(zs,n) and (b) filtered signal T̂i(zs,n),
using a moving average filter.

Figure 3.9 presents the comparison between Ti(zs,n) and T̂i(zs,n), demon-

strating a significant reduction in high-frequency noise achieved by the

filtered signal.

The gait cycle, as depicted in Fig. 3.10, encompasses various phases such

as heel-off (HO), heel-strike (HS), foot-flat (FF) and toe-off (TO). Mid-

stance represents the point at which the foot bearing weight functions as a

stabilising support for standing, whereas mid-swing pertains to the inter-

vals during which the foot without weight undergoes a swinging motion.

The transition from the swing phase to the stance phase occurs when both

heel-off (HO) and heel-strike (HS) events are detected in the dual foot sys-

tem. Conventional methods of identifying the stance phase commonly rely

on predetermined thresholds, which may be affected by the dynamics of

the GLRT sequence. This could result in the erroneous rejection of hy-

pothesis Hs,1, leading to false rejections and consequently impacting the

performance of the INS. In this study, the condition T̂ (zL, k) = T̂ (zR, k)

signifies that the dual foot GLRT sequences are employed synergistically

to facilitate gait switching. This approach considers the dual foot measure-
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ments as an integrated system, accounting for the interrelationship between

the feet. The equality of T̂ (zs,n) represents the maximum likelihood when

the gait of both feet reaches the demarcation point.

Figure 3.10: Schematic representation of the gait cycle for the dual foot.

Finally, the stationary hypotheses Hs,1 functioning as the primary deter-

mination of the synergistic method are evaluated based on the Eq. 3.15,

Hi
L,1 is true if T̂i(zL,n) ≤ T̂i(zR,n) or T̂i(zL,n) < γ

′

min

Hi
R,1 is true if T̂i(zL,n) ≥ T̂i(zR,n) or T̂i(zR,n) < γ

′

min

(3.15)

where i ∈ Ωn, γ
′
min represents the minimum threshold for detecting zero-

velocity in the dual foot system at the beginning and end of the gait cycle.

3.2.3 Experimental Setup

The proposed wearable for foot mounting utilises a MPU9250 (200Hz) and

a Seeeduino ESP32 dual-core micro-computing unit for each foot. The sen-

sors were integrated and securely attached to the front of each shoe using

a Velcro strap. The IMU was calibrated utilising an internal calibration

module in hardware. The transmission of inertia data was collected wire-

lessly through Wi-Fi, utilising the On-The-Go (OTG) protocol, from the
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sensors to a handheld ESP32 Wi-Fi kit, which was connected to a smart-

phone (refer to Fig. 3.11). The algorithm responsible for processing the

data was implemented in MATLAB 2022a and executed on a laptop with

an Intel i7-10510U 1.8 GHz processor and 16 GB RAM. The update rate

of DF-INS was 200Hz, following the sampling rate of IMU.

Figure 3.11: System design for data collection

To evaluate how well the system performed, a set of indoor tests was carried

out in a building shaped like a square, which included a central courtyard.

The path for walking spanned around 160 meters and started and finished

at the same spot, as illustrated in Figure 3.12. Four volunteers took part in

the experiment and the researcher analysed recorded videos to determine

the step count of both the left foot (SCL) and the right foot (SCR) for each

participant.
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Figure 3.12: Layout of experimental scenario.

3.3 IOAM

With the development of IPS, the DF-INS has been extensively used in

many fields involving monitoring and direction-finding. It is a widespread

IPS implementation with considerable application potential in various ar-

eas such as firefighting and home care. However, the existing DF-INS is

limited by a high inaccuracy rate due to the highly dynamic and non-stable

stride length thresholds. The system also provides less clear and significant

information visualisation of a person’s position and the surrounding map.

To address the aforementioned issues, Study 3 and Study 4 propose a

novel wearable inertial odometry and mapping (IOAM).
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It is worth noticing that, the methods of Study 3 and Study 4 are imple-

mented in the same INS framework to perform IOAM, for calculation and

visualisation. To ensure good coherence of the method presenting, the no-

tation definition, experiment and results discussion of Study 3 and Study

4 are presented in the same section.

3.3.1 System Overview

Figure 3.13: System overveiw of IOAM.

This part provides a technical overview (Fig.3.13) of the proposed IOAM

implementation. First, IOAM introduces a minimum centroid distance

(MCD) method that calculates the stride length ultrasonic distance mea-

suring data specifications and determines the dynamic threshold for centroid-

method-based dual-foot fusion in INS. In doing so, the dynamic threshold

with an accurate stride length constraint improves the tracking estima-

tion performance. Second, IOAM proposes a dual trajectory fusion (DTF)

method to fuse the two separated trajectories from the two feet and com-

bine them into one body-level localisation information. DTF analyses the

centre body of mass (CBoM) specifications during movement to determine

the weight for left and right trajectory fusion. Finally, a 2D-plane map
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is projected through outer ultrasonic distance measuring using the polar

projection theory. The map area is obtained via a surrounding occupancy

grid map (S-OGM) [40] to calculate the occupancy status of every pixel

(clearing/irrelevant). The localisation and mapping information is then vi-

sualised using a uniform canvas.

3.3.2 MCD Aided INS for Dual Foot Fusion

EKF Initialisation

Owing to the physical transmission properties of sound and electronic lim-

itations [154], the sampling rate of the ultrasonic sensor is lower than that

of the IMU. The nearest interpolation method [155] was adopted to align

the range data and IMU data, as follows:

u(i)(j) = interp

(
û(i)(j),

T s
(
imu(j)

)
Ts (û(i)(j))

)
(3.16)

where û(i)(j) and u(i)(j) represent the original and interpolated ultrasonic

sensor measurement signals, respectively. i ∈ {Inner, Outer} represents

the placement, that is, the inner and outer sides of the ultrasonic sensors

attached to one foot. j ∈ {R, L} represents sensors mounted on the right

or left foot. Ts indicates the sampling rate of the sensor data. Two data

sequences from the sensors on each foot were synchronised. The IMU data

D
(i)
k ∈ R6 is defined as:

D
(j)
k ≜

[
a
(j)
k ω

(j)
k

]T
(3.17)

where a
(j)
k ∈ R3 and ω

(j)
k ∈ R3 represent 3-axis acceleration (m/s2) and

angular rate (rad/s2), respectively. k ∈ N+ indicates the time stamp of

the data sequence.
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The initial coordinate of the CBoM trajectory from the DTF calculation

(pCOM) is defined as:

pCOM =

[
0 0 0

]T
(3.18)

To separate the dual-foot coordinate calculation, the two-foot initial po-

sition coordinates p
(j)
1 are defined as posteriori by inner ultrasonic sensor

distance measuring. The coordinates of p
(L)
1 and p

(R)
1 is defined as:

p
(L)
1 =

[
−µ

2
0 0

]−1

, p
(R)
1 =

[
µ
2

0 0

]−1

(3.19)

where µ determines the initial x-axis direction stride-length parameter. A

priori IMU state x̂
(j)
k in the navigation system is defined as [156] :

x̂
(j)
k ≜

[
p̂
(j)
k v̂

(j)
k θ̂

(j)
k

]
(3.20)

where p̂
(j)
k ∈ R3, v̂

(j)
k ∈ R3 and θ̂

(j)
k ∈ R3 represent a priori position,

velocity and pose estimation on the 3-axis coordinate system [99, 131]. A

step detector [157] classifies each D
(i)
k sample according to its motion state

as either moving or stationary. When a stationary phase is detected, the

INS sets pseudo-measurements in the EKF to compute the posteriori of the

x̂
(j)
k [158–161].

MCD

The centroid method defines the relative range between the two feet. In a

typical dual-foot INS, the distance between two feet has a maximum range

constrained by a sphere or ellipsoid model. The distance constraint [156]

is described as:
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Figure 3.14: Schematic of right foot swing and inner ultrasonic sensor scanning
process.

∥∥∥p̂(R)
k − p̂

(L)
k

∥∥∥
2
≤ γk, ∀k ∈ N+ (3.21)

where ∥∥2 denotes the two-norm calculator and γ is a fixed range threshold.

The Lagrange function [162] solution for position pseudo-measurement p
(j)
k

under the constrained least squares (CLS) [156, 163, 164] framework is

defined as:

p
(R)
k =

(∥∥∥p̂(R)
k − p̂

(L)
k

∥∥∥
2
+ γ
)
p̂
(R)
k +

(∥∥∥p̂(R)
k − p̂

(L)
k

∥∥∥
2
− γ
)
p̂
(L)
k

2
∥∥∥p̂(R)

k − p̂
(L)
k

∥∥∥
2

,

p
(L)
k =

(∥∥∥p̂(R)
k − p̂

(L)
k

∥∥∥
2
+ γ
)
p̂
(L)
k +

(∥∥∥p̂(R)
k − p̂

(L)
k

∥∥∥
2
− γ
)
p̂
(R)
k

2
∥∥∥p̂(R)

k − p̂
(L)
k

∥∥∥
2

(3.22)

Then, the predefined maximum range pseudo-measurement is applied to

optimise the foot’s position using the EKF. The maximum range constraint

can only address out-of-range drifting problems due to the dynamic stride

length during movement and unpredictable gaits from different users. The

bias error from position and altitude estimation would also cause trajec-

tory coinciding and crossing problems, reducing the tracking accuracy. A
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MCD method is proposed to determine the dynamic stride length con-

straint threshold via inner ultrasonic distance measuring during the mid-

swing phase in the gait cycle. The gait cycle during the swing phase of the

moving state can be categorised into three continual sub-statuses: initial

swing, mid-swing and terminal swing [165] based on the position of the

swinging leg relative to the stationary leg (Fig.3.14). It is assumed that

the normal gait cycle did not involve leg cross-swinging.

In MCD, the mid-swing phase detection can be determined as:

S
(j)
k =


1, κmin < u

(inner)(j)
k < κmax

0, others

(3.23)

where κ is the stride length parameter.

To reduce inaccurate measurements during the swinging phase, the inner

stride length range is designed to operate in the stance phase of the opposite

foot. The DTF algorithm first detects the zero-speed states using the GLRT

[155] which is defined as:

ZUPT
(j)
k =


1, zero velocity detected

0, others

(3.24)

Each IMU sample is indicated with either one or zero markers representing

the current motion state. The minimum internal sampling strategy (Eq.

3.25) is utilised in this method to reduce the over-optimisation of dual-foot

data fusion.

tk − tLO < σ (3.25)

where t is the sample timestamp conversion function, LO represents the
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last operation of the MCD method and σ is the parameter of the timestamp

interval. The flow chart of the proposed MCD method is shown in Fig.3.15.

Figure 3.15: Process of MCD algorithm.

In MCD, the x- and y-axis data for pseudo-measurements PM are utilised

in the EKF, whereas the z-axis data (height) are not considered in the

ultrasonic sensor scanning in the 2D plane, as follows:

PM
(j)
k =


PM

(j)
k,x

PM
(j)
k,y

p
(j)
k,z

 (3.26)

where PMk indicates the calculated posteriori centroid distance of the

pseudo-measurement in the EKF and p
(j)
k,z represents the original z-axis

height information in the INS. Finally, using these pseudo-measurements

in the Kalman filter platform, the formulas are described as follows [156] :

K
(j)
k = P

(j)
k (Hp)

T
[
HpP

(j)
k (Hp)

T +Rp

]−1

(3.27)
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x̂
(j)
k = x̂

(j)
k +K

(j)
k

[
PM

(j)
k −Hpx̂

(j)
k

]
(3.28)

Hp = [I3×3 03×3 03×3 03×3 03×3] (3.29)

P
(i)
k = [I15×9 −KkHp]P

(j)
k (3.30)

where K
(j)
k denotes the Kalman gain and Hp the observation transition

matrix with pseudo-measurement. I3×3 denotes the identity matrix and

03×3 denotes the zero matrix. Rp denotes the noise-covariance matrix of

Hp.

Projection of CBoM for DTF

In this study, the dual-foot structure is defined as a rigid body to sim-

plify the tracking visualisation and transform the footpath to the user’s

trajectory [166, 167]. The CBoM is calculated by merging the dual-foot

estimated position using the weight fusion [168] method:

pCOM = g
[
p(R) p(L)

]
= αp(R) + βp(L), α + β = 1 (3.31)

where pCOM ∈ R3 indicates the position of the hypothetical CBoM of the

body of the sensor carrier. α and β are the weight parameters for the right-

and left-foot INS, respectively.

During the swing phase (Fig.3.14), the heading direction is in the sagit-

tal plane (Fig.3.16). The CBoM swings at the frontal plane of the body

during the alternating movement of the two legs during walking, which

can be defined as a pendulum model [170, 171]. The pendulum range can

represent the fusion weight, which is defined by a sine function [172–174].

The ZUPT clustering method used to calculate the weight is shown in Fig.

3.17, where ZUPT − jnm denotes the ZUPT cluster containing continual

zero-speed samples (ZUPT = 1), m indicates the order number of ZUPT
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Figure 3.16: Determination of the CBoM [169].

clusters in all input samples, n indicates the order number in a specific

ZUPT cluster.

Figure 3.17: Calculation of ZUPT clustering.

Then, the weight of the DTF is defined as:

weight =



0.5 + 0.25 ∗ sin
(

n

length(ZUPT−Ln
m)

)
, ZUPT (L) = 1

0.5 , ZUPT (L) ⊕ ZUPT (R) = 1

0.5 + 0.25 ∗ sin
(

n

length(ZUPT−Rn
m)

)
, ZUPT (R) = 1

(3.32)
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Thus, the pCOM calculation according to Eq.3.31 would be defined as:

pCOM = weight ∗ p(R) + (1− weight) p(L) (3.33)

The fused trajectory is then filtered through a
(
1× Ts

2

)
mean filter [175]

for small drifting in the motion integral calculation, as follows:

p̂COM,k =
2 ∗
∑
pCOM,k

Ts
(3.34)

3.3.3 Ultrasonic Mapping

Polar projection mechanism

The coordinates of the ultrasonic mapping points are calculated based on

the step position and the pose estimated by the INS. The range direction

of the ultrasonic sensor is parallel to the x-axis of the IMU in each foot. To

project the 3D scanning onto the 2D XOY coordinate, a polar transform

method is described as follows [168, 176, 177]:

M
(
r
(i)(j)
k

)
=

cosθcosφ
cosθsinφ

 (3.35)

where θ and φ denote the pitch and yaw angles in pose estimation, respec-

tively. The coordinates of the ultrasonic mapping point Up
(i)(j)
k under the

maximum covering principle are calculated as follows:

Up
(i)(j)
k =

[
Ux

(i)(j)
k Uy

(i)(j)
k

]T
=



[
p
(j)
k + u

(i)(j)
k diag(1, 1)M

(
r
(i)(j)
k

)]T
, i, j = inner, L||outer, R[

p
(j)
k − u

(i)(j)
k diag(1, 1)M

(
r
(i)(j)
k

)]T
, i, j = inner,R||outer, L

(3.36)
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For the ultrasonic range measuring, it should satisfy the condition:

Rmin < u
(i)(j)
k < Rmax (3.37)

where Rmin and Rmax are the ultrasonic sensors’ minimum and maximum

available measurement ranges (Table 3.3), respectively. The inner ultra-

sonic mapping points should also be calculated at the initial swinging and

terminal swinging phrases (Fig.3.14) and satisfy the u
(inner)(j)
k > κmax con-

dition.

S-OGM calculation

Compared with the laser range finder, the ultrasonic sensor has a lower

cost and wider detection angle, making it more practical for wearable ap-

plications [178]. In addition, ultrasonic sensors are stable under smoke- and

vapour-filled environments with lower energy consumption among different

range measurement methods [154, 178]. According to ultrasonic specifica-

tions, each ranging process is modelled as a rectangular zone (white arrow

in Fig. 3.18) in the occupancy grid map (OGM) [40] follows:

Figure 3.18: Schematic of ultrasonic S-OGM process with five footsteps.

The single grid cells of the map are categorised as empty (black) or irrele-

vant (gray) areas. The S-OGM algorithm is defined as:
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B
(
p
(j)
k , Up

(i)(j)
k

)
(3.38)

where B denotes the Bresenham algorithm [179], p
(j)
k and Up

(i)(j)
k indicate

the ultrasonic sensor placement position coinciding with the foot position

and position of the pixel at the clearing area boundary, respectively.

3.3.4 Experimental Setup

A pair of wearable sensor modules was designed for the data collection.

The proposed wearable module is shown in Fig. 3.19a and consists of a

MPU9250 IMU (see Table 3.3), two HC-SR04 ultrasonic sensors (see Table

3.2) and an ESP32 dual-core micro computing unit.

Table 3.2: Specifications of HC-SR04 ultrasonic sensor

Specifications Values
Operating Voltage DC 5V
Operating Current 15 mA

Operating Frequency 40 kHz
Range 2cm – 5m

Ranging Accuracy 3 mm
Measuring Angle 15 degrees

Trigger Input Signal 10 µS TTL Pulse
Sampling rate 15 Hz

The module was mounted on the front side of each shoe using a hook and

loop tape. The placement of ultrasonic sensors are improved based on the

original design from [168]. Two ultrasonic sensors are mounted in one shoe

for inner and outer side range measurement where the inner ultrasonic sen-

sor are able to make compensation for more accurate map generation. The

inner ultrasonic sensors are staggered and placed separately at the back

and front sides of the two feet to avoid potential ultrasound-emitting inter-

ference. The IMU was calibrated utilising an internal calibration module
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(a)

(b)

Figure 3.19: Component layout of IOAM wearable devices (a) and data trans-
mission schematic during the experiment (b).

in hardware. A 900 mAh battery with an estimated 2-h power supply was

attached to the shoe. Sensor data were transmitted via Wi-Fi to a nearby

terminal, as shown in Fig. 3.19b. The data receiver application at the

terminal was implemented in MATLAB 2022a using an Intel i7-10510U 1.8

GHz, 16GB RAM laptop. The update rate of inertial odometry and ultra-

sonic mapping were 200 Hz, following the sampling rate of IMU.

57



3.3. IOAM

(a)

(b)

(c)

Figure 3.20: Layout of data collection locations for scenarios 1 (a), 2 (b) and
3 (c).
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Table 3.3: Specifications of MPU9250 IMU

Specifications Values
Operating Voltage DC 5 V

Accelerometer Scale Range ±16g
Gyroscope Scale Range ±2000°/s
Communication Interface I2C

Sampling Rate 200 Hz

Table 3.4: Height and Weight Information of Volunteers

Participants Gender Height [cm] Weight [kg]
a male 175 65
b male 185 85
c female 163 50
d female 163 50
e male 175 70
f male 172 53
g male 170 55
h female 170 47

Eight volunteers were recruited to participate in the experiment, as listed

in Table 3.4. Volunteers provided informed consent and the study was

approved by the faculty ethics review board. Three scenarios were designed

and set up at three different office-like buildings with solid red line reference

routes (see Fig. 3.20): a rectangular route (Scenario 1, 161.23 m), a fan-

shaped route (Scenario 2, 198.55 m) and a bottle-shaped route (Scenario

3, 53.06 m). Volunteers were requested to wear the designed modules and

walk along the pre-arranged route. There were no gait or gesture limitations

during walking. Each volunteer walked in all three scenarios.

3.4 Multi-INS

Achieving precise individual loop closure and global multi-person position

fusion is crucial for mitigating accumulative errors and accurately deter-

mining the positions of multiple individuals. Existing FT-INS lack the

reference information needed for loop closure and multi-person trajectory
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fusion, limiting their applicability in scenarios involving numerous users.

To address this challenge, Study 5 presents the Multi-INS, which employs

an online MF matching approach for inertial state updates.

3.4.1 System Overview

Figure 3.21: System overview of the proposed Multi-INS.

Figure 3.21 presents a comprehensive depiction of the proposed Multi-INS

system, which is divided into individual trajectory estimation (see Section

3.4.2) and online multi-person trajectories update (see Section 3.4.6). Ini-

tially, individual trajectories are estimated using collected IMU data pack-

ets, containing 3-axis acceleration, 3-axis angular rate, and 3-axis magnetic

field data. GLRT sequences are initially generated using the GLRT model

and then smoothed, which is subsequently utilised for zero velocity (ZV)

detection. Then, the ZUPT and ZARU algorithms are employed to calcu-

late the individual INS states, including 3-axis position, 3-axis velocity, and

3-axis attitude. Gait cycles are identified and segmented from the detected

ZV sequences to derive individual MF data sequences. A proposed selec-

tion algorithm is employed to extract the target MF data sequences from

each individual’s MF data sequences, forming the multi-person MF pool.

It is important to note that the INS estimation and MF generation phases

are carried out online, departing from the traditional offline approach.
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In the phase of updating multi-person trajectories, MF key points are ex-

tracted by identifying the local peaks in the MF data, indicating turning

points (refer to Section 3.1.2). Subsequently, a conditional similarity-based

MF is introduced to facilitate cross-updating of INS states among indi-

viduals, aligning their trajectories within a shared space. This innovative

framework significantly reduces computational time and effectively resolves

trajectory mismatch issues among individuals in the shared space. Poten-

tially, the proposed MF cross-update model possesses the capability to

simultaneously match the trajectories of an unlimited number of individ-

uals sharing the same space, effectively reducing positional errors among

them. To further validate the practicality of the proposed work, this study

conducts experimental testing, involving five users simultaneously walking

in an indoor environment.

3.4.2 Individual Trajectory Estimation

This section covers the process of estimating individual trajectories, focus-

ing on improving INS estimation and generating MF data online.

3.4.3 INS State Model

The IMU data packet of the right foot, denoted as D
(n)
i ∈ R(9) for multi-

person configurations, can be defined as:

D
(n)
i ≜


a
(n)
i

ω
(n)
i

m
(n)
i

 (3.39)

where n represents the person’s index, and a
(n)
i ∈ R(3), ω

(n)
i ∈ R(3), and

m
(n)
i ∈ R(3) indicates the 3-axis measurements of acceleration (m/s2), angu-
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lar rate (rad/s2) and magnetic field (µT ) within the IMU data, respectively.

Additionally, i ∈ N+ signifies the time instant of the data sequences. The

initial coordinate l(n) for each individual’s position is defined as:

l(n) =


x(n)

y(n)

z(n)

 (3.40)

where x(n), y(n) and z(n) denote the positional coordinates for each individ-

ual after EKF was applied. The prior individual INS state x̂
(n)
i is defined

as:

x̂
(n)
i ≜


l̂
(n)
i

v̂
(n)
i

θ̂
(n)
i

 (3.41)

where l̂
(n)
i ∈ R(3), v̂

(n)
i ∈ R(3) and θ̂

(n)
i ∈ R(3) represent the prior estimated

position, velocity, and pose of each individual, respectively, based on the

3-axis coordinate system.

3.4.4 Enhancement of INS Estimation

GLRT Sequence Smoothing

During this phase, the GLRT model [39] is employed to generate GLRT

sequences for the n-th person, denoted as T (n)(zi), using the a(n) and ω(n)

from D(n), where z indicates the likelihood measurement. Initial obser-

vation [180] indicates that the generated GLRT sequences contain noise,

potentially leading to incorrect ZV detection (see Section 3.4.4). This inac-

curacy primarily resulted from motion differences due to variations in gait

movements among users, such as body tremors. To address this issue, a

moving average filtering method [181] is introduced to generate smoothed
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GLRT sequences, as shown in Eq. (3.42):

T̂
(n)
i (zi) =

1

M

I∑
i−M+1

T
(n)
i (zi) (3.42)

where M denotes the window size of the filter, and T̂ (n)(zi) represents the

smoothed GLRT sequences of the n-th person. This approach significantly

decreases the likelihood of false ZV detection.

Detection of Zero-Velocity

Subsequently, the ZV sequences of the i-th person, denoted as ZV
(n)
i , are

determined based on the smoothed T̂ (n)(zi). The state ZV
(n)
i at time in-

stant i is classified as either a stance state of 1 or a swing state of 0 (see

Fig. 3.22), as described in Eq. (3.43):

ZV
(n)
i =


1, T̂

(n)
i (zi) ≤ τ

0, T̂
(n)
i (zi) > τ

(3.43)

where τ represents the predefined threshold.

Calculation of INS State

If ZV
(n)
i is classified as the stance state, the EKF method is applied to

compute the posterior state of x̂
(n)
i , utilising ZUPT and ZARU algorithms

to optimise the v̂
(n)
i and θ̂

(n)
i , as shown below:

x̂
(n)
i = x̂

(n)
i +K

(n)
i

[
v, θ

(n)
i −Hx̂

(n)
i

]
(3.44)

K
(n)
i = P

(n)
i HT

[
HP

(n)
i HT +RH

]-1
(3.45)
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Figure 3.22: Overview of the ZV detection.

H = Hv,θ =

I3×3 03×3 03×3

03×3 03×3 I3×3

 (3.46)

P
(n)
i = [I9×9 −KiH]P

(n)
i (3.47)

where K
(n)
i represents the Kalman gain matrix for the i-th person, Hv,θ is

the velocity and angular rate observation transition matrix of the pseudo-

measurement, I3×3 is the identity matrix, 03×3 is the zero matrix, RH de-

notes the noise covariance matrix of H and P
(n)
i indicates the predicted

state of prior covariance matrix.

3.4.5 Online Generation of MF Data

The section starts with an overview of gait data processing, including the

generation and calibration of MF data. It then introduces a new tech-

nique for identifying target MF data by utilising a turning-points detection

approach to extract regions of interest (ROIs). These ROIs, containing

the target MF data, formed the MF pool dataset, which is subsequently

64



3.4. MULTI-INS

employed to update the INS states of multiple individuals.

Magnetic Field Data Calibration

Each footstep in a person’s gait cycle consists of stance and swing phases,

determined based on the results from ZV
(n)
i at time instant i. The IMU’s

magnetic field readings yield spatial magnetic intensity. Given the rela-

tively stable environmental conditions and consistent facility placement,

this magnetic field data distribution is well-suited for navigation-based fin-

gerprinting [129, 130]. The raw vector of magnetic field data for a person

is defined as follows:

m(n) ≜


m

(n)
x

m
(n)
y

m
(n)
z

 (3.48)

where mn
x,m

n
y and mn

z represent magnetic field data in three-axis Cartesian

coordinates. However, due to magnetic interference from the surroundings,

magnetic field data is prone to distortion. Calibration of each IMU sensor

is required by introducing an offset matrix [182], denoted as O(n), to the

raw magnetic field data:

O(n) =


O

(n)
x

O
(n)
y

O
(n)
z

 (3.49)

where O
(n)
x , O

(n)
y and O

(n)
z represent the three-axis offset values associated

with the n-th person’s IMU, respectively. The calibrated magnetic field

vector data m̂(n) is calculated by compensating for O(n) as follows:

m̂(n) = m(n) +O(n) ≜


m̂

(n)
x

m̂
(n)
y

m̂
(n)
z

 (3.50)
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where m̂
(n)
x , m̂

(n)
y and m̂

(n)
z represent the three-axis calibrated magnetic field

data in the x, y and z-coordinates, respectively. Following the calibration

of magnetic field data, dynamic movement sequence data, contingent upon

variations in the spatial magnetic distribution of the surroundings, are

acquired during the swing state.

Structuring of MF Data

The MF data structure at time instant i consists of seven elements, includ-

ing:

• ID : Indicates the identifier of a MF, assigned with the order number

of the timestamp.

• TS : Indicates the timestamp of a MF.

• SO : Indicates the step order of a MF.

• POS : Denotes the three-axis position of the foot.

• ATT : Denotes the attitude (pose) of the foot.

• GoH : The Gradient-of-Heading indicates the changes of the motion

heading between step at ti and step at ti−1 which is used to determine

the moving pattern (forwarding or turning).

• m̂(n): The calibrated three-axis magnetic field data.

The overview of the MF data structure of magnetic fingerprinting is de-

picted in Table 3.5.

Extraction of MF ROIs

Fingerprint matching tasks are often time-consuming, with a time com-

plexity of O(mn), as shown in [183]. The general matching algorithm costs

O(n2) for traversal matching, introducing high complexity to the study. To
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Table 3.5: Overview of data structure of MF

No. Element Format & Unit State

1 ID Character Stance
2 TS [DD:HH:SS] Stance
3 SO Number Stance

4 POS p̂
(n)
i = [p̂

(n)
x,i , p̂

(n)
y,i , p̂

(n)
z,i ] Stance

5 ATT θ̂
(n)
i = [θ̂

(n)
x,i , θ̂

(n)
y,i , θ̂

(n)
z,i ] Stance

6 GoH ∆θ Stance

7 m̂(n) m̂
(n)
i = [p̂

(n)
x,i , p̂

(n)
y,i , p̂

(n)
z,i ] Swing

address this issue, the initial study [180] showed that magnetic field data

obtained at each corner of the indoor environment provided higher signif-

icant signatures compared to the corridors. Therefore, in this study, the

region of MF data at each turning point was selected to serve as indicators

for position estimation. Each turning point is detected by finding the local

peaks in the GoH sequences where the movement headings indicate a sig-

nificant change in orientation between time frames, as shown in Fig. 3.23.

The region-of-interest of MF (ROI-MF) in each gait cycle is selected based

on the conditions described below:

1. [MFp
i+1, MFp

i+2, MFp
i+3] if p = 0

2. [MFp
i−2, MFp

i−1, MFp
i , MFp

i+1, MFp
i+2] if 0 < p < SO

3. [MFSO−2, MFSO−1, MFSO]

where p is the index of the detected peak at time instant i. The selected

ROI-MFs are then formed into a MFs pool, subsequently utilised for up-

dating multi-person trajectories.

3.4.6 Online Update of Multi-Person Trajectories

This section outlines the approach for updating the multi-person INS state

using the MF matching method. The process involves two phases: individ-

ual position update and multi-person position update.
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Figure 3.23: Illustration of ROI-MFs, which is denoted as the light blue regions,
based on the detected local peaks from GoH.

MF Matching for Updating Individual Position

Previous studies [184] attempted to decrease computation time in MF

matching by employing various dimension reduction techniques, often re-

sulting in information loss. To maintain the accuracy of MF matching, the

tri-axis DTW method [140] is utilised in this study to assess the similar-

ity between MFs of different durations. The cost of MF matching using

DTW (referred to as DTW cost), represented as D(m̂(n)X, m̂(n)Y ) for the

n-th individual at two time sequences, X = xi, ..., xI and Y = yj, ..., yJ , is

calculated as follows:

D(i, j) = d(xi, yj) +min


D(i− 1, j)

D(i, j − 1)

D(i− 1, j − 1)

 (3.51)

where the d(xi, yj) is defined as:

d(xi, yj) = ∥xi − yj∥ (3.52)

where d(xi, yj) denotes the Euclidean distance between two MF data points

at different time sequences.

68



3.4. MULTI-INS

INS State Updating for Multi-Person Position

The selected MF with the shortest distance is then utilised to update the

tri-axis position pseudo-measurement, defined as follows:

p
(n)
i|1:3 − p

(n)
ζ = [I3×3 I3×6 ]x̂

(n)
i + ϵζ (3.53)

where p
(n)
i|1:3 represents the estimated 3-axis position state, p

(n)
ζ denotes the

pseudo-measurement of position from the selected MF, and ζ signifies the

noise covariance matrix of the pseudo-measurement. The initial MF data

for each individual’s prior INS state is collected and chosen for the MF

matching used in individual INS state updates, as initial MF data typically

has the lowest position error. The INS state update proceeds as follows:

K
(n)
i = P

(n)
i HT

[
HP

(n)
i HT +RH

]−1

(3.54)

x̂
(n)
i = x̂

(n)
i +K

(n)
i

[
p
(n)
ζ −Hx̂

(n)
i

]
(3.55)

H = [03×3 I3×3 03×3] (3.56)

where K
(n)
i represents the Kalman gain, H is the position observation tran-

sition matrix with pseudo-measurement, I3×3 is the identity matrix, 03×3

denotes the zero matrix and RH is the noise-covariance matrix of H.

Figure 3.24 depicts a scenario where the walking trajectory of Person 1

at round k + 1, shown by the blue line, displays significant positioning

errors compared to the ground truth trajectory (black line), resulting in

cumulative errors in subsequent trajectories. The individual MF matching

approach is employed by updating the closing point of the walking trajec-

tory at round k+1 using the closing point’s position at round k (shown by

the red line). This approach significantly reduces the cumulative position-
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(a) (b)

Figure 3.24: Visualisation of (a) walking trajectories of Person 1 for rounds
k (red line) and k + 1 (blue line), with the trajectory of round k + 1 exhibiting
significant positioning errors compared to the ground truth trajectory (black line),
and (b) the trajectory errors of round k+1 are minimised through an individual
MF matching approach, which involves updating the closing point of round k+1
based on the closing point of round k.

ing errors, as demonstrated in Fig. 3.24b. Conversely, Fig. 3.25 illustrates

a scenario where the walking trajectory of Person 2 at round k (indicated

by the red line) exhibits significant positioning errors. These errors are

mitigated by utilising the cross-update MF matching approach, which up-

dates Person 2’s closing point at round k using the closing point of Person

1 at the same round (indicated by the red line), as depicted in Fig. 3.25b.

Similarly, Fig. 3.25 illustrates the position update of an individual’s closing

point during two rounds of walking trajectories, albeit based on another

person’s MF matching.

3.4.7 Experimental Setup

The proposed system, adopting Internet-of-things (IoT) principles, inte-

grates an IoT-based wearable module that incorporates a MPU9250 IMU

and a Seeed Studio XIAO ESP32C3 dual-core micro-computing unit (MCU)

for data collection. The module is designed using a custom-designed printed
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(a) (b)

Figure 3.25: Example visualisation of (a) walking trajectories of Person 1 (red
line) and Person 2 (blue line) for rounds k, with the trajectory of Person 2
exhibiting significant positioning errors compared to the ground truth trajectory
(black line), and (b) the trajectory errors of Person 2 is minimised through a
cross-update MF matching approach, which involved updating the closing point
of Person 2’s trajectory based on the closing point of Person 1’s trajectory.

circuit board (PCB) encased within a 3D printed housing to ensure stabil-

ity as depicted in Fig. 3.26a. A flexible antenna is attached externally to

improve signal transmission quality, with the entire module enveloped in

a grey insulation sheath to protect its electronic components. Each sub-

ject’s shoe securely holds the wearable module using zip ties. Additionally,

a 1300 mAh battery with an estimated 5-hour power supply capability is

integrated. Sensor data are transmitted via Wi-Fi to a handheld cellphone

(OnePlus 5T), which connects to an ESP32 Wi-Fi module using the OTG

protocol (as illustrated in Fig. 3.26b). Subsequently, data are stored and

computed on a laptop equipped with an Intel i7-10510U 1.8 GHz processor

and 16 GB of RAM. The IMU was calibrated utilising an internal calibra-

tion module in hardware.

71



3.4. MULTI-INS

(a)

(b)

Figure 3.26: The hardware components: (a) PCB housing module and (b)
wireless transmission module of the proposed system.

This wearable module, illustrated in Fig. 3.26a, was constructed using a

custom-designed Printed Circuit Board (PCB) enclosed within a 3D printed

housing to ensure stable placement. To enhance signal transmission qual-

ity, a flexible antenna was affixed to the exterior of the housing. The entire

module was encased in a grey insulation sheath to safeguard its electronic

components. The wearable module was securely fastened to the front of

each subject’s shoe using zip ties. A 1300 mAh battery with an estimated

5-h power supply capability was integrated into the module. The sensor

data was transmitted via Wi-Fi to a handheld cellphone (OnePlus 5T),
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which was connected to an ESP32 Wi-Fi module using the OTG protocol

(as shown in Fig. 3.26b). Furthermore, data were subsequently stored and

computed on a laptop with an Intel i7-10510U 1.8 GHz processor and 16

GB of RAM. The update rate of Multi-INS was 200Hz, following the sam-

pling rate of IMU.

Table 3.6: Basic Profiles of Participants

Group Participant ID Gender Height [cm] Weight [kg]

1

1 Female 163 50
2 Male 185 85
3 Male 170 65
4 Female 164 45

2

5 Female 163 50
6 Male 173 72
7 Male 180 76
8 Female 168 52

The experiments involved eight participants, with their basic profiles out-

lined in Table 3.6. The study received approval from the university’s faculty

research ethics committee which complies with the ethical guidelines. Prior

to starting the experiments, participants were provided with information

sheets and consent forms, which they signed to indicate their agreement

to proceed. They were also informed of their right to withdraw from the

experiments at any time.
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(a)

(b)

Figure 3.27: Visualisation of the experiment settings in two distinct walk-
ing scenarios: (a) SA constituted a rectangular walking route with total walking
distance of approximately 162 meters while (b) SB featured an annular sector
walking route with total walking distance of approximately 199 meters.

The experiment involved participants wearing shoes equipped with an IoT-

based wearable module and walking predefined routes within two different

office buildings. These buildings presented two distinct walking scenarios:

scenario A (SA) constituted a rectangular route with a total walking dis-

tance of approximately 162 meters (depicted in Fig. 3.27a) while scenario
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B (SB) featured an annular sector route with a total walking distance of

approximately 199 meters (shown in Fig. 3.27b). Participants were divided

into two groups, with the second group (G2) conducting their experiments

ten days after the first group (G1) to avoid potential environmental fluc-

tuations, such as variations in geomagnetic data.

Throughout the experiments, all participants were allowed to walk at their

own pace for two consecutive rounds, without any restrictions on their

walking speed. However, they were requested to pass through four desig-

nated corner points (landmarks) labelled as “S-1”, “S-2”, “S-3”, and “S-4”

(refer to Fig. 3.27). Completion of a single round was defined as passing

through all the landmarks in sequential order, starting from their desig-

nated positions and returning to those starting positions (e.g., starting

from “S-3”, passing through “S-4”, then “S-1”, then “S-2”, and returning

to “S-3”). These landmarks served as reference positions (ground truth

positions) where their coordinates were determined by measuring the dis-

tances between each consecutive landmark using a laser range finder. Table

3.7 presents the starting positions of each participant at one of these des-

ignated landmarks for both SA and SB.

Table 3.7: Starting Positions for Participants in SA and SB

G1 G2 Starting Position (SA) Starting Position (SB)

1 5 SA-2 SB-2
2 6 SA-3 SB-3
3 7 SA-4 SB-4
4 8 SA-1 SB-1

The quantitative assessment of positioning accuracy involved the calcula-

tion of the root mean square error (RMSE, ϵ) at four designated landmarks
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[185] where ϵ was defined as:

ϵ =
√
(lsestx − lsrefx)

2 + (lsesty − lsrefy)
2 (3.57)

where lsestx and lsesty represent the estimated position of the x- and y-

coordinates at landmark s = 1, ...4, while lsrefx and lsrefy denote the corre-

sponding reference position of the x- and y-coordinates. The performance

of the estimated positions using the proposed method was compared with

that of the existing ZUPT-aided INS method [186], which is referred to as

ZA-INS throughout this study.

3.5 Summary

This Chapter introduces the methods and experimental setups for each

study presented in this thesis. Specifically, Study 1, Study 2 and Study

3 aim to answer RQ1. These studies are developed to provide GA based

approaches to improve the accuracy of positioning by advancing three es-

sential bodies of the DR, which are heading estimation, step detection and

positioning optimisation. To answer RQ2, Study 4 considers designing

a polar projection based map point coordinate calculation algorithm, for

surrounding reconstruction. Consequently, based on the outcomes the first

four studies achieved, Study 5, aiming to answer RQ3, researches on

multi-trajectories integration via online magnetic fingerprint matching. In

addition, this chapter introduces the specific experimental setup for each

study including hardware design, scenarios and experiment activities.
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Chapter 4

Results and Discussion

This chapter demonstrates the trajectory and map calculated from each

proposed study. Evaluation metrics are used to assess the performance

and effectiveness of the positioning system. The mapping results are also

visualised for subjective evaluation. An associated discussion for each study

is presented at the end of each section.

4.1 GA-PDR

4.1.1 Evaluation of Localisation Performances

The positioning performance for the proposed GA-PDR approach was eval-

uated against existing PDR methods using raw inner filtered heading data

obtained from the BNO055 IMU [145]. This study evaluated GA-PDR and

PDR under the three scenarios presented in Section 3.1.4. The trajectory

prediction performance was calculated using the RMSE [65], as shown in

(4.1).

RMSE =
√
(xstart − xend)2 + (ystart − yend)2 (4.1)
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where (xstart, ystart) and (xend, yend) indicate the starting and ending co-

ordinates for the calculated trajectory of the positioning, respectively, of

the path in each scenario. The coordinate of the starting point was usu-

ally set as (0, 0) which simplified the RMSE calculation to RMSE =√
(xend)2 + (yend)2 The RMSE results are shown in Table 4.1.

Table 4.1: The RMSE [m] Comparison Between GA-PDR and PDR [145].

GA-PDR (Ours) PDR

Scenario 1 0.94 7.54
Scenario 2 2.65 7.07
Scenario 3 1.59 3.67
Mean 1.73 6.09

As shown in Table 4.1, GA-PDR outperformed PDR in all of the experimen-

tal scenarios. The mean error of GA-PDR was reduced compared with that

of PDR. The detailed heading and trajectory comparisons are discussed be-

low. The GA improved the trajectory accuracy and heading stability in

the three scenarios. The heading direction and trajectory computed by

GA-PDR and PDR were plotted together for performance comparisons, as

shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3. The dots in the trajectory path

represent the step points detected by each method.

Significant improvement could be observed for Scenario 1, where the GA-

PDR (RMSE = 0.94 m) trajectory outperformed that of PDR (RMSE =

7.54 m). The trajectory calculated by GA-PDR was closer to the ground

truth path in Fig. 3.8a compared with that calculated by PDR. Each di-

rection of the trajectory matched with the ground truth consistently which

eliminates the cumulative error from heading perspectives. Some paths

were slightly outside the boundary, this was caused by an inaccurate length

estimation but this aspect was beyond the scope of the present study. In
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contrast, the PDR trajectory showed a drifting error following the first

forward movement where the heading and positioning results diverge from

the intended route. The PDR error accumulated over time and most of

the paths were outside of the boundary, which caused significant difficulty

in terms of aligning them to the ground truth. In this experiment, GA-

PDR demonstrates high consistency of heading estimation during the whole

walking period which consequently achieves higher accuracy in positioning.

(a)

(b)

Figure 4.1: Plotting the trajectory of Scenario 1 with their heading directions
(a) and the trajectories (b) generated by GA-PDR (red line) and PDR (green
line).
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Scenarios 2 and 3 were evaluated in a smoke-filled environment, in which

the firefighters were more cautious about their movements due to low visi-

bility. In Scenario 2, a 10 m forward movement was set at the start of the

path. Compared with the ground truth shown in Fig. 3.8b, the PDR tra-

jectory deviated from the dominant forward direction after moving three

steps. The GA-PDR trajectory remained in the dominant direction until

the subsequent turn. The heading direction in Fig. 4.2a shows that GA-

PDR could smooth small fluctuations arising from sensor noise and reduce

drifting by correcting the heading estimation to better fit the dominant

direction. In Scenario 3, the degree of the first turn for PDR was smaller

than 90 degrees, which caused deviation from the rest of the path (see

Fig. 4.3b). Here GA-PDR (RMSE = 1.59 m) outperformed PDR (RMSE

= 3.67 m), as its trajectory matched the ground truth path more closely

compared with that of PDR in Fig. 3.8c. The final GA-PDR path crossed

the boundary, indicating its relatively high deviation. A possible explana-

tion for this issue may be caused by inaccurate step detection, which was

beyond the scope of this study.

In summary, GA-PDR (mean RMSE = 1.73 m) outperformed PDR (mean

RMSE = 6.09 m) in three test scenarios. It overcame the adverse effects of

users with different gaits. Low visibility arising from the presence of smoke

had a limited impact on it. The evaluation results indicated the effective-

ness of using GA-PDR in a smoke-filled environment and the method was

able to extend the use of the PDR technique to a firefighting context.

Table 4.2 shows the computation times for the GA-PDR and PDR methods

that were tested in this evaluation. Each evaluation was performed three

times in the same environment. The computational efficiency was compara-

ble to PDR. GA-PDR introduced minimal overhead compared with PDR,

resulting in an approximately 0.01 s difference among the three scenarios.
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(a)

(b)

Figure 4.2: Plotting the trajectory of Scenario 2 with its heading directions (a)
and (b) the trajectory generated by GA-PDR (red line) and PDR (green line).

4.1.2 Discussion

This study presents GA-PDR for improving the heading estimation of clas-

sical PDR. Due to the determination of DR theory, the cumulative error

greatly affects the performance of PDR as shown in the experimental re-

sults. GA-PDR corrects the heading value by analysing the user’s gait. In

doing so, the heading estimation bias was greatly eliminated which per-

formed improved the performance of positioning.
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(a)

(b)

Figure 4.3: Plotting the trajectory Scenario 3 with its heading directions (a)
and (b) the trajectory generated by GA-PDR (red line) and PDR (green line).

Three limitations are identified in the current study’s implementation of

GA-PDR. First, step detection and length estimation were beyond the

scope of this study; accordingly, some generated trajectory paths in Sce-

nario 1 (see Fig. 4.1b) and Scenario 3 (see Fig. 4.3b) were outside of the

boundary. Second, there was no accurate ground truth measurement for

pedestrians in a smoke-filled environment, which was inconvenient for the

evaluation. Finally, the current GA-PDR hardware was an experimental

prototype. In future studies, the placement, component integration and
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Table 4.2: A Comparison of the Computation Time [s] in Each Test Between
the Proposed GA-PDR and PDR[145] Methods.

Scenario GA-PDR (ours) PDR

Scenario 1 0.29 0.27
Scenario 2 0.09 0.07
Scenario 3 0.07 0.06

insulation should be specifically considered for real firefighting scenarios.

4.2 Dual Foot Synergistic Method

4.2.1 Evaluation of Zero-Velocity Detection Perfor-

mances

Zero-velocity detection performance was evaluated based on the step num-

ber value. Four volunteers took part in the experiment and the researcher

analysed recorded videos to determine the step number of both the left foot

(SCL) and the right foot (SCR) for each participant. Where the minimum

absolute differences between the references and the experimental results

illustrate the best performance.

The zero-velocity detection outcomes indicate that the proposed method

outperforms both ARE’s and GLRT’s methods in terms of detection rate.

The detection achieves nearly 100% accuracy for the majority of partici-

pants involved as stated in Table 4.3. However, a few instances of detection

errors were attributed to the measurement noise from the IMU. Addition-

ally, the proposed method exhibits the highest consistency in detecting

zero-velocity within a two-foot range compared to existing methods, fur-

ther emphasising its suitability for zero-velocity detection tasks.
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Table 4.3: Results of Zero-Velocity Performances

ID SCL / SCR ARE GLRT Ours
A 103 / 102 161 / 140 137/209 104 / 103
B 124 / 124 127 / 189 127/204 124 / 124
C 122 / 122 133 / 136 126/131 125 / 125
D 115 / 115 177 / 184 173/143 116 / 116

4.2.2 Evaluation of Localisation Performances

The study employed the RMSE as a metric to assess the performance of

DF-INS [187] localisation, incorporating a fixed threshold and a dual foot

synergistic approach-based zero-velocity detection. The results presented

in Table 4.4 indicate that, compared to GLRT and ARE, the proposed

method achieved the lowest RMSE across the trajectories of four volun-

teers. Figure 4.4 visually demonstrates that the trajectory generated by

the method exhibits superior smoothness and accuracy compared to al-

ternative approaches. Moreover, the approach excels at identifying more

precise zero-velocity phases, thereby enhancing the performance of ZUPT

and trajectory calculation in DF-INS.

Table 4.4: Comparison of RMSE (Left/Right) [m] of DF-INS using Different
Zero-Velocity Methods

ID ARE GLRT Ours
A 11.209 / 10.763 4.973 / 5.048 3.689 / 3.423
B 12.965 / 12.999 21.945 / 21.894 2.961 / 1.948
C 10.989 / 10.239 14.529 / 13.99 4.996 / 4.935
D 9.054 / 8.561 7.977 / 7.343 4.657 / 4.071

4.3 IOAM

4.3.1 Demonstration of Trajectory Fusion

The results of DTF are shown in Fig. 4.5. Two single-foot trajectories

(blue and green lines) demonstrate serrated lines with estimated stride

lengths larger than 1.5 m in the turning phase, showing a significant bias
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(a)

(b)

(c)

Figure 4.4: Trajectory generated by DF-INS using data from participant A,
using (a) ARE, (b) GLRT and (c) the proposed method, measured in meters.
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error. In this case, the individual’s position is located at a 1.5-m possibility

area, increasing the difficulty of the IPS visualisation. However, the fused

trajectory (red line) illustrates one path of the CBoM, which is easy to

track and evaluate. Section B’s INS tracking performance evaluation was

used to analyse the accuracy of the fused trajectory.

Figure 4.5: 2D plotting of the single foot and dual fused trajectory of Scenario
3 participant b.

4.3.2 Evaluation of Tracking Performance

The RMSE [188] was used to evaluate the localisation accuracy of the

fused trajectory (4.1). Scenario 1 and 2 are closed routes that were used to

evaluate the RMSE of the x- and y-axes between the estimated starting and

ending points. Scenario 3 contains an open route, which was evaluated by

the RMSE of the x-axis (evaluating the ground truth horizontal distance)

and the y-axis separately. The bold values indicate results with a relatively

lower error. The error rate calculates the ratio of the RMSE error to the

route length [189].
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Scenario 1

Table 4.5: Comparison of RMSE [m] of INS Trajectory with and without MCD
Constraint for Scenario 1

Subject RMSE of
INS w/
MCD (ours)

Error rate
(%) w/
MCD (ours)

RMSE of
INS w/o
MCD

Error rate
(%) w/o
MCD

a 0.538 0.334 2.196 1.362
b 0.353 0.219 1.114 0.691
c 2.725 1.690 6.235 3.867
d 0.892 0.553 8.496 5.270
e 2.760 1.712 3.623 2.2470
f 0.288 0.179 1.256 0.779
g 0.560 0.348 1.019 0.632
h 0.329 0.204 0.566 0.351
Ave./std. 1.06/1.06 0.65/0.67 3.06/2.88 1.90/1.79

Figure 4.6: 2D plotting of the fused trajectory with MCD (red line) and without
MCD (blue line) of Scenario1 participant d.

Table 4.5 illustrates the RMSE and error rate of the Scenario 1 experi-

ment. The proposed method had a lower average RMSE (1.06 m) than the

method without MCD (3.06 m) for all participants. All participants with

MCD had an error rate of less than 2 %, which is acceptable for locali-
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sation. Participant d (see Fig.4.6) showed the most significant error rate

improvement. The starting and ending points of the trajectory this study

proposed coincide more closely than those of the method without MCD. For

the result without MCD (blue line), the drifting bias significantly increases

from the coordinate position (-40,20), which causes a significant bias er-

ror at the ending point. The proposed MCD method further constrained

the drift of foot position estimation. Thus, the RMSE of the fused trajec-

tory is reduced. The same improvement was also observed in participant a

(0.334/1.362) and participant c (1.69/3.867), which proves the versatility

of the MCD.

Scenario 2

Table 4.6: Comparison of RMSE [m] of INS Trajectory with and without MCD
Constraint for Scenario 2

Subject RMSE of
INS w/
MCD (ours)

Error rate
(%) w/
MCD (ours)

RMSE of
INS w/o
MCD

Error rate
(%) w/o
MCD

a 6.3940 3.220 6.879 3.465
b 0.3872 0.195 2.224 1.120
c 0.580 0.292 1.115 0.562
d 1.886 0.950 4.994 2.515
e 3.931 1.980 12.830 6.462
f 0.726 0.366 4.578 2.306
g 1.525 0.768 2.672 1.346
h 1.212 0.611 3.417 1.721

Ave./std. 2.08/1.94 1.05/1.04 4.84/3.69 2.44/1.86

Scenario 2 comprises two long curved routes, as shown in Fig. 3.20b, which

challenges the position estimation of the INS. The proposed method (shown

in Table 4.6) has a lower error rate (Ave.= 1.05 m) and the RMSEs are

less than 1 m in participants b, c and f, indicating that the method signif-

icantly outperforms the method without MCD. The standard variance of

the method was also less than that of the others, indicating that the MCD
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method was efficient in reducing the bias error of different participant esti-

mations. The trajectory of participant c (see Fig. 4.7) demonstrates that

the proposed MCD method reduces the noise of pose estimation and in-

creases the stability during the curing path walking phase, thereby achiev-

ing a lower error rate.

Figure 4.7: 2D plotting of the fused trajectory with MCD (red line) and without
MCD (blue line) of Scenario2 participant c.

Scenario 3

The separated x-axis and y-axis biases measure the distance between the

estimated results and the ground truth. The evaluation of the open path

needs to consider the horizontal and vertical bias errors. The results (shown

in Table 4.7) indicate that the proposed method outperforms most of the

samples, particularly for participants a, g and h. The average RMSE is less

than without MCD both on the x-axis (ours = 0.45, w/o MCD = 0.85) and

y-axis (ours = 0.40, w/o MCD = 0.53). For example, the estimated tra-

jectory of participant a (see Fig. 4.8) was closer to the ground truth route.
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Table 4.7: Comparison of RMSE [m] of INS Trajectory with and without MCD
Constraint for Scenario 3

Subject RMSE of
INS w/
MCD x-axis
(ours)

RMSE of
INS w/o
MCD x-axis

RMSE of
INS w/
MCD (ours)
y-axis

RMSE of
INS w/o
MCD y-axis

a 0.268 0.946 0.249 0.480
b 0.056 0.538 0.569 0.467
c 0.109 0.130 0.108 0.119
d 0.601 0.689 0.164 0.513
e 0.914 2.189 1.101 0.846
f 0.838 1.065 0.395 0.284
g 0.707 1.110 0.110 0.307
h 0.086 0.115 0.544 1.237

Ave./std. 0.45/0.36 0.85/0.67 0.40/0.34 0.53/0.36

In a few samples, such as participants b and e, the x- or y-axis error was

higher than that of the participants without MCD. A possible explanation

is the bias caused by the participants’ subjective error between the preset

ending (black dot) and the real foot landing place (green dots).

Figure 4.8: 2D plotting of the fused trajectory with MCD (red line) and without
MCD (blue line) of Scenario3 participant a.

In conclusion, the proposed DTF demonstrated a comprehensive individ-
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ual trajectory which increases the efficiency of visualisation and evaluation.

Under this advantage, the proposed method showed improved tracking per-

formance with an error rate of approximately 1 % in localisation under

different types of walking scenarios and good adaptability with approxi-

mately 0.7 % standard variance for different participants. The proposed

MCD reduces the drifting rate of trajectory estimation and improves the

localisation accuracy of the INS without the MCD method.

4.3.3 Mapping Estimation

Two mapping results are presented in this section. Fig. 4.9 shows a map-

ping for Scenario 1 collected from participant h. Most of the mapping area

has good consistency with the ground truth; however, some areas at the

corner or empty places show an abrupt cone mapping area because the

ultrasonic sensors were out of range.

The mapping for Scenario 2 (see Fig. 4.10) was collected from partici-

pant f, which also showed a closed trajectory with a fully covered corridor

area. These results showed clear and recognisable surrounding maps which

provide significant references for localisation.

4.3.4 Discussion

To the author’s knowledge, this is a novel IPS system to implement INS as

the odometer, which enables non-vision based localisation. The use of iner-

tia and ultrasonic ranging makes the system less affected by unpredictable

environmental factors like weather and motion blur. The combination of

INS and S-OGM further broadens the potential application areas for local-

isation under scenarios without prior map information, such as firefighting

and elder caring. Additionally, the proposed DTF and MCD contribute
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Figure 4.9: Plotting the 2D mapping result of Scenario 1; the red line represents
the individual’s position and the black area represents the mapping results.

valuable dual foot trajectory visualisation and error reduction ideas to the

research community. Finally, the self-designed wearable costs significantly

less than most of the existing approaches, which promotes the development

of the corresponding industry.

The results are dependent on a number of factors, which makes it hard

to compare them to existing works. Nevertheless, the experimental results

are comparable to and in some cases superior to those reported in the

literature by some state-of-the-art methods as shown in Table 4.8. The

positioning error is lower in some studies with predefined landmarks [142]

or with high-quality IMUs [190]. However, considering the application in

commercial and industry cases, the hardware price IOAM system adopted

was much lower than this study. The positioning error is also lower when

external sensor assistance is used [191]. The proposed method outperforms
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Figure 4.10: Plotting of 2D mapping result of Scenario 2

a study with similar quality IMU [99]. Also, the experiment had the most

participants of any other study, which made the human factors, such as

subjectivity, less of a factor.

Table 4.8: Comparison of Positioning Error with State-of-the-art Studies

Ref. Sensor Method Scenario Performance Metrics

[142] IMU
INS with closing points and

smoothing algorithm;
trajectory matching algorithm

1500m repeated circular path RMS = 0.5m

[191] IMU, camera
Dynamic vision assisted
zero velocity detector

160m indoor close-loop route RMSE = 0.9m

[190] IMU Adaptive stance-phase detection 100m2 in a close-loop area RMSE = 0.85m

[192]
IMU,

motion capture
system

SVM, motion type classifier 1000m2 hallway MEPE = 2.68 m

[193] IMU DNN-based trajectory reconstruction
Office building on
two separate floors

(about 1650 and 2475m2)
N/A

[99] IMU Spacial range constraint indoor building RMSE > 2m

[194] IMU
Multi-sensor fusion for

dual-gait analysis
100m straight route,
345m rectangle route

RMSE = 2.54m

[195] IMU Adaptive inequality constraints
87.2m straight route,
120m L-shaped route

PE = 2.5m

Ours IMU MCD 3 different indoor buildings RMSE = 1.2m

However, limitations in the physical properties of low-cost ultrasonic sen-

sors often led to inaccurate stride length measurements, which in turn

affected the tracking performance. Several mappings were impacted due

to noise in the data when the measurement was out of range, leading to

incorrect boundary predictions. The accuracy of range measurements can
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also be affected by uneven ultrasonic reflective planes, which can affect

mapping performance at the corners and empty areas. To overcome this

limitation, a combination of ranging methods will be adopted in the future

study.

4.4 Multi-INS

4.4.1 Scenario A

Test A - Individual Localisation

Each participant was requested to complete two consecutive rounds of walk-

ing along SA routes in separate experiments. Upon returning to the initial

starting point, they were required to stand still for 5 seconds before re-

suming walking. This pause aimed to facilitate clearer segmentation of the

route between rounds. Figure 4.11 displays the calibrated tri-axis magnetic

field strength, m̂4, for participant 4 across two rounds of the SA walking

route, showing high consistency of MFs data distribution over the same

routes.

Table 4.9: Comparison of Individual Positioning Errors (ϵ̄ in Meter [m] Unit) for
SA Walking Route

Participant ID Total MF Data Points ϵ̄ (ZA-INS) ϵ̄ (Ours)

1 219 3.517 2.133
2 225 1.831 1.337
3 222 19.829 2.045
4 246 1.580 0.595

5 240 7.552 3.723
6 205 0.686 0.449
7 249 10.077 0.134
8 261 10.550 1.293

Table 4.9 summarises the total MF data points collected for each partici-
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(a)

(b)

(c)

Figure 4.11: Measurement of tri-axis magnetic field strength for participant 4
(m̂4) during both rounds of the SA walking route, depicted by (a) m̂4

x (x-axis),
(b) m̂4

y (y-axis), and (c) m̂4
z (z-axis) with the dashed line indicating the starting

point for round 2.
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pant across both rounds of the SA walking route, along with the respective

computed mean ϵ (ϵ̄) after applying the proposed MF matching method for

updating individual position (refer to Section 3.4.6). The results demon-

strate a significant decrease in cumulative positioning errors for all par-

ticipants using the proposed MF matching method based on individual

MF data, compared to the ZA-INS method. Figure 4.12 demonstrates the

identification of the transition point between round 1 and round 2 at the

walking step 125 for participant 4 where the computed DTW cost using

the MF data points from step 125 and step 246 (the final step of round 2)

exhibit the minimum DTW cost. This underscores the efficacy of the pro-

posed method in accurately pinpointing the same positions between rounds

based on the MF data points.

Figure 4.12: Visualisation of participant 4’s estimated DTW cost in SA, high-
lighting the identification of the transition point between rounds at step 125,
showing the minimum DTW cost (DTW xyz) computed using the MF data points
from step 125 and step 246 (the final step of round 2).

The positioning results for participant 4 are depicted in Fig. 4.13. Initially,

significant misalignment was observed between reference points’ positioning

from round 1 to round 2 (see Fig. 4.13a). Nevertheless, the implementation

of the proposed method led to a substantial reduction in positioning errors,
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(a) (b)

Figure 4.13: Plotting of (a) initial estimated SA walking route and (b) esti-
mated SA walking route with the proposed positioning error reduction method for
participant 4.

including adjustment to the positioning heading (see Fig. 4.13b), resulting

in decreased cumulative positioning errors across consecutive rounds.

Test B - Multi-Person Localisation

In contrast to Test A, this experiment involves all participants from each

group completing a single round of walking along the SA route simultane-

ously, with each group conducting identical experiments on two separate

days. Participant positions are updated using a cross-update approach that

utilises each participant’s MF data points. The update process involves de-

termining the lowest DTW cost with the MF data points at each landmark

from both self and other participants. For example, when participant 3

reaches the landmark SA-1 (the second landmark from the starting point),

their DTW costs are initially computed with the MF points from partic-

ipants 1, 2, and 4. Subsequently, participant 3’s position at the specific

landmark is updated using the landmark position from the respective par-

ticipant with the minimum DTW cost.

Table 4.10 illustrates the positioning error comparison of each participant
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at every landmark. The results demonstrate an overall reduction in er-

rors using the proposed method (ϵ̄ = 1.739 m) compared to the ZA-INS

method (ϵ̄ = 4.573 m). Here, participants 1, 4, 5, 6, and 8 exhibit reduced

positioning errors at all landmarks, with participant 8 showing the lowest

mean error of ϵ̄ = 0.724m which also presents the highest improvement rate

among others.

Table 4.10: Comparison of Multi-Person Positioning Errors (ϵ̄ in Meter [m] Unit)
for SA Walking Route at Each Landmark

Landmark SA-1 SA-2 SA-3 SA-4 Mean

Participant ID ZA-INS Ours ZA-INS Ours ZA-INS Ours ZA-INS Ours ZA-INS Ours

1 4.489 3.610 14.858 1.380 4.878 0.030 4.242 4.242 7.117 2.315
2 1.999 1.999 3.218 3.445 3.307 2.233 3.492 1.523 3.003 2.301
3 1.693 1.593 1.007 0.014 1.407 1.407 1.675 2.422 1.445 1.359
4 5.679 1.575 5.233 5.233 8.813 7.031 7.664 4.943 6.847 4.696

5 1.577 1.216 1.745 0.076 0.975 0.975 2.476 1.413 1.693 0.920
6 4.174 0.315 3.117 0.291 2.211 1.388 2.985 1.152 3.122 0.787
7 4.000 0.324 3.294 0.167 2.068 1.473 1.148 1.281 2.627 0.811
8 5.756 1.310 7.861 0.109 14.597 0.352 14.707 1.126 10.73 0.724

Mean 3.671 1.493 5.042 1.339 4.782 1.861 4.799 2.263 4.573 1.739

Even though there are overall improvements in the mean positioning errors

of each participant, ZA-INS method shows relatively better performance

for participants 2 and 4 in the landmark SA-2, and participants 3 and 7 in

the landmark SA-4. These differences may be due to the noise generated

during the online generation process of MF data (see Section 3.4.5), which

utilises MF data points from different participants. It shows that there are

possibility of increases the probability distribution error when utilising MF

data points from different participants for computing the DTW costs. The

overview of the estimated positions for each group of participants on the

SA walking route using both the proposed method and the ZA-INS method

is presented in Fig. 4.14.
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(a) (b)

(c) (d)

Figure 4.14: Comparison of the estimated positions for the SA walking route
for (a) G1 using the ZA-INS method, (b) G1 using the proposed method, (c) G2
using the ZA-INS method, and (d) G2 using the proposed method.

4.4.2 Scenario B

Meanwhile, another set of experiments was conducted in a different build-

ing with an annular sector walking route (see Fig. 3.27b) aimed to further

verify the effectiveness of the proposed multi-person positioning update

method. Table 4.11 presents the positioning error comparison of each par-

ticipant at every landmark for SB. The results indicate an overall reduction

in errors using the proposed method (ϵ̄ = 1.263 m) compared to the ZA-

INS method (ϵ̄ = 7.556 m). Participants 1, 2, 3, 5, 6, and 8 exhibited lower

positioning errors at all landmarks, with participant 8 showing the most

significant improvement from ϵ̄ = 21.548 m with the ZA-INS method to ϵ̄

= 1.324 m with the proposed method. Video observations revealed that
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participant 8 exhibited more tiny walking steps compared to other partici-

pants, as verified through the highest total MF data points generated (see

Table 4.9). This further highlights the strength of the proposed method in

coping with walking patterns characterised by tiny steps, where the ZA-

INS method is not capable.

Table 4.11: Comparison of Multi-Person Positioning Errors (ϵ̄ in Meter [m] Unit)
for SB Walking Route at Each Landmark

Landmark SB-1 SB-2 SB-3 SB-4 Mean

Participant ID ZA-INS Ours ZA-INS Ours ZA-INS Ours ZA-INS Ours ZA-INS Ours

1 4.908 0.840 3.876 1.986 3.704 1.384 2.976 0.178 3.866 1.097
2 3.394 0.848 11.104 3.542 5.558 1.279 0.146 0.015 5.050 1.421
3 12.391 2.059 4.809 2.964 10.889 1.430 6.086 0.051 8.544 1.626
4 0.949 0.336 3.489 3.790 16.170 1.092 14.560 0.423 8.792 1.410

5 3.851 1.474 4.620 0.208 3.343 0.433 3.786 2.979 3.900 1.274
6 5.963 1.624 3.817 0.327 2.575 0.397 4.566 1.542 4.230 0.972
7 6.607 1.512 7.500 0.323 2.615 0.533 1.347 1.541 4.517 0.977
8 50.498 0.928 2.176 2.176 8.939 0.192 24.581 1.999 21.548 1.324

Mean 11.070 1.203 5.174 1.915 6.724 0.843 7.256 1.091 7.556 1.263

(a) (b)

(c) (d)

Figure 4.15: Comparison of the estimated positions for the SB walking route
for (a) G1 using the ZA-INS method, (b) G1 using the proposed method, (c) G2
using the ZA-INS method, and (d) G2 using the proposed method.

Similarly, even though there have been overall improvements in the mean
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positioning errors of each participant, the ZA-INS method demonstrates

relatively better performance for participant 4 at landmark SB-2 and par-

ticipant 7 at landmark SB-4. Interestingly, participant 7 shows reduced

positioning error at both landmarks SA-4 and SB-4 when using the ZA-

INS method, where these landmarks represent the starting points of par-

ticipant 7 in different buildings. A similar trend is observed for participant

3 at landmark SA-4, where the ZA-INS method outperforms, while the

proposed method exhibits better performance at landmark SB-4. Fig. 4.15

illustrates the estimated positions for each group of participants on the SB

walking route using both methods.

Lastly, Fig. 4.16 illustrates the computed DTW costs during the cross-

update process for participant 3 upon reaching landmark SB-2. These

costs are computed from the MF data points between participant 1 and 3.

The minimum DTW cost is pinpointed at step 2, accurately recognising the

current position as landmark SB-2 which the landmark SB-2 is the starting

point for participant 1.

4.4.3 Discussion

The study introduces multi-INS, a novel infrastructure-free and self-contained

multi-person inertial navigation system designed to address the research

problems of accurate indoor positioning of multiple individuals. It presents

innovative self-update and cross-update MF matching approaches which are

useful for applications in scenarios where individual positions need updates

without prior information. The MF matching methods involve selecting

and processing target MFs which are important for identifying landmarks

in indoor locations, suitable for time-critical tasks like localising firefight-
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Figure 4.16: Visualisation of the computed DTW costs during the cross-update
process, utilising MF data points from participant 1 and 3 as participant 3 reaches
landmark SB-2. The minimum DTW cost is located at step 2, correctly iden-
tifying the current position of participant 3 is landmark SB-2. Note that the
landmark SB-2 is the starting position for participant 1.

ers, elders, and lost children.

Table 4.12 compares the proposed method with existing studies, highlight-

ing its merits in various aspects. Unlike existing works that often require

predefined landmarks for positioning [120, 126], the proposed method gen-

erates MF data online, reducing dependency on the data pre-collection

process. It also achieves lower positioning errors and reduced processing

complexity compared to methods such as dual-foot-based INS [186]. The

design of a “cloud”-based MF pool enables individuals to share MF data

among multi-person, improving the effectiveness and reducing the process-

ing complexities of the multi-person indoor positioning. Moreover, the

method effectively addresses loop closure issues and demonstrates robust-

ness to changes in the environment, validated through the results obtained

in this study, outperformed the existing studies [135, 180]. This study also

gathers a relatively large sample size, covering individuals with diverse

walking patterns in two different scenarios and days, further validating its

adaptability and robustness.
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Table 4.12: Comparison with Existing Studies

Ref. Sensors Methodology Experiment Scenarios Performance

[186] IMU Centroid-based dual foot fusion “U” shape corridor RMSE > 3 m

[126] IMU
Magnetic field data

based trajectory calibration
1615.18 m

(hybrid indoor & outdoor)
CEP (95%) = 2.5 m

[120] IMU
Trajectory matching and
manual loop-point closure

3200 m2 space RMS = 0.45 m

[135] IMU
Offline magnetic field detection and
online magnetic field data matching

Two different indoor spaces RMSE > 3.5m

[180] IMU
Magnetic offset enhancement based on the
differences between magnetic field intensity

500 m2 space RMSE < 2 m

Ours IMU
Online MF selection and positioning update

with multi-person MFs data
2500 m2 and 3000 m2 spaces RMSE < 1.5 m

Several limitations of this study are evident. Firstly, the performance eval-

uation of the proposed method relies on metrics from the state-of-the-art

works [36, 120, 185, 196], which calculate the horizontal ϵ between esti-

mated positions and predefined landmarks. These studies assume partic-

ipants remain in the middle of the self-defined route throughout walking

experiments, forming the basis for ground truth positions. Secondly, exper-

iments are limited to narrow walking routes, as seen in some recent works

[185, 197], leading to simpler ground truth data derivation compared to

wider spaces. Generating ground truth data in wider indoor spaces necessi-

tates complex and costly equipment for experiment setup [198, 199]. While

some studies utilise the GNSS for high precision ground truth data, this

method is only suitable for outdoor environments [200]. Moreover, stud-

ies indicate that ground truth positioning data derived from visual-inertial

localisation systems also exhibit cumulative errors [201, 202]. These chal-

lenges emphasise the need for addressing ground truth data derivation in

indoor positioning research.
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4.5 Summary

This Chapter presents the experimental results of each study. The visu-

alisation of trajectory and map and the quantity metrics for positioning

error are presented specifically. The experimental results show improved

performance of presented studies achieved. The discussions of each study

are also described to enhance the significance and relevance of the results.
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Conclusion

This chapter provides a comprehensive summary of the research work pre-

sented in this thesis. The limitations and prospects for future research are

discussed accordingly.

5.1 Summary of Work

Throughout the work presented in this thesis, this research aims to explore

the advanced multi-person DR positioning method using sensor fusion to

address the prevailing problems in this area. Specifically, five studies are

conducted with the objectives of enhancing positioning accuracy, recon-

structing maps and integrating multi-person trajectories in order to answer

these questions.

Considering RQ1, three studies are formulated to answer this question

from various research perspectives.

RQ1: What practical techniques can mitigate the cumulative errors in in-

ertial based DR methods?
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Study 1 identifies the characteristics of changes in heading direction dur-

ing each walking pattern and devises a method to eliminate drifting using

GD and RTE methods. In doing so, the heading bias error is decreased

during each gait. Compared with the traditional method, the LCE value

and heading error decrease which indicates enhanced performance for po-

sitioning.

Study 2 focuses on the dual foot zero-velocity detection by analysing the

GLRT sequence. The utilisation of a fixed threshold in zero velocity detec-

tion often leads to imprecise determination of the motion phase, increasing

positioning error. To address this problem, Study 2 develops a dual foot

synergistic method that identifies the phase in each instant by conjunction

points of dual foot GLRT sequences. This algorithm calculates the mo-

tion phases by combining two IMU measurements which perform dynamic

thresholds for zero-velocity detection in each gait cycle.

Study 3 focuses on stride length constraint in the polar model in the cal-

culation of dual foot trajectory optimisation. The optimisation based on a

fixed threshold disregards variations in stride length during the gait among

different scenarios and users, resulting in inaccurate positioning outcomes.

The dual foot trajectory is also combined and adjusted using the CBoM

to improve the accuracy of the positioning. Study 3 innovatively employs

ultrasonic sensors to measure the smallest distance in each gait, which in

turn calculates the corresponding minimum threshold for the centroid con-

straint in the EKF platform. The RMSE of the trajectory indicates that

the dynamic thresholding proposed in this study enhances the accuracy of

positioning compared to the conventional fixed threshold based methods.

In summary, these three studies emphasise the importance of gait analysis

in the field of DR methods, as it reduces the cumulative error by enhanc-
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ing the precision of each positioning calculation using gait analysis based

algorithms.

After achieving accurate positioning, surrounding map generation will em-

phasise the understanding and quality of trajectory visualisation.

RQ2: What techniques can be utilised to reconstruct the layout of the

surroundings in the DR method?

Study 4 focuses on RQ2 by exploring the surrounding reconstruction.

This study is implemented upon the framework of Study 3. Considering

the environmental factors and sensor physical characteristics, ultrasonic

sensors are identified as the most suitable range finder sensors in burn-

ing buildings Study 4. The polar projection method utilises geometric

calculations based on the individual’s position, attitude and surrounding

distance data obtained from the ultrasonic sensor to determine the coor-

dinates of map points. The computed S-OGM results exhibit a structural

representation of the environment that is highly consistent with the ground

truth layout of the surroundings.

Considering the advancement achieved, Study 5 aims to answer the ulti-

mate question:

RQ3: What techniques can DR methods adopt to effectively update posi-

tioning results via common attributes from multiple persons?

Inspired by magnetic field based localisation, Study 5 explores the use

of magnetic fingerprints as the common characteristics to segment a con-

tinuous trajectory into distinct fingerprints. The DTW based matching

strategy is designed to identify the optimal matching and timing for trajec-
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tory integration. The trajectories from multiple users are combined using

an EKF framework, which incorporates specific pseudo-measurement data

to update the position. A total of ten individuals are evenly distributed

into two groups for data collection. The integrated trajectory results ex-

hibit precise tracking performance for both individual and multi-person

situations, achieved through individual self-update and multi-person cross-

update methods, respectively.

5.2 Key Contributions

Based on the body of work, the details of these contributions are shown

below.

1. Improving Heading Estimation based on Gait Analysis

In Study 1, a new gait-aided DR system is explored to enhance lo-

calisation accuracy by utilising an adaptive heading estimation tech-

nique. This study examines various cases during the gait that are

associated with the possible factors that influence the accuracy of

heading estimation. This study presents significant insights in the

field of DR research by examining the clamping angle of the foot and

achieving enhanced positioning results.

2. Improving Step Detection and Optimisation using Sensor

Fusion

Study 2 and Study 3 explore sensor fusion techniques by using dy-

namic thresholding approaches for detecting precise motion phases

and optimising dual-foot positioning. These methods contribute to

enhancing the positioning accuracy of DR methods by replacing inad-

equate configurations in the positioning calculation. Compared with
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conventional fixed threshold based DR methods, the dual foot syn-

ergistic method and minimum stride length constrain method adap-

tively eliminate the positioning error among different users.

3. Surrounding Map Reconstruction in DR Methods

Study 4 develops a novel map reconstruction algorithm in the DR

system. This algorithm innovatively calculates the coordinates of

map points using polar projection integrating range measurement

from ultrasonic sensor and trajectory from DR system. By doing so,

a surrounding map can be conducted while tracking users’ positions.

This map enhances the comprehension of trajectory and expands the

potential use of the DR method in situations where layout informa-

tion, such as in firefighting scenarios, is not previously known.

4. Development of Multi-person Localisation

Based on the improvement approaches presented above, Study 5

explores a novel approach for multi-person positioning updates by

employing an online magnetic fingerprint matching technique. This

approach updates the position of individuals by leveraging pseudo-

measurements obtained from matched MFs from themselves or other

individuals. The multi-person INS system proposed in this study has

demonstrated remarkable performance in addressing the challenges

of individual loop closure and the integration of multiple trajectories.

This innovation has led to a substantial enhancement in the quan-

titative performance of inertial based DR method. Notably, to the

best of our knowledge, this is the first multi-person method in the

DR research field that has been documented in the literature. This

approach surpasses most existing methods by its online MF matching

capability, obviating the need for pre-installed landmark and WSN

setups which brings important technical solutions to the application
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of DR methods in emergency services.

In summary, this thesis proposes a set of novel approaches that address

significant problems in the DR research field. Five studies contribute to

improving the accuracy of positioning, developing surrounding mapping

and enabling multi-person usage, which makes up the research gap of in-

door firefighting navigation. Specifically, the gait analysis, polar projection

and online magnetic fingerprint inspire new research interests in DR related

studies which enhance DR systems to adapt to harsh and dynamic envi-

ronments. Additionally, the designed low-cost sensor fusion solutions will

promote the industry development potential of application cases.

5.3 Limitations and Future Works

5.3.1 Optimisation of Multi-person Positioning

The multi-person positioning method described in this thesis comprises a

two-phase computation. The initial phase involves the system establish-

ing the online fingerprint, while the subsequent phase entails the system

executing fingerprint matching and trajectory updating. The calculation

process is both time-consuming and resource-intensive, resulting in delays

in real-time applications. In order to address this issue, future work will

incorporate multi-trajectory integration within a multi-threaded comput-

ing framework. A heuristic algorithm for fingerprint matching will be de-

veloped to optimise calculation speed and conserve memory by reducing

unnecessary matching attempts. The learning-based approaches are po-

tentially utilised for improving the adaptivity of system parameters. To

investigate the positioning performance influenced by hardware quality fac-

tors, different IMU sensors e.g. Xsens IMU will be adopted in the future
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study.

5.3.2 Evaluation Benchmarking

The studies presented in this thesis do not have a comprehensive benchmark

for evaluating the performance of positioning and mapping compared with a

standard ground truth. Despite the overall results and quantity evaluation

criteria, the majority of literature relies on loop closing RMSE and subjec-

tive visualisation comparison for evaluation, which limits the reliability of

positioning and mapping assessment. In addition, the ground truth refer-

ences of DR based methods are not continual while its measurements are

easily affected by human subjective factors (e.g. individual ground truth

measurement bias and irregular walking patterns [203]) and environmental

factors (e.g. magnetic interference, visibility and temperature [204, 205]).

This limitation will challenge the confidence of the DR system evaluation

quality. Future work will adhere to the standards of building surveying in

order to create a thorough evaluation system that includes ground truth

determination, benchmark formulation, and evaluation metrics. The total

station, WSN method, and SLAM based method will be utilised for bench-

mark development. By doing this, it is anticipated that a standardised

objective quality assessment will be provided, allowing researchers in this

field to compare the performance of their methods against a comprehensive

standard.

5.3.3 Seamless Indoor-Outdoor Positioning

For the DR method, the calculation of positioning necessitates an initial

position, commonly designated as (0,0) in the experiment. This initial-
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isation often presents challenges in representing positions in a standard

map. Hence, a standard geographical coordinate of the initial point is re-

quired to convert the coordinate system from a body frame coordinate to

the Earth-centered, Earth-fixed coordinate system (ECEF) in order to en-

sure a standardised and consistent representation of position. In order to

address this issue, future work would focus on exploring a seamless indoor-

outdoor positioning system through the integration of GNSS positioning

and DR positioning. By utilising the ECEF position obtained from GNSS,

it is possible to ascertain the initial position of the DR method. In addi-

tion, this design has the capability to establish initial positions for multiple

individuals at various starting points, thereby improving the efficiency of

multi-person localisation.

112



List of Publications

Journals

[1] Wu R, Lee B G, Pike M, et al. IOAM: A Novel Sensor Fusion-

Based Wearable for localisation and Mapping[J]. Remote Sensing,

2022, 14(23): 6081.

[2] Wu R, Pike M, Lee B G, et al. Multi-INS: A Novel Approach Integrat-

ing Online Magnetic Fingerprints for Multi-Person Inertial Navigation

Systems [J]. IEEE Transactions on Systems, Man and Cybernetics:

Systems. (Under Review)

[3] Wu R, Pike M, Lee B G. DT-SLAM: dynamic thresholding based

corner point extraction in SLAM system[J]. IEEE Access, 2021, 9:

91723-91729.

[4] Chai X, Wu R, Pike M, et al. Smart wearables with sensor fusion for

fall detection in firefighting[J]. Sensors, 2021, 21(20): 6770.

[5] Zhu L, Wu R, Lee B G, et al. FEGAN: A Feature-Oriented Enhanced

GAN for Enhancing Thermal Image Super-Resolution[J]. IEEE Signal

Processing Letters, 2024.

[6] Chai X, Lee B G, Pike M, Wu R, et al. Pre-impact Firefighter Fall

Detection Using Machine Learning on the Edge[J]. IEEE Sensors Jour-

nal, 2023.

Conference Proceedings

[1] Wu R, Pike M, Chai X, et al. ”GA-PDR: Using Gait Analysis for

Heading Estimation in PDR Based Indoor localisation System,” IECON

2023- 49th Annual Conference of the IEEE Industrial Electronics Soci-

ety, Singapore, Singapore, 2023, pp. 1-6, doi: 10.1109/IECON51785.2023.

10312643.

[2] Wu R, Lee B G, Pike M, et al. ”Enhancing DF-INS for Accurate Zero-

Velocity Detection in ILBS: A Dual Foot Synergistic Method,” 2023

113



IEEE SENSORS, Vienna, Austria, 2023, pp. 1-4, doi: 10.1109/SEN-

SORS56945.2023.10325168.

[3] Wu R, Pike M, Chai X, et al. SLAM-ING: A Wearable SLAM Inertial

NaviGation System[C]//2022 IEEE Sensors. IEEE, 2022: 01-04.

[4] Wu R, Lee B G, Pike M, et al. Enhancing DF-INS for Accurate Zero-

Velocity Detection in ILBS: A Dual Foot Synergistic Method[C]//2023

IEEE SENSORS. IEEE, 2023: 1-4.

[5] Lee B G, Wu R, Xu F, et al. ”Comparative Analysis of Wireless

Transmission Methods for Firefighting Communication in Challeng-

ing Indoor Environments,” TENCON 2023 - 2023 IEEE Region 10

Conference (TENCON), Chiang Mai, Thailand, 2023, pp. 1070-1075,

doi: 10.1109/TENCON58879.2023.10322361.

Patents

[1] Boon Giin Lee, Renjie Wu, Xiaoqing Chai, et al. A new type of

infrared thermal imaging glasses. Publication date:2023-08-25 publi-

cation no.:CN219590611U (Chinese patent, Granted)

[2] Renjie Wu, Boon Giin Lee, Matthew Pike, et al. A shoe with a posi-

tioning function. Publication date: 2022-08-12 Publication no.:CN217161226U

(Chinese patent, Granted)

[3] Boon Giin Lee, Renjie Wu, Matthew Pike, An ultrasound-based in-

door inertial guidance mapping method and system. Publication

date:2022-06-03 Publication no.:CN114577206A (Chinese patent, Granted)

[4] Boon Giin Lee, Shuhe Zhang, Renjie Wu, et al. A multi-user coop-

erative positioning method, apparatus, electronic device and storage

medium. Publication date:2022-07-07 Publication no.:CN116399336A

(Chinese patent)

[5] Boon Giin Lee, Renjie Wu, Matthew Pike, et al. A method, device and

system for determining a motion trajectory. Publication date:2022-

05-13 Publication no.:CN114485647A (Chinese patent)

[6] Boon Giin Lee, Shuhe Zhang, Renjie Wu, et al. A multi-user coop-

erative positioning method, apparatus, electronic device and storage

114



medium. Publication date: 2022-07-07 Publication no.:CN116399336A

(Chinese patent)

[7] Boon Giin Lee, Renjie Wu, Matthew Pike. Ultrasonic Wave-Based

Indoor Inertial Navigation Mapping Method and System. Application

date 2023-02-21 Application no.:18/112,143 (US patent)

115



Bibliography

[1] C. Zhang, “University of nottingham thesis template for
phd degree,” https://www.overleaf.com/latex/templates/
university-of-nottingham-thesis-template-for-phd-degree/
yhdfrftcbgbk, 2019.

[2] M. A. Al-Ammar, S. Alhadhrami, A. Al-Salman, A. Alarifi, H. S.
Al-Khalifa, A. Alnafessah, and M. Alsaleh, “Comparative survey of
indoor positioning technologies, techniques, and algorithms,” in 2014
International Conference on Cyberworlds. IEEE, 2014, pp. 245–252.

[3] N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, “Gnss position in-
tegrity in urban environments: A review of literature,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 9, pp.
2762–2778, 2018.
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[93] A. R. Jiménez, F. Seco, J. C. Prieto, and J. Guevara, “Indoor pedes-
trian navigation using an ins/ekf framework for yaw drift reduction
and a foot-mounted imu,” in 2010 7th workshop on positioning, nav-
igation and communication. IEEE, 2010, pp. 135–143.

[94] J. Wahlström and I. Skog, “Fifteen years of progress at zero velocity:
A review,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1139–1151, 2020.

[95] F. Woyano, S. Lee, and S. Park, “Evaluation and comparison of per-
formance analysis of indoor inertial navigation system based on foot
mounted imu,” in 2016 18th International Conference on Advanced
Communication Technology (ICACT). IEEE, 2016, pp. 792–798.

[96] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust vi-
sual inertial odometry using a direct ekf-based approach,” in 2015
IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, 2015, pp. 298–304.

[97] H. Zhao, Z. Wang, S. Qiu, Y. Shen, L. Zhang, K. Tang, and
G. Fortino, “Heading drift reduction for foot-mounted inertial navi-
gation system via multi-sensor fusion and dual-gait analysis,” IEEE
Sensors Journal, vol. 19, no. 19, pp. 8514–8521, 2018.

[98] M. Zhu, Y. Wu, and S. Luo, “A pedestrian navigation system by low-
cost dual foot-mounted imus and inter-foot ranging,” in 2020 DGON
Inertial Sensors and Systems (ISS). IEEE, 2020, pp. 1–20.

[99] G. Prateek, R. Girisha, K. Hari, and P. Händel, “Data fusion of dual
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Appendix A

List of Abbreviations

IPS Indoor Positioning System

DR Dead Reckoning

WSN Wireless Sensor Network

INS Inertial Navigation System

PDR Pedestrian Dead Reckoning

SLAM Simultaneous localisation and Mapping

vSLAM visual SLAM

GNSS Global Navigation Satellite System

MFM Magnetic Field Matching

MF Magnetic Fingerprint

LDM Light Density Matching

IMU Inertial Measurement Unit

MIMUs Magneto-inertial measurement units

Multi-INS Multi-person INS

GA-PDR Gait Analysis-based PDR

GLRT General Likelihood Ratio Test

FT-INS Foot-mounted INS

DF-INS Dual Foot-mounted INS

IOAM Inertial Odometry and Mapping

ZUPT Zero-velocity Update

ZARU Zero Angular Rate Update

ZV Zero Velocity

MCD Minimum Centroid Distance
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KF Kalman Filter

EKF Extended Kalman Filter

UKF Unscented Kalman filter

DTF Dual Trajectory Fusion

UAV Unmanned Aerial Vehicles

CBoM Center Body of Mass

S-OGM surrounding Occupancy Grid Map

RMSE Root Mean Square Error

MSE Mean Square Error

ORB Oriented Fast and Rotated Brief

LIDAR Light Detection and Ranging

RADAR Radio Detection and Ranging

GAN Generative Adversarial Networks

RF Radio Frequency

MEMS Micro-Electro-Mechanical System

LCE Loop Closing Error

DTW Dynamic Time Wrapping

MFI Magnetic Field Intensity

MWR Millimeter Wave Radio

PIR Pyroelectric infrared

IoT Internet of Things

HDE Heuristic Drift Elimination

GA Gait Analysis

GD Gait Detection

RTE Redundant Turn Elimination

CEP circular error probable

ROI Region-of-interest

SP Step Pattern

ECEF Earth-fixed coordinate system
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Appendix B

SLAM-ING: A Wearable

SLAM Inertial NaviGation

System

ILBS shows great research promotions with wide applications e.g., indoor

firefighting, cave exploration, parking and market guide. FT-INS, one ap-

proach of ILBS, lacks a reference map of the environment, resulting in

poor trajectory recognition. This paper introduces SLAM-ING, a novel

wearable type SLAM via a ZARU aided Inertial NaviGation. SLAM-ING

proposes a gravity centre calculation method, merging the dual (left and

right) foot trajectories. Moreover, the proposed polar projection and occu-

pancy grid map method determines the map boundary, enabling the fusion

of the trajectory and ultrasonic range. The mapping results of SLAM-ING

are demonstrated with the ground truth. The location performance is val-

idated using a self-created database, the results of which indicate lower

horizontal and spherical error compared with the traditional INS in all

scenarios.
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B.1 Introduction

ILBS[49] is an actively explored research topic in the field of Geographic

Sciences (GS). However, due to the characteristics and materials used in

modern buildings, GNSS, a commonly used global localisation system, is

unsuitable for indoor localisation. Other passive localisation methods in-

clude UWB [10]; Wi-Fi [120]; BLE [126]; and radio frequency identification

(RFID) [11]. However, many existing solutions rely upon pre-existing in-

frastructure such as sensors and access points to be installed for localisation

to work accurately – limiting their potential for more widespread usage.

Therefore, alternatives which function without existing infrastructure are

desirable for a broad range of use cases, including emergency response and

home applications. Active localisation and mapping is one such approach

in which users carry sensors on their person [206].

INS is a popular active localisation method in ILBS [207] with lower envi-

ronmental limitations compared with vSLAM [26] and LiDAR SLAM [57].

Using INS, a user’s current position is computed based on their last known

position. Foot-mounted INS has been shown to achieve high accuracy [208]

due to its ability to measure inertia. In addition, the Zero-velocity UPdaTe

(ZUPT) and Zero Angular Rate Update (ZARU) can only be applied in

the foot-mounted system when the user is stationary [209]. OpenShoe

[103, 104] is an embedded foot-mounted INS utilising ZUPT. However, the

tracking performance of these methods with a single IMU is easily affected

by mechanical and measurement errors arising from its electronic compo-

nents.

At present, to reduce heading drift, many approaches have considered using

a dual foot-mounted design. Multiple sensors reduce the impact electrical

component noise has on overall tracking performance. Similarly, multiple

sensors allow for kinematic analysis of user motion, which, in turn, can help

constrain growing position errors. Prateek et al. [99] proposed a sphere

limit algorithm built upon the OpenShoe model to merge dual-foot INS

data. Zhao et al. [97] proposed a dual gait analysis approach to optimise

step length estimation. Wang et al. [128] proposed an adaptive inequal-

ity constraint using Kalman filter for dual-foot sensor fusion. Dual foot-
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mounted INS systems have been shown to improve tracking performance

dramatically. However, the lack of a reference map of the environment

makes it difficult to recognise the trajectory in unfamiliar scenarios like

indoor firefighting.

To address the lack of an environment map, this paper proposes SLAM-

ING, a SLAM approach which utilises INS and ultrasonic sensors to gener-

ate a dynamic map of the environment by measuring the distance between

the user and the surrounding environment. A gravity centre calculation

and an occupancy grid mapping approach is applied to model the map

points. ultrasonic sensor works stably under smoke and vapour-filled envi-

ronments, playing scenario and power-friendly roles among kinds of ranging

methods [154, 178].

B.2 ZUPT and ZARU Aided INS for Dual

Foot Fusion

B.2.1 Initialization

The sampling rate of an ultrasonic sensor is lower than that of an IMU,

because of the physical transmission properties of sound [210]. A nearest

neighbour interpolation method [211] is adapted to align the range data to

the sampling rate of the IMU.

u(i) = interp

(
û(i),

T s
(
imu(i)

)
Ts (û(i))

)
(B.1)

where û(i)and u(i)represent the original and interpolated ultrasonic range

signal. i ∈ {R, L}represents the sensor mounted on right or left foot. Ts()

computes the sampling rate of the sensor. Two data sequences from the
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sensors on each foot are synchronised. The IMU data is defined as:

D
(i)
k ≜

[
a
(i)
k ω

(i)
k

]T
, D

(i)
k ∈ R6 (B.2)

B.2.2 EKF

The IMU state in the navigation system at time k ∈ N+is defined as [156]:

x̂
(i)
k ≜

[
p̂
(i)
k v̂

(i)
k θ̂

(i)
k

]
(B.3)

where p̂
(i)
k ∈ R3,v̂

(i)
k ∈ R3and θ̂

(i)
k ∈ R3represent the position, velocity and

pose in 3-axis [97, 99]. The INS process for state transforming from the

last known state is defined as:

x̂
(i)
k = f

(
x̂
(i)
k−1,

∼
e
(i)

k−1

)
(B.4)

where f denotes a 9-dimension state transforming function,
∼
e
(i)

k−1denotes

the error covariance variable of navigation system. And the time dynamics

of error δx̂
(i)
k for x̂

(i)
k is modeled as:

δx̂
(i)
k =

[
δp̂

(i)
k δv̂

(i)
k δθ̂

(i)
k δa

(i)
k δω

(i)
k

]
(B.5)

δx̂
(i)
k = F

(i)
k δx̂

(i)
k−1 +G

(i)
k w

(i)
k (B.6)

where δp̂
(i)
k , δv̂

(i)
k and δθ̂

(i)
k indicate error covariance of position, velocity and

pose, δa
(i)
k and δω

(i)
k represents the hardware bias of the accelerometer and

gyroscope. F
(i)
k and G

(i)
k denote the state transition and noise gain matrix.

The state covariance matrix is described by:

P
(i)
k = F

(i)
k P

(i)
k

(
F

(i)
k

)T
+G

(i)
k Q

(i)
k

(
G

(i)
k

)T
(B.7)
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B.2.3 ZUPT and ZARU

A step detector [157] classifies each data sample according to its gait state,

being either: moving and stationary. When a stationary standing phase is

detected, the navigation system sets pseudo-measurements in the Kalman

filter framework to correct x̂
(i)
k as explained in [103, 159, 161]. The Kalman

gain is computed by:

K
(i)
k = P

(i)
k (Hk)

T
[
HkP

(i)
k (Hk)

T +Rk

]-1
(B.8)

Hk =

[
Hv

Hω

]
=

[
03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 I3×3

]
(B.9)

where I3×3 denotes identity matrix and 03×3 denotes zero matrix. Hk is

the observation transition matrix with pseudo-measurement. Rk denotes

the noise covariance matrix of Hk. Updating the prediction variable in the

Kalman filter platform to correct the navigation state:

x̂
(i)
k = x̂

(i)
k +K

(i)
k

[[
δv̂

(i)
k δω

(i)
k

]T
−Hkx̂

(i)
k

]
(B.10)

Finally, correct the state covariance matrix to complete the EKF loop:

P
(i)
k = [I15×9 −KkHk]P

(i)
k (B.11)

The position of the dual foot is fused by the centroid method [157] in

Kalman filter.
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B.3 Ultrasonic Mapping

B.3.1 Gravity Center Calculation

In SLAM-ING, to simplify the visualization of the trajectory, the user is

defined as being a rigid body [166, 167]. The gravity centre of the carrier

is calculated by merging the dual foot position estimation using a weight

fusion method:

pc = g
[
p(R) p(L)

]
= αp(R) + βp(L), α + β = 1 (B.12)

where pc ∈ R3 indicates the position of the hypothetical gravity centre of

the carrier’s body. α and β are weight parameters for right and left foot

INS, respectively.

B.3.2 Ultrasonic Scanning Projection

The coordinates of ultrasonic mapping points are calculated based on the

reference position and pose i.e., the INS. The ranging direction of the ul-

trasonic sensor is parallel to the x-axis of IMU in each foot.

Figure B.1: The schematic of polar projection.
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To project the 3D scanning to 2D XOY coordinate, a polar transform

method is shown in Fig. B.1. The proposed method is described below

[176, 177]:

M
(
r
(j)
k

)
=

cosθcosφcosθsinφ

sinθ}

 (B.13)

where θ and φ denote the pitch and yaw angles in the sphere coordinate.

The coordinate of ultrasonic mapping points M
(
r
(j)
k

)
under maximum

covering principle is calculated as below:

Up
(i)
k =

[
Ux

(i)
k Uy

(i)
k Uz

(i)
k

]T
= p

(i)
k +

[
u
(i)
k diag(1, 1, 1)M

(
r
(i)
k

)]
(B.14)

The ultrasonic range is mapped via occupancy grid map algorithm (see

Fig. B.2) [40]. The grid mapping via Bresenham [212] algorithm is defined

as (B.15)

Figure B.2: Schematic of single scanning [40] (a) and continual scanning (b).
The white circle is the position of ultrasonic sensor, black, gray and white cells
denote boundary, unavailable area and empty area, respectively.

B
(
p
(j)
k , Up

(j)
k

)
(B.15)

where p
(j)
k and Up

(j)
k indicate the ultrasonic placement position and the

boundary position of ultrasonic scanning, respectively.
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B.4 Experiment and Discussion

SLAM-ING prototype system utilised a MPU9250 IMU (200Hz), a HC-

SR04 ultrasonic sensor (15Hz), and an ESP32 dual core micro-computing

unit. SLAM-ING were mounted to the front, and outer side of each shoe.

Sensor data is transmitted via Wi-Fi to a nearby terminal, as shown in Fig.

B.3.

Figure B.3: The inner design and hardware placing of the SLAM-ING data
collector.

Data collection to evaluate the system was held in an office-like building.

Scenario 1 featured a 10m straight corridor and scenario 2 had a 40m “L”

shape route. The gravity centre weights are α = 0.5 and β = 0.5. The

ground truth of the corridor boundary is measured by a laser range finder.

The gravity centre calculation (see Fig.B.4a and B.4c) fuses the dual foot

trajectories, eliminating the dynamic stride length interference which sim-

plifies the user’s track visualisation to a single line. The ultrasonic mapping

of this approach demonstrates good consistency with the ground truth. A

few of the map areas derive from the boundary because of the ultrasonic

measurement noise and human’s physiological activity.

INS trajectory performance is measured via horizontal and spherical error

[187]. Our method showed lower error because the ZARU further con-

strains the drift of pose estimation. In general, SLAM-ING shows good

performance in localisation and mapping which is promising to specific ap-

plication.
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(a) (b)

(c) (d)

Figure B.4: 2D plotting the gravity centre fusion and INS trajectory of Scenario
1 and Scenario 2 (a)(c) and ultrasonic mapping (b)(d) for the left foot (green
area) and right foot (blue area).

Table B.1: Comparison of Horizontal and Spherical Error of INS With/Without
ZARU

Scenarios Error type [m] ZARU
(Ours)

No
ZARU
[187]

Scenario1
Horizontal 9.1301 9.6376

Spherical 9.9232 10.169

Scenario2
Horizontal 32.097 32.609

Spherical 33.167 34.126
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Two limitations were identified in the current implementation of SLAM-

ING. First, the physical specifications of ultrasonic sensor limit the res-

olution and range of mapping. Second, the proposed method adopts a

rectangle shape ultrasonic sensing model which limits the measurement

accuracy at uneven boundary areas.

B.5 Conclusion

This study proposes SLAM-ING, a novel localisation and mapping ap-

proach utilising INS and ultrasonic sensors. The primary contributions of

this system include a gravity centre calculation method for dual foot tra-

jectory fusion and an ultrasonic mapping method using polar projection.

A ZARU method is also adopted for stable pose estimation. This study

demonstrated improved localisation performance with lower error rates rel-

ative to ZUPT-only approaches. Future work will explore the application of

high-quality ultrasonic sensors and a cone-shaped ultrasonic sensing model

for more accurate mapping performance.

146


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Overview
	Research Questions
	Thesis Outline

	Literature Review
	WSN based IPS
	SLAM based IPS
	DR based IPS
	Development and Improvements of DR
	Multi-person Localisation

	Summary

	Methodology
	GA-PDR
	System Overview
	Gait Detection (GD)
	Redundant Turn Elimination (RTE)
	Experimental Setup

	Dual Foot Synergistic Method
	Dual Foot GLRT (DF-GLRT)
	Dual Foot Synergistic Method
	Experimental Setup

	IOAM
	System Overview
	MCD Aided INS for Dual Foot Fusion
	Ultrasonic Mapping
	Experimental Setup

	Multi-INS
	System Overview
	Individual Trajectory Estimation
	INS State Model
	Enhancement of INS Estimation
	Online Generation of MF Data
	Online Update of Multi-Person Trajectories
	Experimental Setup

	Summary

	Results and Discussion
	GA-PDR
	Evaluation of Localisation Performances
	Discussion

	Dual Foot Synergistic Method
	Evaluation of Zero-Velocity Detection Performances
	Evaluation of Localisation Performances

	IOAM
	Demonstration of Trajectory Fusion
	Evaluation of Tracking Performance
	Mapping Estimation
	Discussion

	Multi-INS
	Scenario A
	Scenario B
	Discussion

	Summary

	Conclusion
	Summary of Work
	Key Contributions
	Limitations and Future Works
	Optimisation of Multi-person Positioning
	Evaluation Benchmarking
	Seamless Indoor-Outdoor Positioning


	List of Publications
	Bibliography
	Appendices
	List of Abbreviations
	SLAM-ING: A Wearable SLAM Inertial NaviGation System
	Introduction
	ZUPT and ZARU Aided INS for Dual Foot Fusion
	Initialization
	EKF
	ZUPT and ZARU

	Ultrasonic Mapping
	Gravity Center Calculation
	Ultrasonic Scanning Projection

	Experiment and Discussion
	Conclusion


