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Abstract

Container port freight constitutes a pivotal component of contemporary

global logistics, playing a decisive role in the convoluted matrix of interna-

tional trade and supply chain management. Given the profound impact of

container port operations on global trade dynamics, optimizing the transfer

efficiency of container trucks within ports is of paramount significance. The

efficiency of truck dispatching stands out as one of the core determinants

determining port operational efficiency, thereby necessitating novel and ad-

vanced approaches to tackle the prevalent constraints and bottlenecks.

This paper explores machine learning (ML) methodologies to effectively

navigate the complexities and uncertainties inherent in container port dy-

namic truck dispatching. Traditional methods in this domain frequently

encounter limitations, particularly in their inability to adapt to real-time

changes and handle the uncertainties characteristic of port operations.

These conventional approaches, often reliant on static parameters, struggle

to reflect port environments’ constantly evolving and unpredictable nature

accurately. In addressing these challenges, ML stands out as a highly suit-

able alternative, owing to its capacity to learn from vast datasets, adapt to

novel scenarios, and make informed decisions under uncertain conditions.

The PhD project presented here is centered on two primary applications of

ML: firstly, the development of innovative techniques for the generation and
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optimization of truck dispatching strategies, and secondly, the enhance-

ment of operational efficiency and responsiveness amidst the fluctuating

dynamics of port activities. By harnessing the adaptive and predictive

capabilities of ML, this study aims to forge a more dynamic, responsive,

and intelligent dispatching framework, one that is adept at overcoming the

multifaceted uncertainties and fluidity inherent in contemporary container

port operations.

Another facet of this PhD project seeks to augment the precision of evaluat-

ing truck dispatching strategies through refined ML methods. This segment

is grounded in the aspiration to render the evaluation of diverse dispatching

strategies more coherent and accurate, allowing for a meticulous assessment

of their real-world efficacy and impact. The advancement in evaluation

methodologies is anticipated to provide a nuanced understanding of indi-

vidual dispatching strategies’ intrinsic merits and demerits, contributing to

developing more robust, effective, and tailor-fitted solutions.

Beyond these research works, this thesis delves into a comprehensive ex-

amination of the inherent challenges and opportunities residing within the

interface of machine learning and truck dispatching. It elucidates the

prospective advancements and innovations that machine learning can bring

forth in optimizing dispatching mechanisms and strategies, emphasizing

its potential to revolutionize container port logistics. This PhD research

strives to discover new pathways for elevating operational efficiency and

strategic intelligence in container port logistics through systematically syn-

thesizing machine learning insights and domain-specific expertise.

The implications of this study are manifold, projecting substantial contri-

butions to the enhancement of container port operational paradigms and

global logistics frameworks. By incorporating machine learning into dy-
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namic truck dispatching, this thesis aims to enhance efficiency and adapt-

ability in the field, offering a more strategic approach to tackling the com-

plexities and uncertainty involved. The findings and insights from this

research are poised to provide valuable perspectives and pragmatic solu-

tions for practitioners, policymakers, and academics, converging towards a

more resilient, agile, and sustainable future in container port logistics and

beyond.
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Chapter 1

Introduction

A container port, also known as a container terminal, is a dedicated facility

where cargo containers are transshipped between various modes of trans-

port, such as container ships, trucks, and rail, for onward transportation.

Equipped with specialized heavy machinery, including cranes and forklifts,

these ports are designed to handle shipping containers efficiently. They play

a pivotal role in international trade and the global supply chain, serving as

key hubs in the movement of goods worldwide. The efficient operation and

management of container ports are crucial to ensuring an uninterrupted

cargo flow, significantly impacting economic activities and global trade.

In this context, container ports emerge as critical nodes within the global

logistics and supply chain network, acting as pivotal junctures where goods

transition between maritime vessels and land-based transportation. At the

heart of this intricate network lies dynamic truck dispatching, a key oper-

ational component that dictates the efficiency and fluidity of freight move-

ment within and beyond the port’s boundaries. The optimization of truck

dispatching is driven by the need to alleviate operational bottlenecks and

enhance port throughput, contributing significantly to the robustness and
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resilience of international trade mechanisms. This need becomes increas-

ingly critical as trade volumes escalate, highlighting the complexities and

challenges in logistical operations.

In the unfolding sections of this introduction, a comprehensive exposition

is provided to ground readers in the multifaceted aspects of this research.

Section 1.1: Background and Motivation establishes the overarching

context and elucidates the motivations underpinning this study, emphasiz-

ing the integral role of container ports in the global trade ecosystem and the

operational imperatives of dynamic truck dispatching. Following this, Sec-

tion 1.2: Problem Distribution and Formulation offers a meticulous

exploration of the inherent challenges and nuances associated with truck

dispatching in container ports, thereby articulating the research problem

precisely. Section 1.3: Research Objectives and Scope delineates the

specific objectives and the analytical boundaries guiding this inquiry, clari-

fying the research’s investigative trajectory and methodological alignment.

Progressing to Section 1.4: Significance of the Study, the potential

impact and contributions of the research findings are underscored, project-

ing their relevance and applicability in advancing operational paradigms

within container port logistics. Finally, Section 1.5: Thesis Structure

presents an organized overview of the ensuing chapters and their thematic

focus, preparing readers for a structured and in-depth engagement with

machine-learning-based approaches to optimizing dynamic truck dispatch-

ing at container ports.
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1.1. BACKGROUND AND MOTIVATION

1.1 Background and Motivation

Container ports, the nexus between maritime and land-based transporta-

tion, hold significant importance in the global trade and logistics ecosystem

(Hall, 2009). These pivotal converging points are indispensable compo-

nents in international trade, playing a vital role in the transportation and

transshipment of goods across continents. The increasing globalization and

intensification of trade activities accentuate the significance of container

ports, necessitating innovative solutions to accommodate the burgeoning

demands and to address the inherent complexities in logistical operations

(Berkes et al., 2006).

The orchestration of operations within container ports involves many vari-

ables and components, among which dynamic truck dispatching stands

prominently as a determinant of overall operational efficiency (Chen et al.,

2019). It encompasses the real-time allocation and scheduling of trucks for

container transfers within the port premises, which is integral to prevent-

ing congestion, minimizing dwell times, and ensuring seamless container

movements. The optimization of these dispatching processes is paramount

to achieving operational agility and enhancing the port’s throughput capa-

bilities (Talley, 2006b).

However, the multifaceted nature of port operations renders traditional

truck dispatching methodologies based on human operators increasingly

inadequate, as they often struggle to reconcile the dynamic and variable

elements inherent in port logistics. This inadequacy amplifies the oper-

ational bottlenecks and hampers the adaptability and responsiveness of

dispatching strategies to evolving demands and operational contingencies.

Thus, there is a pressing need for advanced and adaptive solutions that can

adeptly navigate the intricate landscape of container port operations and
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1.1. BACKGROUND AND MOTIVATION

offer optimized dispatching strategies.

Given the above challenges, machine learning emerges as a potential cata-

lyst for innovation in dynamic truck dispatching. The capabilities of ma-

chine learning extend beyond mere predictive analytics; they encompass

learning and adapting to changing environments, offering nuanced and in-

telligent solutions to complex problems (Chen et al., 2016). The incorpo-

ration of machine learning models in truck dispatching can usher in a new

era of operational intelligence and efficiency, enabling the development of

dispatching strategies that are attuned to real-time operational variables

and are capable of making informed and optimized decisions.

This research is anchored in the aspiration to explore and elucidate the

transformative potential of machine learning in redefining dynamic truck

dispatching within container ports. It is motivated by the prospect of

unearthing insights and developing methodologies that could significantly

augment the operational performance and strategic adaptability of con-

tainer ports. By delving into the confluence of container port logistics

and machine learning, this study aims to contribute to the evolving dis-

course in this domain and to proffer solutions that are both innovative and

pragmatic, fostering operational resilience and excellence in container port

logistics.

Furthermore, the broader implications of optimizing dynamic truck dis-

patching reverberate beyond the confines of container ports. Enhanced

dispatching strategies have the potential to alleviate the logistical strains

on the entire supply chain, contributing to the sustainability and robustness

of global trade networks. Therefore, this study is not just an academic en-

deavor; it is a pursuit to drive meaningful advancements in global logistics

and to catalyze positive transformations in international trade dynamics.

4



1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

1.2 Problem Distribution, Formulation and

Simulation

Figure 1.1: Sample Map of a Typical Container Port

1.2.1 Problem Description

Container ports are pivotal nexuses in the vast labyrinth of global trade net-

works, serving as the operational epicenters that orchestrate the intricate

ballet of international commerce. A closer inspection of a typical container

port, delineated in Fig. 1.1, unveils a sophisticated tableau of multifarious

processes (Li et al., 2012). This intricacy interweaves the strategic areas of

berths and yards, with container trucks emerging as the indispensable con-

duits connecting these dynamic realms and sustaining the relentless rhythm

of logistical activities.

Within this complex logistical panorama, a marine container terminal bi-

furcates into three cardinal segments: the berth area, yard area, and the
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1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

entry–exit area, with the illustrative example encompassing five berths.

Along these berths, quay cranes (QCs) are meticulously stationed, dedi-

cated to loading and unloading containers onto and from the waiting ves-

sels. These QCs maneuver along a single rail designed parallel to the berth

line, enabling fluid transitions between different berths, albeit with a con-

straint that prevents overlapping movements.

Delving deeper, the yard area emerges as a transient sanctuary for container

storage, organized into uniformly sized yard blocks, each distinguished by

a unique ID such as A1, or C4, situated at the heart of the yard area.

These blocks are typically overseen by one or two-yard cranes (YCs) or

analogous equipment, instrumental in executing the loading and unloading

tasks, with queues inherently forming due to the operational limitation of

handling only unit-sized containers at any given time.

Strategically, berths are anchored in deep-sea water areas, linked to the

yards by a meticulously designed road network, bridging the shallow water

regions and punctuated by road segments and intersections. This network

is the arterial route for trucks, specifically inner trucks, transporting con-

tainers between QCs and YCs, adhering to stringent traffic regulations,

ensuring operational safety, and mitigating congestion.

Table 1.1: Example of Work Instructions

ID ContainerID Src Dst Type TEUs Ton TwinID
1731 FCIU3705890 CR12 J4 DSCH 2 17 0
1287 ECMU9249162 Q2 CR1 LOAD 1 23 1514
137 NYKU2797417 Q5 CR7 LOAD 2 15 0
1514 TCLU5546292 CR12 CR15 DSCH 1 19 1287

The environment surrounding these ports is a dynamic nexus of activity,

demanding precise coordination of tasks related to loading and unload-

ing containers. This complex process intertwines ships, berths, and yards.
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1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

Considering the varied container sizes and specific task requirements—as

detailed in Table 1.1—the development of accurate, responsive, and adapt-

able truck dispatching algorithms becomes a critical operational need.

In Table 1.1, ’ID’ is the task identifier, and ’ContainerID’ is each container’s

unique identifier. ’Src’ and ’Dst’ indicate the container’s source and desti-

nation locations. The tasks fall into two categories: ’DSCH’ for unloading

from ship to yard and ’LOAD’ for loading from yard to ship. ’TEUs’ repre-

sents the container’s size, while ’Ton’ measures its weight. Since containers

are typically 40-foot or 20-foot, each truck can carry either two small or

one large container. To accommodate this, small containers are paired to

create a combined ’bind task’, identified by ’TwinID’.

These tasks vary in weight, start and end locations, types of operations,

container sizes, and considerations for bundled containers. The dispatching

algorithms, therefore, are vital in predicting and mitigating logistical chal-

lenges and operational bottlenecks. They play an essential role in stream-

lining the transition of goods and improving overall operational efficiency,

thus forming a crucial element in the complex fabric of port operations.

The diverse nature of operational elements within container ports, includ-

ing disparate capacities of operational cranes, a spectrum of regulatory

frameworks, and a continuous quest for enhanced precision and real-time

responsiveness, are critical. These elements accentuate the operational

challenges and underscore the criticality of developing sophisticated, con-

textually intelligent dispatching algorithms capable of navigating the di-

verse and dynamic terrains of container ports with enhanced efficacy.

In the contemporary operational landscape fraught with complexities and

inherent dynamism, the evolution toward advanced surrogate simulators is

pivotal. These simulators are instrumental in mimicking the nuanced op-
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1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

erational processes of ports and act as fertile grounds for the development,

refinement, and exhaustive evaluation of innovative dispatching strategies,

deciphering their impact on enhancing operational throughput and effi-

ciency.

Combining machine learning models within these simulative environments

opens up unprecedented avenues for operational enhancement. It promises

a transformative shift towards higher simulation accuracy, optimized eval-

uative mechanisms, and the cultivation of profound, data-driven insights,

enabling the synthesis of robust, resilient, and precision-oriented dispatch-

ing strategies. The intrinsic capabilities of machine learning in discerning

intricate patterns, formulating predictive models, and facilitating adaptive

learning stand as beacons of potential revolutionary advancements in con-

tainer port operational paradigms.

This thesis traverses the intricate interplay between machine learning and

the dynamic ecosystems of container ports. It seeks to explore and eluci-

date the transformative potential of machine learning in optimizing truck

dispatching algorithms and enhancing simulation environments, aiming to

inject new vigor into container port operations. It strives to unearth inno-

vative solutions, methodologies, and insights that can redefine operational

strategies, catapulting container port logistics to new heights of operational

excellence, resilience, and adaptability.

In such a complex landscape, the algorithms play a pivotal role by opti-

mally allocating trucks to QCs and YCs, aiming to minimize the idleness

and waiting times integral to the container handling processes, thus opti-

mizing the overall ship turnaround efficiency. The operational capacities of

QCs, capable of handling two small or one large container, and Yard Crane

(YC)s, limited to one container per operation, accentuate the complexity
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1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

of the operational tapestry, warranting precise, adaptive solutions.

Moreover, the essence of truck dispatching within container ports cannot

be understated. It is the cornerstone of logistic operations, influencing the

timely and efficient transfer of containers between ships and yards, impact-

ing the turnover time of ships, and by extension, the overall throughput of

the port. A delay in truck dispatching can cascade into substantial oper-

ational delays, elevating the dwell time of containers and ships, leading to

increased operational costs and reduced port competitiveness. Thus, refin-

ing truck dispatching strategies through machine learning not only stands

as a technological advancement but also as a crucial element in enhancing

the economic viability and competitive edge of container ports in the global

landscape.

This exploration seeks to elucidate the pivotal role of machine learning in

augmenting decision-making processes, advancing predictive accuracy, and

bolstering the adaptive capacities of dispatching algorithms within con-

tainer port operations. The research delves into the operational complexi-

ties, identifies underlying inefficiencies, and aims to design innovative and

sustainable solutions that embody a new paradigm of robustness, agility,

and efficiency for container ports. Through a deepened engagement with

machine learning technologies, this thesis is committed to transforming

container port truck dispatching into a more efficient, intelligent, and ro-

bust process. These enhancements are imperative to fulfill the exacting

requirements of container port companies that strive for unwavering op-

erational efficiency amidst the challenges posed by varying environmental

conditions and the intricacies of complex operational scenarios.
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1.2.2 Problem Formulation

The challenge of effectively orchestrating port truck dispatching is one

steeped in complexity and laden with uncertainties. The intricate dance

of logistics involves multiple variables, such as the transitory timings of

container trucks, the meticulous operations of QCs, and YCs, and the un-

predictable influx of external container trucks—all coordinately converge

to shape the overarching operational tapestry of the port. The interplay

of these multifarious factors creates a dynamic environment, making pur-

suing a comprehensive mathematical model for this problem a daunting

expedition, fraught with impediments to obtaining quality, precise solu-

tions through traditional solving methodologies.

Acknowledging these complexities, this thesis endeavors to navigate the

intricate labyrinth of the port truck dispatching problem and seeks to con-

struct a simplified yet robust mathematical model. This model, by virtue

of its inherent simplicity, strives to embody the quintessential attributes of

the problem, providing a foundational framework to delve into the intricate

undercurrents and elaborate nuances inherent in the dispatching dynamics.

Through this foundational model, the objective is to elucidate the myriad

aspects of the port truck dispatching scenario, thereby enhancing com-

prehension and enabling a more nuanced appreciation of the multifaceted

nature of the problem. This approach serves as a precursor to further

in-depth explorations and sophisticated analyses aimed at unearthing in-

novative solutions and optimizing strategies to address the complexities

intrinsic to the port truck dispatching ecosystem.

The problem can be formally delineated as follows. An abstract container

terminal is depicted as a directed graph, denoted by G = (A,C), where C =

Q ∪ Y constitutes the nodes representing the work operation points for all
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tasks. The sets Q and Y encompass all QCs and YCs, respectively. The set

A consists of direct driving connections between distinct nodes. The truck

depot, represented by d, is the point from which all trucks depart at the

commencement of the operation and return upon completion of all tasks.

The set V = {v1, v2, v3, . . . , vm} signifies the collection of m available trucks

for allocation. A function τ(x, y) maps two disparate operation points,

x ∈ C and y ∈ C, to the time required to traverse from one point to the

other, reflecting the actual terminal road network. The work instruction list

encompasses all n transport tasks in T = {t1, t2, t3, . . . , tn}. The container

size for each task ti is denoted by sizei. The source and destination nodes

for a given ti are represented by ai and bi, respectively, with ai, bi ∈ C.

Based on the diverse types of source and destination nodes, tyi is defined

as the type of task i. tyi = 1 signifies an unloading task, while tyi = 0

corresponds to a loading task.

Within our problem framework, tasks are confined to transportation jour-

neys exclusively between QCs and YCs. Consequently, ai and bi pertain

to distinct crane-type node sets, either QCs or YCs. The maximum differ-

ence in task serial numbers, denoted as q, indicates the acceptable swapping

order of unloading tasks (in this paper, q = 3, considering the practicali-

ties). The start time of service for ti at its source node is represented by

si, while its completion time at the destination node is symbolized by ei,

where si ∈ S = {s1, s2, s3, . . . , sn} and ei ∈ E = {e1, e2, e3, . . . , en}. Since

a crane is required to either load or unload the container at the beginning

and end of a task, the parameters di and hi depict the operating time of

ti at the source and destination nodes, respectively, and their sum is ri.

The operation times at QCs and YCs are assumed to be stochastic and

extracted from historical data.

To model the problem formally, the assignments of tasks to trucks are
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defined by the following binary variable in (1.1):

αij =

 1 tj is assigned to vi

0 otherwise
(1.1)

The following auxiliary variable indicates whether tk is serviced immedi-

ately after task tj by truck vi.

βijk =

 1 tk is served right after tj by vi

0 otherwise
(1.2)

The order of tasks belonging to a crane ci ∈ C is described by (1.3).

γijk =

 1 tk is followed by tj in ci

0 otherwise.
(1.3)

The primary objective in truck dispatching problems for container termi-

nals involves enhancing the company’s profitability by increasing turnover

and minimizing the waiting time of ships. To evaluate the extent to which

this objective is accomplished, various metrics can be employed. In this

study, we focus on the objective of TEU per hour (TEU/h), which is a

metric calculating the quantity of Twenty-foot Equivalent Units (Twenty-

foot Equivalent Unit (TEU)s) processed hourly by all Quay Cranes (QCs)

in use. The TEU, a standardized measure for containerized cargo, corre-

sponds to a twenty-foot container’s capacity. Port companies widely adopt

this metric as a key indicator for benchmarking their operational efficiency

against competitors. It is noteworthy that the TEU/h metric is analogous

to the makespan employed in numerous scheduling problems when the task

set remains constant. Consequently, our truck dispatching problem can be
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modeled as follows:

max(

∑n
i=1 sizei

max(E)−min(S)
) (1.4)

m∑
i=1

αij = 1 ∀tj ∈ T (1.5)

m∑
i=1

n∑
k=1

βijk ≤ 1∀tj ∈ T (1.6)

n∑
j=l

l∑
k=1

γijk ≤ q · yi l ∈ [1, n] (1.7)

si = max



n∑
j=1

m∑
k=1

βkji · (τ(bj, ai) + ej)

τ(d, ai) · (1−
n∑

j=1

m∑
k=1

βkji)

(1.8)

ei = max


max(si,

n∑
j=1

m∑
k=1

γkji · ej) + τ(ai, bi) + ri

n∑
j=1

m∑
k=1

γkji · ej + di

(1.9)

The objective delineated in (1.4) represents the average production rate per

unit of time (hour), where maxE and minS correspond to the completion

time of the final task and the start time of the first task, respectively.

The constraint articulated in (1.5) guarantees that each task is assigned

exclusively to one truck. In contrast, the constraint in (1.6) ascertains that

each task is succeeded by a maximum of one other task or none if it is

the truck’s final task. For each crane, constraint (1.7) following container
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terminal transportation rules, ensure that tasks involving the same crane

cannot commence until the preceding task is concluded, except for the

unloading tasks in QCs where the operational sequence can be interchanged

between sn = 3 neighboring tasks. Constraints (1.8) and (1.9) calculate the

start and end times of tasks, verifying that tasks initiate crane operation

only after completing preceding task operations.

The task of adeptly managing truck dispatching within maritime container

terminals holds the formidable distinction of being NP-hard, corroborated

by its reducibility to the well-known vehicle routing problem (Chu et al.,

2012). This inherently intricate classification implies that the quest for the

optimal solution escalates into an exponentially computational endeavor

as the dimensionalities of the problem magnify. Historical studies have

predominantly leveraged metaheuristic approaches, predicated on the as-

sumption that crane operation times ri for tasks within the task set T

exhibit a deterministic constancy. However, the operational landscape of

container terminals is punctuated with inherent uncertainties and variances

in crane operation times, rendering the prospect of absolute predictions a

theoretical ideal rather than a pragmatic possibility.

Our investigative journey into utilizing mixed-integer programming (MIP)

solvers, constructed on the bedrock of formulated problem constraints and

parameters, encountered substantial impediments. The formidable NP-

hard complexity intertwined with the stochastic problem’s parameters con-

verged to create a landscape fraught with computational challenges, thereby

obfuscating the pathway to identifying feasible and optimal solutions. This

intricate interplay between complexity and uncertainty necessitated a paradig-

matic shift in our problem-solving approach.

Consequently, we have delineated the truck dispatching conundrum in con-
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tainer ports as an online optimization problem. Our exploration traverses

the realms of heuristic-based methodologies, seeking to distill pragmatic

and efficient solutions from the chaotic symphony of variables and con-

straints inherent in the dynamic environment of maritime container ter-

minals. This heuristic lens endeavors to bridge the chasm of uncertainties

and complexities, providing a navigable pathway to optimized dispatch-

ing solutions while embracing the intricate dance of variables within the

operational tapestry of container ports.

Meanwhile, heuristic approaches are currently at the forefront of method-

ologies employed and promoted by most port companies. While heuristics

may not guarantee the optimality of solutions, they bear a striking re-

semblance to the manual truck dispatching methods traditionally utilized

by ports, allowing for a smooth transition to more advanced techniques.

Moreover, due to the time-sensitive nature of port operations, where dis-

patching decisions must be rendered swiftly, heuristic methods align well

with the immediacy required in intelligent port operations. Thus, this

thesis prioritizes heuristic approaches, intending to progressively explore

the application of machine learning in heuristic-based dynamic container

port truck dispatching problems. The exploration will critically evaluate

the effectiveness of these heuristics in operational scenarios, benchmark

their performance against evolving machine learning paradigms, and pro-

pose novel strategies to enhance their efficiency and intelligence, aligning

with the operational cadence and the complex decision-making milieu of

contemporary ports.
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1.2.3 Container Port Simulation

In the complex ecosystem of container port operations, simulators tran-

scend basic algorithmic verification, providing an indispensable platform

for thorough experimentation and analysis. Real-world ports are pulsat-

ing with a myriad of tasks that require precise timing and coordination

for the seamless transfer of cargo. These operations are so intricate and

tightly coupled that any disruption could lead to significant logistical set-

backs and economic ramifications. Consequently, testing new algorithms

directly in such a bustling environment is fraught with risks. Any unproven

or suboptimal algorithm has the potential to cause delays, increase opera-

tional costs, or even jeopardize safety. This renders the real environment

unsuitable as a primary testing ground for developmental algorithms.

Machine learning methods, inherently data-driven and adaptive, require a

controlled yet complex environment where they can interact, learn, and

evolve. The learning phase of these algorithms involves trial and error,

necessitating a space where mistakes can be made without real-world con-

sequences. Moreover, the iterative process of training machine learning

models to achieve optimal performance requires large volumes of data and

numerous simulation runs, which can only be feasibly conducted within a

simulated environment.

Simulators provide a sandbox where the entire spectrum of container port

operations can be recreated with a high degree of fidelity. They offer a

virtual yet realistic representation of port operations, including vessel ar-

rival patterns, container loading and unloading sequences, and the dynamic

scheduling of trucks. In such a simulation, machine learning algorithms can

be exposed to various scenarios, including peak loads, unpredictable delays,

and scheduling conflicts, which are critical for training robust and resilient
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models.

Furthermore, simulators can accelerate time, allowing machine learning

algorithms to experience years of operational data in days or hours, thus

significantly speeding up the learning process. They can also mimic diverse

operational conditions and exceptions, providing a comprehensive suite of

tests that ensure the algorithm’s reliability and adaptability to real-world

variances.

In essence, simulators act as the crucible for refining the intelligence of ma-

chine learning models tailored for container port truck dispatching. They

offer a risk-free environment to experiment, learn from errors, and system-

atically improve performance before any algorithm is deployed in the real

world, thereby upholding the uninterrupted flow of commerce that con-

tainer ports rely upon.

Figure 1.2: Event-based Port Simulator Flow Chart

Understanding the complexity of port operations, we aim to elucidate our

approach to constructing a simulator that reflects the multifaceted opera-

17



1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

tional dynamics inherent in container ports. As illustrated in Fig. 1.2, the

developed simulator is structured to incorporate many operational compo-

nents and events that are fundamental to the fluidity and functionality of

port operations.

As shown in Fig. 1.3, simulators typically fall into two primary categories:

time-stepped and event-based simulations. Time-stepped simulations are

intricate, evaluating every operational entity at specific time intervals and

forecasting subsequent events with high precision. This method, although

extensive and detailed, demands substantial computational resources and

time—around 200 times more than event-based simulations when the time

span is set to one second, as observed in our experiments. Therefore, bal-

ancing precision and computational efficiency, an event-based simulation

approach has been deemed optimal for our study, ensuring swift evalua-

tions, training, and testing of algorithms.

Figure 1.3: The Difference between Time-Stepped and Event-Based Simu-
lation

Event-based simulations, a subtype of discrete-event simulations (DES),

propel the simulation process by calculating and processing events selec-

tively when critical incidents occur, thus offering an efficient method to

simulate the multifarious nature of port operations. Our developed sim-

ulator operates on the principles of event-based simulation and replicates
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the operational intricacies of container port truck dispatching, focusing on

principal events such as container loading, unloading, and intricate truck

movements.

In the construction of our simulation model, initial considerations involve

the incorporation of historical port operation data, allowing the simulator

to assimilate an extensive range of variables such as task specifics, numer-

ics of trucks, and their ensuing locations, thereby establishing an authentic

initial state. This meticulous initiation process is fundamental as it ensures

the simulation commences with a realistic representation of the port’s op-

erational environment.

Following this initialization, the simulation launches into its main iterative

process, with a predominant focus on trucks that are in an idle state. This

emphasis is integral to accurately representing operational dynamics, as

the states of idle trucks are meticulously evaluated against environmental

parameters. Subsequently, the calculated states are intricately interwoven

with predefined dispatching strategies to ascertain appropriate tasks for

each idle truck.

To undertake varying assessment tasks with optimum precision and rele-

vance, our methodology strategically employs two distinct approaches, each

meticulously tailored to align with the specific objectives of the assessment

in question, for dispatching idle trucks within the simulation environment.

The initial approach is predominantly implemented when the primary ob-

jective is to scrutinize the efficiency and effectiveness of dispatching algo-

rithms. In such scenarios, we strategically utilize the dispatching strategies,

meticulously formulated and refined by the respective algorithms, as the

blueprint to allocate tasks to idle vehicles. This approach is indispensable

in enabling a profound exploration of the operational capabilities and po-
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tential limitations of the dispatching algorithms, facilitating an in-depth

analysis of their operational proficiency and adaptability within the dy-

namic landscape of container port logistics.

In contrast, when our focus shifts towards evaluating the simulation’s per-

formance and accuracy comprehensively, our methodology adopts a more

data-centric approach. Here, we meticulously reference the dispatching

records encapsulated within the historical data. This approach ensures

that the tasks delegated to the vehicles not only align with but also ac-

curately mirror the historical trends and occurrences, providing a cohesive

and authentic representation of operational realities. By adhering to his-

torical precedents, this approach cultivates an environment of enhanced

realism within the simulation, allowing for a more rigorous and contextual

assessment of the simulation’s fidelity and operational coherence.

Each of these approaches is meticulously calibrated to preserve the integrity

and reliability of the assessment process, enabling a harmonious balance be-

tween theoretical formulations and practical implementations. They work

in tandem to offer a multifaceted perspective on the interplay between

dispatching strategies and operational dynamics, fostering a deeper un-

derstanding and facilitating the development of innovative solutions and

strategies to navigate the complexities inherent in container port logistics.

Once the simulator has completed the task assignments (truck dispatching),

the trucks embark on executing their specified tasks, involving a series of

transportations between differing cranes. The completion of tasks sees

the trucks either progressing to subsequent tasks, contingent upon their

availability, or reverting to an idle state in the absence of pending tasks.

The culmination of the simulation is marked by the successful execution of

all assigned tasks, providing a comprehensive outlook on the operational
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workflow of the port.

Incorporating such a meticulously designed approach in the simulation un-

veils a wealth of nuanced insights and a multifaceted perspective of the

intricate operations within container ports. It is an invaluable tool for the

exhaustive evaluation, assessment, and ongoing refinement of varied truck

dispatching strategies, ensuring they are continually optimized to mirror

the dynamic nature of port operations.

In this thesis, every piece of experimental data subsequently presented is

derived from the simulator depicted in Fig. 1.2. This simulator serves

as a crucial tool in fostering an enriched environment that closely mirrors

real-world conditions, thereby facilitating a meticulous evaluation and ex-

haustive testing of the various algorithms in question. The utilization of

this sophisticated simulator not only enhances the credibility of the assess-

ments but also provides invaluable insights into the nuanced interactions

and inherent complexities of the simulated environment, mirroring the in-

tricate dynamics of container port operations.

The rigorous testing environment created by the simulator enables a thor-

ough examination of algorithmic functionalities, potential shortcomings,

and areas of improvement. It acts as a conducive platform, allowing for

the exploration and validation of theoretical constructs and algorithmic

formulations in a controlled yet dynamic setting, reflecting the challenges

and constraints found in actual port operations. By simulating real-world

conditions with a high degree of accuracy, it provides a reliable basis for

refining existing algorithms and developing innovative solutions designed

to optimize container port logistics.

The inclusion of the simulator is pivotal for progressing algorithmic re-

search, laying a solid foundation for delving deeper into the intricate layers
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of algorithmic structures and operational mechanisms. It acts as a catalyst,

spurring advanced research endeavors and encouraging the exploration of

novel methodologies and strategies, ultimately aiming to contribute signifi-

cantly to optimizing logistical operations within container ports and to the

broader field of operations research.

Furthermore, this thesis employs traditional event-based simulation to eval-

uate the performance of each algorithm, ensuring fairness in comparison.

Additionally, in Chapter 6, we discuss the differences and limitations of

traditional event-based simulation in contrast to real port environments

and propose an optimized learning-based simulation method.

1.2.4 Baseline Manual Heuristic Truck Dispatching

Method

Container port truck dispatching stands at the intersection of the global

supply chain, acting as a linchpin that upholds the integrity and efficiency

of seaport operations. However, this task is characterized by its complex,

NP-hard nature, making optimal solutions elusive. Given the aim of this

research—to contrast the performance of various truck dispatching method-

ologies—it becomes imperative to establish a coherent baseline for evalua-

tion.

Historically, as depicted in Fig. 1.4, ports predominantly employed the

Separate Truck Pool strategy with operator-driven operations. Within this

framework, operators, armed with their experiential knowledge, continu-

ously allocated trucks to pools associated with distinct QCs. A truck,

post-task completion, would evaluate the task availability of its tethered

QC. In scenarios with extant tasks, the truck would transition to the perti-
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nent task location. Conversely, absent tasks would render the truck station-

ary, awaiting operator directives. This model, while seemingly simplistic,

has been upheld by operators who, through years of on-ground experience,

have managed to sustain remarkable operational efficiencies. However, a

port’s efficiency can oscillate based on the operator’s proficiency—a novice

operator can significantly hamper operational fluidity.

Figure 1.4: Separate Truck Pool vs. Integrated Truck Pool

In acknowledgment of the invaluable experiential reservoir that seasoned

operators bring to the table, our research embarked on an expedition to

structure this wisdom. Through a rigorous regimen of interviews, surveys,

and questionnaires, Chen et al. (2016) abstracted the operational strategies

into a manually crafted heuristic, detailed in Algorithm 1. This heuristic

not only encapsulates the nuanced strategies honed by operators over time

but also furnishes a robust benchmark for evaluating our innovative ap-

proaches.

At the algorithm’s core lies an intricate lattice of parameters meticulously
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Algorithm 1 Manual Heuristic Truck Dispatching Algorithm

Require: Parameters parameter, Travel Time t
function heuristic(QC, truck)

if truck num < desired trucks then
score← travel time ∗ (truck num− priority)

else
score← travel time ∗ desired trucks

end if
if truck num ≥ truck limit then

score← score + 200000
end if
return score

end function

curated from operators’ insights. Key among these are desired trucks,

indicative of the optimal truck count for a QC, priority, which demarcates

Quay Crane (QC) hierarchies, and truck limit, the maximal truck count

per QC. These are real-time metrics, namely truck num, which quantifies

the trucks tethered to a QC, and travel time, signifying the truck’s transit

latency to a QC’s task source node. The value 200,000 serves as a penalty

for any QC whose truck number exceeds the truck limit. This figure was

determined based on the experience of operators within the port company.

Synthesized, these parameters and metrics forge a scoring algorithm for

QCs.

When this manual heuristic is employed, the dynamic truck dispatching

system automatically calculates a score for each potential task. It then

evaluates the merits of each task based on this score and assigns the most

suitable task to the vehicle. The process of calculating the score using

the manual heuristic is detailed in Algorithm 1. It is important to note

that there is a supporting dynamic truck dispatching system responsible

for assigning tasks to trucks in addition to this algorithm. As this thesis

primarily discusses the algorithmic aspect, it does not delve into the details

of the dynamic truck dispatching system.
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In an example like in Fig. 1.5, suppose there are two idle trucks, Truck 1

and Truck 2, and two QCs, QC 1 and QC 2, with tasks. Using a simple

heuristic, where score = powa ∗ travel time, ’powa’ represents the number

of trucks queued at a QC, and ’travel time’ is the time it takes for a truck

to reach the corresponding crane. Assume that there are 1 and 2 trucks

queued at QC 1 and QC 2, respectively. The travel times for Truck 1 to

QC 1 and QC 2 are 3 and 1, respectively, and for Truck 2, the travel time

to both QC 1 and QC 2 is 1. Therefore, when assigning a task to Truck 1,

the calculated scores for QC 1 and QC 2 are 3 and 2, respectively. Since

the score for QC 2 is lower, Truck 1 is dispatched to QC 2. For Truck 2,

the scores for QC 1 and QC 2 are calculated as 1 and 2, respectively, so

Truck 2 is dispatched to QC 1. This example clearly illustrates how the

score serves as the basis for truck dispatch in dynamic truck dispatching.

Figure 1.5: Example of Dynamic Truck Dispatching

As elucidated in Fig. 1.4, the advent of dispatching algorithms heralds

a transformative approach to container port operations. With the em-

brace of the Integrated Truck Pool methodology, trucks are conglomer-

ated into a singular pool. The primacy of manual operator interventions,

which once required laborious one-by-one assignment of trucks to specified

QCs, is rendered obsolete. In this new paradigm, the dispatching algo-

rithm autonomously designates the truck to the most propitious QC for

the succeeding task after completing a task. This operational shift offers a

25



1.2. PROBLEM DISTRIBUTION, FORMULATION AND
SIMULATION

twofold advantage. First, it dramatically alleviates the operational burden

on the coordinators, obviating the need for relentless manual interventions.

Second, and more crucially, it bestows unparalleled stability to the entire

terminal operation, ensuring that variations in operator experience and

proficiency no longer wield the power to perturb the port’s operational

efficiency.

While the manually crafted heuristic, described earlier, represents an inau-

gural foray into algorithmic dispatching, it is not without its shortcomings.

Predominantly, the heuristic’s rigidity becomes palpable in several facets.

The hyperparameters, which anchor the algorithm, might not invariably

align with the optimal operational sweet spot. Moreover, the heuristic

exhibits an inherent inertia when confronted with divergent operational

environments, rendering it less adaptable. This inflexibility is further mag-

nified in intricate operating scenarios where the heuristic’s performance

could waver, leading to inefficiencies like increased wait times, sub-optimal

QC assignments, and potential operational bottlenecks.

Recognizing these limitations, this research endeavors to venture beyond

the confines of rudimentary heuristics. The quest is to harness the prowess

of machine learning, drawing upon its adaptability and predictive capa-

bilities. By integrating diverse machine learning techniques, we aim to

sculpt superior heuristic dispatching algorithms that rectify the inherent

flaws of manual heuristics and resonate with the dynamism of varied port

operational contexts. The intricacies of these methodological innovations

and their empirical evaluations will be meticulously expounded upon in

subsequent sections of this thesis.
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1.3 Research Objectives and Scope

1.3.1 Objectives

The primary objective of this thesis is to enhance the efficiency and through-

put of container port operations significantly. This enhancement is achieved

by strategically applying advanced machine learning methods to optimize

the truck dispatching process. By incorporating these technologies, the

thesis aims to develop sophisticated algorithms capable of predicting con-

tainer traffic patterns and optimizing truck movements. This approach is

expected to reduce idle times and increase overall operational efficiency.

Further, the thesis explores the implementation of intelligent dispatching

systems that dynamically adapt to the changing conditions of the port.

These systems will use real-time data and predictive analytics to ensure

the most suitable allocation of trucks to various tasks, thereby streamlining

the port’s operations. Integrating machine learning and metaheuristic in

operational decision-making enables handling a higher volume of container

traffic with greater accuracy and efficiency.

Central to this endeavor is the alignment of port operations with the rapidly

expanding global demands for containerized shipping. The thesis aims

to aid port companies in keeping pace with the evolving global container

port sector and enhancing their economic effectiveness and profitability.

By adopting these advanced methodologies, ports are expected to become

more efficient and responsive to the complexities of global trade.

This approach enhances the role of ports as critical hubs in the global supply

chain, contributing to smoother and more efficient logistics and trade flows.

It positions ports at the forefront of innovation in logistics and transporta-
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tion, setting new standards for operational efficiency, sustainability, and

profitability in the industry. This comprehensive approach is instrumental

in shaping a more streamlined, intelligent, and high-performing container

port infrastructure ready to meet the challenges of modern global trade.

The key objectives of this thesis are articulated as follows:

• To optimize truck dispatching within container ports to minimize de-

lays, reduce congestion, and maximize resource utilization efficiency.

This optimization is crucial for streamlining port operations and en-

hancing overall productivity.

• To employ advanced machine learning and metaheuristic algorithms

to facilitate automated decision-making in truck dispatching. This

involves developing and implementing algorithms to efficiently pro-

cess data and make informed decisions, reducing reliance on manual

intervention.

• To transition truck dispatching from traditional, heuristic-based meth-

ods to innovative, data-driven strategies. This shift represents a move

towards more scientifically grounded and technologically advanced

approaches in managing port logistics.

• To improve the accuracy of port simulations, thereby enhancing op-

erational planning, forecasting, and the effectiveness of algorithm

evaluation. Accurate simulations are vital for testing and refining

dispatching strategies, ensuring they are robust and applicable in

real-world scenarios.

These goals aim to transform the operational efficiency of ports, making

them pivotal nodes in the global trade network. The thesis explores in-
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tegrating sophisticated machine learning techniques into dispatching sys-

tems, fostering a smarter and more adaptive port ecosystem. This research

is poised to catalyze a paradigm shift in port operations, paving the way

for a new era of intelligence and efficiency in global trade and commerce.

1.3.2 Scope

The scope of this thesis is anchored in the innovative application of ma-

chine learning and metaheuristic techniques specifically tailored to opti-

mize truck dispatching within the dynamic environment of container ports.

This research extensively explores the intricacies of real-time scheduling

and the critical decision-making processes inherent in such settings. The

thesis aims to significantly enhance operational efficiency, reduce bottle-

necks, and streamline cargo flow by leveraging advanced computational

methods.

Central to this exploration is a detailed examination of the challenges and

opportunities presented by container port operations’ fast-paced, often un-

predictable nature. The study meticulously analyzes how machine learning

can be applied to predict traffic patterns, optimize task assignments, and

improve the overall management of resources. This approach contributes to

reducing operational delays and plays a vital role in increasing the through-

put and profitability of ports.

While the primary focus of the thesis is deeply rooted in container ports,

its findings and methodologies have broader implications that transcend

this specific context. The nature of the problems addressed — charac-

terized by their need for swift, data-driven decision-making in constantly

evolving scenarios — is common to many real-time dispatching problems
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across various sectors. Consequently, the insights gained from this research

apply to other areas facing similar challenges, such as logistics networks,

manufacturing processes, and urban traffic management.

In essence, the scope of this thesis not only sheds light on the complex-

ities and potential solutions for container port operations but also paves

the way for applying these advanced machine learning techniques in var-

ious other real-world contexts. The methodologies developed and lessons

learned promise to revolutionize how real-time dispatching problems are

approached and solved, offering far-reaching benefits beyond the confines

of container port logistics.

The scope of this thesis encompasses several key aspects, each contributing

to the overarching goal of enhancing operational logistics through advanced

computational methods:

The following key aspects define the scope of this thesis:

• At its core, the thesis focuses on optimizing truck dispatching within

container ports by leveraging machine learning and metaheuristic

techniques. The aim is to substantially enhance the efficiency and

effectiveness of decision-making processes in truck dispatching, en-

suring smoother port operations.

• An in-depth exploration of real-time scheduling challenges is under-

taken, particularly those prevalent in container port environments.

This part of the research delves into the complexities and dynamics

of making fast, strategic decisions under changing operational condi-

tions, highlighting the need for adaptive and responsive solutions.

• The scope extends beyond container port operations, as the method-

ologies and algorithms developed have broader applicability. They
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can be adapted to address similar dispatching and scheduling chal-

lenges across various sectors. This aspect of the research underscores

the solutions’ versatility and potential impact in diverse real-world

contexts.

• This thesis also studies port simulation accuracy. This is crucial for

validating the effectiveness of the dispatching strategies proposed.

The research assesses the fidelity of simulations in mirroring real-

world conditions and the reliability of the outcomes they produce,

ensuring that the strategies are grounded in practical reality.

These areas collectively define the boundaries and focus of the thesis, fram-

ing a comprehensive approach to addressing specific and general challenges

in operational logistics.

With its focused yet expansive approach, this thesis significantly con-

tributes to operational logistics, offering versatile solutions for complex

scheduling issues across various industries. The methodologies developed

are particularly noteworthy for their ease of transferability to other real-

world scheduling problems. This adaptability stems from the shared com-

mon features among these scheduling challenges, such as dynamic envi-

ronments, the need for real-time decision-making, and the complexity of

managing resources.

The core of this research lies in its ability to address the specific needs of

container port dispatching and provide a template for solving analogous

problems in different sectors. Whether it’s managing logistics in manufac-

turing, coordinating tasks in large-scale construction projects, or optimiz-

ing routes in urban traffic systems, the principles and algorithms detailed

in this thesis can be readily adapted. This adaptability ensures that the

solutions proposed here are not confined to a single context but have broad
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applicability, poised to bring efficiency and innovation to various opera-

tional logistics scenarios.

1.4 Thesis Structure

This thesis is organized into several chapters, each elucidating specific as-

pects of the research undertaken.

• Chapter 2: Literature Review and Background

This chapter provides an extensive review and background of the

literature pertinent to container port logistics, dispatching strategies,

and the application of machine learning in operational optimization.

• Chapter 3: Genetic Programming in Dispatching Strategy

Generating

This chapter delves into utilizing Genetic Programming for generating

dispatching strategies, exploring its methodology and implications in

optimizing port operations.

• Chapter 4: Reinforcement Learning Assisted Method in Dis-

patching Strategy Generating

This chapter focuses on the application of Reinforcement Learning as

an assistive method in generating dispatching strategies, elaborating

on its operational dynamics and contribution to enhancing dispatch-

ing efficacy.

• Chapter 5: Machine Learning Assisted Methods in Dis-

patching Strategy Evaluation Accuracy Enhancing

This chapter discusses the role of Machine Learning in improving the
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accuracy of dispatching strategy evaluation, exploring various meth-

ods and their impact on evaluation precision.

• Chapter 6: Neural Networks Assisted Methods in Dispatch-

ing Strategy Refinement and Evaluation Acceleration

The utilization of Neural Networks for refining and accelerating the

evaluation of dispatching strategies is the central theme of this chap-

ter, exploring its methodologies and implications in detail.

• Chapter 7: Conclusion and Future Work

This final chapter synthesizes the research findings, draws conclusions

from the investigated methodologies, and proposes avenues for future

work in dispatching strategy optimization.
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Chapter 2

Literature Review and

Background

The epoch of international trade and commerce has been invariably in-

tertwined with the port industry, serving as a pivotal hub for economic

proliferation. In contemporary times, the mosaic of technological advance-

ments coupled with the escalating imperatives of global commerce has pre-

cipitated the evolution of the Intelligent Port and Port Optimization

paradigm. This paradigm, transcending mere operational enhancements,

encapsulates a holistic transformation, integrating advanced technologies

and innovative strategies to augment port operations’ efficiency and re-

silience substantially. Within this expansive canvas, the Container Port

Truck Dispatching remains a core focus, dictating the proficient cir-

culation and allocation of container trucks. As the nerve center of port

logistics, its optimization directly impacts ports’ overall throughput and

performance.

In pursuing refining these dispatching methodologies, academia and indus-

try alike have focused on Hyper-Heuristics, offering a layered approach
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to problem-solving by amalgamating a repertoire of heuristics. This quest

for perfection has also witnessed the integration of cutting-edge compu-

tational paradigms such as Genetic Programming, which mirrors na-

ture’s evolutionary algorithms to distill optimized dispatching strategies,

and Ensemble methods and Reinforcement Learning, an adaptive

paradigm empowering systems to navigate and adapt within multifaceted

environments. And the fusion of GP with Recurrent Neural Network

and Transformer. This combination capitalizes on GP’s inherent evolu-

tionary optimization strengths, RNN’s aptitude for recognizing temporal

sequences, and Transformer’s self-attention mechanisms. Together, they

offer a more refined dispatching strategy and significantly accelerate sim-

ulation speeds. Through this literature review, we journeyed to unravel

these intertwined domains, elucidating their significance, intricacies, and

potential confluence in sculpting the future of container port truck dis-

patching.

2.1 Intelligent Port and Port Optimization

In an era where the interdependence of global economies is increasingly

pronounced, ports play a pivotal role as gateways to international trade.

The surge in maritime traffic and the intricacies associated with burgeon-

ing global supply chains have underscored the imperativeness of modern-

izing and streamlining port operations. Central to this paradigm shift is

the concept of the Intelligent Port, a manifestation of the marriage be-

tween maritime logistics and cutting-edge technological innovations (de la

Peña Zarzuelo et al., 2020; Wu et al., 2013).

At its core, an Intelligent Port is an ecosystem where traditional opera-
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tional methodologies are augmented or replaced with advanced technologies

such as the Internet of Things (IoT), artificial intelligence (AI), machine

learning, and big data analytics (Xisong et al., 2013; Mi and Liu, 2022;

Tsou, 2019). Collectively, these technologies aim to enhance operational

efficiency, reduce logistical bottlenecks, increase throughput, bolster safety

standards, and usher in a new era of sustainability and environmental re-

sponsibility in port operations.

The ramifications of Intelligent Ports extend beyond mere operational effi-

ciency. Given the environmental concerns of our age, such ports, with their

emphasis on cleaner and more efficient operations, are playing a pivotal

role in reducing the carbon footprint of maritime activities, thus directly

contributing to global sustainability goals (Fahdi et al., 2021; Clott and

Hartman, 2013). Moreover, by leveraging real-time data analytics, Intel-

ligent Ports enhance predictability and reliability, two facets that are of

paramount importance in a world where just-in-time deliveries and lean

supply chains dominate commercial imperatives (Indraratna et al., 2011;

Filom et al., 2022).

However, transitioning to an Intelligent Port isn’t solely about integrat-

ing smart devices or employing AI-driven solutions. At the heart of this

transition is the overarching need to ensure these devices and solutions op-

erate harmoniously, driving the port towards its strategic objectives. This

harmonization is where Port Optimization becomes indispensable (Song

et al., 2015). Port Optimization encompasses a plethora of strategies and

methodologies aimed at ensuring every resource, be it human, machine,

algorithm, or infrastructure, is utilized optimally. It’s a multidisciplinary

approach that draws from fields such as operations research, logistics, data

science, and industrial engineering (Yang and Guo, 2020).
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Over the decades, the domain of Port Optimization has witnessed signif-

icant evolution. From simplistic berth allocation strategies of yesteryears

to today’s sophisticated solutions that integrate real-time data from multi-

ple sources to optimize every facet of port operations, including quay crane

scheduling, yard management, truck dispatching, and even hinterland logis-

tics (Heilig et al., 2020). This evolution has been driven by both necessities,

given the growing complexity of port operations, and the availability of ad-

vanced technological solutions that have broadened the horizons of what’s

achievable.

The coordination between Intelligent Ports and Port Optimization is re-

shaping the maritime logistics landscape. As ports continue to play their

crucial role in global trade, the emphasis on making them smarter, more

efficient, and sustainable will only grow, driven by technological advance-

ments and the relentless pursuit of operational excellence (Moros-Daza

et al., 2020).

2.2 Container Port Truck Dispatching

Container port truck dispatching refers to the allocation and management

of trucks that transport containers within the port premises (Choi et al.,

2011). On the surface, this may seem like a mere logistical detail. How-

ever, delve deeper and grasp the gravity of its implications. An efficient

dispatching system ensures that containers are promptly moved from ships

to storage yards and vice versa, preventing costly ship idling at berths

and ensuring swift vessel turnaround. Conversely, a lackluster dispatching

system can lead to monumental bottlenecks, cascading ramifications on

overall port efficiency, ship delays, congested storage areas, and escalating
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operational costs (Talley, 2006a).

The sheer volume of containers handled by modern ports further under-

scores the importance of optimized truck dispatching. With globalization

driving a relentless increase in trade volumes, ports grapple with the daunt-

ing challenge of handling thousands of containers daily. Every minute a

container remains unattended on the quay, or a truck idles waiting for its

next task, translates into lost efficiency and economic ramifications.

Moreover, container truck dispatching is not just about the immediate

movement of goods. It symbolizes a port’s commitment to efficiency, inno-

vation, and reputation in the more extensive supply chain network (Song,

2021). In a globalized world where timely delivery is paramount, ports with

efficient truck dispatching systems are more likely to attract global ship-

pers and carriers, ensuring their sustained relevance and competitiveness

in international trade.

In essence, container port truck dispatching is much more than a logistical

exercise. It is a strategic endeavor deeply intertwined with a port’s op-

erational efficacy, economic viability, and standing in the global maritime

industry (Kuzmicz and Pesch, 2019). This literature review focuses on

the nuances of this critical operation, elucidating its significance and the

myriad methodologies devised over the years to refine and optimize it.

2.2.1 Port Operations and Optimization

Container ports stand as essential nodes in the global supply chain. They

shoulder the complex responsibility of synchronizing many operations to

ensure the uninterrupted flow of goods. The primary driving force behind

these operations is optimization, with the goals of enhancing efficiency, min-
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imizing downtime, and capitalizing on the fullest potential of both human

and infrastructural resources.

The evaluation of port efficiency often leans on the metric TEU/h (Twenty-

Foot Equivalent Units per hour). This metric serves a dual purpose. Firstly,

it quantitatively measures a port’s operational capability, indicating the

number of standard-sized containers processed within a given hour. Sec-

ondly, it acts as a barometer for operational excellence. Elevated TEU/h

values represent a port’s proficiency in expeditiously managing voluminous

traffic, reducing ship idle time, and facilitating prompt turnarounds. For

port operators, this metric becomes a benchmark for performance assess-

ment, while for potential clients, it offers insight into the port’s reliability

and efficiency.

Despite the common goal of optimization, the avenues to achieve this within

a port are diverse:

Berth Optimization: As vessels arrive, the berth area becomes their pri-

mary docking point. The art of berth optimization lies in astutely allo-

cating ships to docks, curtailing waiting periods, expediting loading and

unloading processes, and averting potential congestion (Dai et al., 2008;

Venturini et al., 2017; Ting et al., 2014; Golias et al., 2009; Arango et al.,

2013). Key factors underpinning this optimization include ship dimensions,

cargo priority, expected dock time, and equipment availability.

Yard Optimization: Containers find their temporary residence in specific

yard zones after unloading. The essence of yard optimization is strategi-

cally positioning these containers, considering variables like cargo nature

(for instance, perishable or hazardous), imminent retrieval dates, and sub-

sequent transportation modes (such as road or rail) (Chen et al., 2004;

Zhen, 2016; Chen et al., 2003; Sha et al., 2017; Zhen et al., 2013). Mastery
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in yard management translates to reduced retrieval durations and unhin-

dered container accessibility.

Hinterland Logistics: This facet transcends the port’s immediate confines

and delves into the transit of goods from the port to their final inland desti-

nations (Behdani et al., 2020; Rodrigue and Notteboom, 2009; Irannezhad

et al., 2020; Bergqvist, 2012). It’s a jigsaw puzzle, coordinating with diverse

transportation mediums like railways and trucks, ensuring timely dispatch

and receipt of commodities.

Gate Operations: As the port’s entry and exit conduits, gate operations

oversee the fluid movement of trucks and other vehicles. Their efficiency

is paramount, as even minor hitches can trigger significant operational set-

backs (Keceli, 2016; Chao and Lin, 2017; Lai and Leung, 2000). Streamlined

gate operations necessitate rapid verification, thorough documentation, and

unobstructed goods transit.

Amid this maze of operations, container trucks stand out as the linchpins.

These vehicles seamlessly connect the disparate segments of the port, form-

ing a bridge between berths, yards, and beyond. Their pivotal role cannot

be understated—delays or inefficiencies in container truck movements can

ripple across the entire operational chain, derailing the rhythm of the port.

Thus, proficient truck dispatching is not just about transporting containers

but is intricately tied to preserving the port’s operational harmony.

In encapsulation, while every port shares the overarching ambition of op-

timization, the path to this goal demands an in-depth exploration of each

operational segment, an understanding of its inherent challenges, and craft-

ing strategies tailored to these unique requirements.
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2.2.2 The Truck Dispatching Problem

Truck dispatching is a central pillar in port operations. Its role is akin to

the nervous system in a living organism, transmitting vital signals across

various parts to ensure harmony and fluidity. Maintaining a constant and

streamlined movement of goods is at the core of its importance. This in-

volves managing a multitude of trucks, each with their schedules, to ensure

that the berth areas remain free of congestion and that the yard areas

witness an uninterrupted flow of containers.

Historically, the initial attempts to organize this logistical ballet revolved

around static methods (Abdelmagid et al., 2022). These methods, often

characterized by predetermined schedules and operational parameters, were

the early architects of order in a chaotic environment. These systems relied

on pre-established routes, times, and sequences, assuming a more or less

stable operating condition. On paper, they appeared to be the logical

choice, transforming the seemingly anarchic movement of trucks into an

orderly flow. The predictability they introduced was valuable, allowing

ports to plan and allocate resources with a reasonable degree of confidence.

However, the inherent dynamism and unpredictability of port operations

soon revealed the cracks in these static methodologies. Ports are buzzing

hubs of activity where countless variables are constantly in flux. External

factors, such as weather conditions, can delay ship arrivals. Operational

challenges, like equipment breakdowns or sudden surges in container vol-

umes due to peak trading seasons or geopolitical events, add another layer

of unpredictability. In such an environment, relying solely on static meth-

ods meant disruptions often led to significant cascading delays, bottleneck

formations, and resource wastage.
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Recognizing the limitations of these traditional approaches, the industry

saw a paradigm shift towards dynamic dispatching methodologies. Unlike

their static counterparts, dynamic methods are inherently agile. They op-

erate on real-time data, making on-the-spot decisions to accommodate the

ever-shifting landscape of port operations. These systems can, for instance,

immediately adjust truck dispatching patterns based on sudden changes in

ship arrival times or prioritize certain containers based on real-time demand

and urgency.

Furthermore, the advent of advanced technologies and data analytics has

equipped these dynamic methods with the tools to not only respond to

immediate changes but also to predict potential disruptions. This predic-

tive capability, harnessed through machine learning algorithms and data-

driven insights, has added another dimension to dynamic dispatching. By

forecasting potential challenges, these methods can proactively adjust dis-

patching strategies, further enhancing the resilience and efficiency of port

operations.

In conclusion, while the essence of the dispatching problem remains un-

changed – ensuring the right truck is at the right place at the right time –

the methods to achieve this have evolved considerably. In the modern era

of smart ports and intelligent logistics, dynamic dispatching, empowered

by real-time data and predictive analytics, is the beacon of efficiency and

adaptability.

2.2.3 Challenges in Port Optimization

Container terminals are intricate hubs of logistical operations where count-

less variables converge to determine overall efficiency. While it’s under-
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standable that the attention has traditionally gravitated towards optimiz-

ing sea-side operations, particularly those associated with QCs, the ever-

evolving dynamics of modern ports underscore the need for a holistic ap-

proach. This approach not only encompasses sea-side operations but also

interlaces with the equally important land-side operations, where YCs and

trucks play pivotal roles.

Vast Scale of Operations: Container terminals are sprawling infrastructures

that handle millions of containers annually. This translates to thousands

of daily operations, each with its unique set of parameters such as timings,

routes, and priorities. Organizing these operations demands vast data pro-

cessing, timely decision-making, and continuous monitoring. Moreover, as

trade volumes continue to grow, the scale of operations only intensifies,

exacerbating the complexity of optimization.

Interdependencies and Synchronicity: The terminal’s workflow is much like

a well-orchestrated symphony; every component must synchronize with the

other to achieve optimal results. QCs, YCs, and trucks have interdepen-

dent roles. For instance, a delay in QC operations can trigger a domino

effect, causing delays for trucks awaiting containers and YCs positioned

for container storage or retrieval. These intricate interrelations mean that

optimization in one area can inadvertently lead to complications in another

if not carefully managed.

Non-Linearity Due to Equipment Limitations: Every piece of equipment,

from cranes to trucks, has its operational limits. For example, a QC can

only handle a specific number of containers per hour, and trucks have max-

imum load capacities. These limitations introduce non-linear constraints

into the optimization problem. Simply put, enhancing the efficiency of

one component doesn’t guarantee a linear improvement in overall terminal
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performance. There’s a threshold beyond which pushing equipment yields

diminishing returns or even counterproductive outcomes.

Operational Uncertainties: The dynamic nature of port operations intro-

duces multiple sources of unpredictability. Unforeseen equipment malfunc-

tions, abrupt weather changes, or unscheduled ship arrivals can disrupt the

best-laid plans. These uncertainties can rapidly cascade, turning minor

disruptions into major operational challenges.

Balancing Priorities: At any given moment, a terminal might be juggling

multiple priorities, from servicing mega-ships with tight schedules to man-

aging storage for containers awaiting hinterland transportation. Striking

a balance between immediate tasks and long-term operational goals is a

recurring challenge.

Considering these multifaceted challenges, it becomes evident that opti-

mization in container terminals isn’t merely about enhancing a singular op-

eration but orchestrating a complex dance of interrelated activities. Mod-

ern terminals, recognizing this, are increasingly leveraging data analytics,

machine learning, and other technological advances to navigate these chal-

lenges and foster a more integrated optimization approach.

2.2.4 Findings in Port Optimization

Recent research has explored QC, YC, and truck efficiency. Works by Paul

et al. (Schonfeld and Sharafeldien, 1985), Kim and Park (Kim and Park,

2004), and Kaveshgar et al. (Kaveshgar and Huynh, 2015) have shed light

on optimizing QCs. These studies, while significant, have often overlooked

truck availability, a factor that directly impacts QC efficiency. Conversely,

research by Lai et al. (Lai and Lam, 1994), Zhang et al. (Zhang et al.,
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2003), and Chen et al. (Chen et al., 2007) has emphasized the efficiency

of YCs. However, many of these studies operated under the unrealistic

assumption of unlimited truck availability.

Further studies recognized the need to integrate QCs and YCs, with trucks

as the crucial connectors. In this context, truck dispatching optimization

becomes paramount, influencing not just local operations but overall port

efficiency. Several methodologies have been proposed, including classical

integer programming (Bish et al., 2007), nonlinear programming (Lu and

Jeng, 2006), and heuristic algorithms (Bish et al., 2007), reporting sub-

stantial improvements in various performance metrics.

Nevertheless, real-world port operations, with variable QC and YC oper-

ational times, unpredictable truck speeds, and changing task sequences,

introduce significant stochasticity. Offline optimization methods, despite

their success, often falter when faced with such uncertainties. Although

some algorithms (He et al., 2019; Zhen et al., 2011; Sislioglu et al., 2019)

exhibit limited tolerance to unpredictability, they struggle when the uncer-

tainties escalate. A noteworthy approach by a previous study (Chen et al.,

2016) introduced an online heuristic-based truck dispatching methodology.

While offering reasonable solutions, it lacked optimal guarantees (Pardalos

and Romeijn, 2002) and adaptability across diverse scenarios, highlighting

the need for advanced, adaptive hyper-heuristics.

Even though truck dispatching represents just a fraction of the entire con-

tainer port optimization process, its impact permeates every corner of port

operations. As modern ports transition towards intelligent systems, build-

ing a robust and efficient truck dispatching mechanism becomes paramount.

This emphasis on truck dispatching arises due to its central role in synchro-

nizing various port functions, from berth assignments to yard operations.
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Any inefficiencies or delays in truck movements can ripple through the

entire system, causing holdups and increased operational costs.

Moreover, as the complexity and unpredictability of port operations inten-

sify, traditional methods often fall short of ensuring optimal dispatching.

Introducing machine learning methods offers a promising solution. These

methods can adapt to the dynamic nature of port environments, learn from

historical data, predict potential disruptions, and make real-time decisions.

Leveraging machine learning not only aids in handling the present opera-

tional challenges but also positions ports to be future-ready, able to scale

and adapt as trade volumes and complexities evolve. Thus, refining and

enhancing truck dispatching via machine learning becomes an imperative

focus in the pursuit of creating a truly modern and intelligent container

port.

2.3 Dynamic Dispatching Technologies

2.3.1 Hyper-Heuristics

The advent of hyper-heuristics has brought forth a promising new horizon

in the realm of search and optimization methodologies (Burke et al., 2003).

From their inception as a general-purpose, rapid prototype strategy, hyper-

heuristics have shown remarkable potential in adapting to various problem

domains, offering solutions of acceptable quality (Cowling et al., 2002; Pil-

lay and Qu, 2018).
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Defining the Hyper-heuristic Paradigm

Traditionally, heuristic methodologies were developed with a single-minded

focus, targeting specific problems or a narrow range. Hyper-heuristics, how-

ever, venture beyond this narrow scope, aiming for a broader application.

Instead of directly searching the solution space, as conventional or meta-

heuristics do, hyper-heuristics operate in the heuristic space (Swan et al.,

2014). The fundamental hypothesis is that the heuristic space is less teth-

ered to specific problems than the solution space, enabling the creation of a

more universal search mechanism. This can be understood as heuristics

to select or generate heuristics, making the approach substantially

different and more generalized than traditional algorithms.

Yet, while this approach seems like a pursuit for the universal optimizer, it’s

essential to remember the No Free Lunch theorem (Wolpert and Macready,

1997). This theorem dictates that no singular method can optimally ad-

dress every conceivable problem. However, it leaves room for adaptive

strategies to manage problems with overlapping features or structures.

This theoretical allowance provides the philosophical foundation for hyper-

heuristics. By employing various learning mechanisms—both online and

offline—hyper-heuristics aim to bolster the universality of algorithms across

different problems and scenarios.

The Structure of Hyper-heuristic

As delineated in Fig. 2.1, hyper-heuristics are based on a two-layered struc-

ture. For the traditional hyper-heuristic framework, the high-level heuris-

tic, representing the first layer, does not grapple with problems directly.

Instead, it plays the role of a maestro, either selecting from a pre-existing
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Heuristics to 
Select Heuristics
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Figure 2.1: Hyper-heuristic Typical Structure

ensemble of heuristics or innovating new ones as the situation demands.

Throughout this process, the high-level heuristic continually gleans from

accumulated experiential data, refining its choices or creations for low-level

heuristics. This methodological framework, while seemingly simple, pro-

vides a versatile platform for addressing a myriad of complex problems, as

evidenced by its success in domains like educational timetabling (Herman-

syah and Muklason, 2020; Bai et al., 2006), two-dimensional strip packing

(Burke et al., 2010b; Domović et al., 2019), and vehicle routing (Qin et al.,

2021; Chen et al., 2018a), to name a few.

In this thesis, the classification of hyper-heuristic approaches follows the

model proposed by Burke et al. (2010a), as depicted in Fig. 2.2, which

we reproduce here for completeness. This classification is based on two

dimensions: (i) the nature of the heuristics’ search space and (ii) the sources

of feedback information.

Regarding the nature of the search space, there are two primary cate-

gories: (i) heuristic selection, which involves choosing or selecting from

existing heuristics, and (ii) heuristic generation, which focuses on creat-

48



2.3. DYNAMIC DISPATCHING TECHNOLOGIES

ing new heuristics by combining components of existing ones. Further,

this dimension distinguishes between constructive and perturbative search

paradigms, as explained by Hoos and Stützle (2004). Perturbative meth-

ods modify complete candidate solutions by changing one or more of their

components. In contrast, constructive methods work with partial candidate

solutions, iteratively extending them by adding missing components.

Figure 2.2: Hyper-heuristic Classification

A hyper-heuristic is classified as a learning algorithm when it incorporates

feedback from the search process. We distinguish between online and offline

learning based on the source of feedback. Online learning hyper-heuristics

acquire knowledge during the problem-solving process. In contrast, offline

learning hyper-heuristics gather rules or programs from training instances

to apply to new, unseen instances.

These categories align with current research trends, yet it’s noteworthy

that some methodologies transcend these classifications. For example, hy-

brid methodologies that merge constructive with perturbation heuristics

(Garrido and Riff, 2010; Elshaikh et al., 2016) or heuristic selection with

heuristic generation (Zhao et al., 2021; Maturana et al., 2010; Remde et al.,

2012) are increasingly prevalent, reflecting the evolving nature of this field.

As for selection hyper-heuristics, Drake et al. (2020) has extended the clas-
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sification of selection hyper-heuristics in this research, which builds upon

Burke et al. (2010a). This classification encompasses several critical di-

mensions:

1. Nature of Feedback Received: This category distinguishes hyper-

heuristics based on their learning mechanisms, identifying those with

online learning, offline learning, mixed learning methods, and those

without any learning mechanism.

2. Nature of the Low-Level Heuristics: This aspect evaluates the

variety and organization of low-level heuristics within the hyper-

heuristic framework, considering their types, the set they form, and

how they are grouped.

3. Nature of Solutions: This dimension focuses on the types of solu-

tions employed by hyper-heuristics, whether they are single-point or

population-based.

4. Nature of Objective: This dimension addresses the objectives tar-

geted by hyper-heuristics, differentiating between single-objective and

multiobjective approaches.

5. Nature of Move Acceptance: This section delves into the decision-

making strategies used by hyper-heuristics for move acceptance, clas-

sifying these methods as either stochastic (probabilistic) or non-stochastic.

6. Nature of Parameter Setting: The final dimension examines how

hyper-heuristics manage parameters, detailing approaches that are

static, dynamic, adaptive, or self-adaptive.

Each dimension contributes significantly to defining the operational charac-

teristics of selection hyper-heuristics, providing insight into their complex

problem-solving capabilities.
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Despite the growing prosperity and diverse applications of hyper-heuristics

(Ryser-Welch and Miller, 2014), a significant gap remains in their ap-

plication to truck dispatching within marine container terminals. The

literature predominantly showcases studies focusing on selective hyper-

heuristics, leaving generative hyper-heuristics, especially those adept at

managing multi-scenario dynamics in truck dispatching, largely unexplored.

This oversight presents a unique and promising opportunity for research

and development. By leveraging advanced hyper-heuristic methodologies,

there is substantial potential to optimize truck dispatching processes in ma-

rine container terminals, addressing complex operational challenges with

innovative solutions.

Broadening the Horizons with Ensemble Approaches

Further contributing to the dynamism of hyper-heuristics is their ability to

be employed in ensemble settings. In this thesis, we harness the power of

GP as a hyper-heuristic generator of low-level heuristics while leveraging

reinforcement learning as a mechanism for selecting and amalgamating GP

individuals. This dual employment distinguishes our approach from stan-

dard hyper-heuristics, where the primary focus is pinpointing a singular

heuristic aligning with the problem’s predominant traits.

By proposing an ensemble framework powered by reinforcement learning,

our strategy fosters collaboration amongst multiple low-level heuristics.

This collective approach offers an innovative response to intricate multi-

scenario challenges, frequently plagued by slow learning, challenging gener-

alizations, and less-than-optimal performance. The underpinnings of this

ensemble approach and its ramifications for the field will be explored in

subsequent sections.
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As this literature review elucidates, hyper-heuristics, emphasizing versa-

tility and adaptability, offer an exciting frontier for optimization research.

Their two-tiered architecture and potential ensemble approaches set the

stage for tackling complex, real-world problems with renewed vigor and

creativity. This thesis aims to contribute to this burgeoning field, focus-

ing on applying hyper-heuristics in the nuanced domain of container port

logistics.

2.3.2 Genetic Programming

Genetic Programming is a distinctive and widely acknowledged compu-

tational method in evolutionary computation. Pioneered by Fogel et al.

(Fogel et al., 1966) and later popularized by Koza in the 1990s (Koza,

1994), GP capitalizes on principles of natural evolution, specifically muta-

tion, crossover, and selection to evolve a population of programs, predom-

inantly represented as GP trees. Over successive generations, these trees

adapt and improve their capability to address complex problems through

selection, crossover, mutation, and replacement mechanisms.

One of the standout capabilities of GP is its adaptability in solving a myriad

of engineering and optimization issues. The technique has been leveraged

in various applications, including optimizing autonomous vehicles control

(Ardeh et al., 2022), predicting financial market trends (Christodoulaki

et al., 2022), classifying images (Fan et al., 2022), symbolic regression

(Chen et al., 2018b), and, pertinent to this study, dynamic truck dispatch-

ing (Chen et al., 2019). Specifically, in the container terminal simulation

context, GP has displayed a commendable ability to discern intersection

passing rules even without precise GPS data, underscoring its ability to in-

fer patterns and behaviors from existing data sets (Elhenawy et al., 2014).
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When juxtaposed with other prominent methods, such as decision trees,

logistic regression, support vector machines, and artificial neural networks,

GP distinguishes itself with three salient advantages. It champions flexi-

ble representations, which facilitate encoding intricate problem structures

(Fan et al., 2023). Coupled with this, its powerful search algorithms make

traversing expansive solution spaces feasible (Mei et al., 2022). Signifi-

cantly, GP-derived heuristics are not just efficient in execution but also

proffer partial interpretability, thus bolstering their utility in practical sce-

narios (Nguyen et al., 2017).

Figure 2.3: Genetic Programming Tree Structure

Traditional GP representations, such as the tree-based GP (Fig 2.3), have

garnered favor due to their clear visualization and interpretability. Such

structures facilitate the encoding, evolution, and evaluation of mathemati-

cal expressions with ease. While alternative non-tree structures like linear

GP (Brameier and Banzhaf, 2007) and stack-based GP (Perkis, 1994) have

their merits, the tree-based approach has been shown to represent decision-

making logic, especially in multifaceted scenarios succinctly. This lucidity

in representation can be instrumental when liaising with real-life decision-

makers, such as port operators.

4

Moreover, the past decade has witnessed innovations to augment GP per-

formance, encompassing methods such as double-layer GP (Chen et al.,
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2022), neural-network-assisted GP (Chen et al., 2023), and reinforcement

learning-assisted GP (Yi et al., 2022). Although these techniques have

made significant strides, one consistent challenge in GP-based approaches

remains their computational intensity, especially when running extensive

simulations to evaluate individual fitness within the GP population (Hilde-

brandt and Branke, 2015).

This computational demand highlights the importance of seeking more ef-

ficient and scalable GP-based methodologies, especially as real-world opti-

mization problems grow in complexity and scale. The challenge is to strike

a balance between computational efficiency and solution accuracy. A piv-

otal issue within the GP literature pertains to the high computational costs

of continuously evaluating a rapidly expanding population of candidate so-

lutions. Each individual in the GP population typically requires a detailed

simulation or complex function evaluation to ascertain their fitness. These

evaluations can become exceedingly time-intensive when operating in high-

dimensional spaces or seeking solutions for intricate problems.

However, the advancements in parallel processing, cloud computing, and

algorithmic improvements present promising avenues to mitigate these com-

putational challenges. Additionally, cooperative coevolutionary GP (Nguyen

et al., 2013) has emerged as a compelling methodology by segmenting prob-

lems into smaller, more tractable sub-problems, enabling concurrent eval-

uations and speeding up the evolutionary process. Such stratagems exem-

plify the continuous push in GP research to enhance the method’s efficacy

without compromising the solutions’ quality.

It’s also worth noting that the adaptability of GP provides an unparal-

leled opportunity to incorporate domain-specific knowledge, should it be

available. Incorporating such knowledge can expedite the GP evolutionary
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process and lead to solutions more congruent with real-world constraints

and expectations. Several studies have exemplified this approach, utilizing

domain insights to guide the GP evolution or to prune the solution space

effectively.

Furthermore, the literature reveals a growing interest in hybrid models that

combine the strengths of GP with other optimization and machine learning

techniques. For instance, integrating neural networks with GP (Chen et al.,

2023) has resulted in models that leverage GP’s adaptability and symbolic

reasoning with the pattern recognition strengths of neural networks. Such

hybrid models symbolize the future direction of GP research, wherein the

method is seen not as an isolated tool but as part of a holistic, integrated

toolkit for solving complex optimization problems.

In conclusion, the trajectory of GP in academic literature underscores its

significance and versatility in addressing a wide array of optimization chal-

lenges. As computational resources evolve and methodologies mature, GP

stands poised to play an even more influential role in shaping solutions for

tomorrow’s intricate real-world challenges. As researchers and practition-

ers, our charge is to continue probing the boundaries of GP, integrating it

with emerging techniques, and harnessing its full potential to realize opti-

mal, efficient, and interpretable solutions across diverse domains, especially

in complex real-world optimization problems like dynamic container port

truck dispatching.

2.3.3 Ensemble Methods

Ensemble methods, also known as multi-expert models, have attracted sig-

nificant attention in recent years due to their ability to address complex
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problems by combining the strengths of several individual models or heuris-

tics. These models are based on the premise that integrating the outputs of

multiple experts can result in a more robust and accurate decision-making

process, as opposed to relying on a single expert or model.

Ensemble methods have been widely employed in machine learning and

pattern recognition tasks, where several base classifiers are combined to

improve classification accuracy (Kuncheva, 2014). These techniques aim

to create diverse and complementary classifiers by manipulating the train-

ing data or learning algorithms. Research has shown that ensembles can

significantly improve algorithm performance, mainly when each algorithm

exhibits different strengths and weaknesses (Polikar, 2006; Hong et al.,

2024).

Ensemble methods have been employed in optimization to solve complex

problems more effectively. For instance, the cooperative co-evolutionary

algorithm (Ma et al., 2018; Qin et al., 2022; Theodorakos et al., 2022)

divides a problem into smaller subproblems, which individual experts solve.

The solutions are then combined to form a global solution. Similarly, the

evolutionary forest (Zhang et al., 2021a) and particle swarm optimization

(Ecer et al., 2020) apply multiple search strategies simultaneously, allowing

the exploration of the solution space more effectively.

Leveraging the benefits of both ensemble methods and hyper-heuristics

models, this paper introduces a novel learning-assisted heuristic ensemble

model, which, to our knowledge, is the first to propose the utilization of

reinforcement learning as a gate network for selecting/combining multi-

ple low-level heuristics to address intricate multi-scenario problems. The

learning-assisted ensemble structure in this paper is depicted in Fig. 2.4.

The heuristics compete to generate output, while the gating network or-
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Figure 2.4: Learning-Assisted Heuristic Ensemble Framework

chestrates this contest. For each input x, the gating network acquires

information about the performance of all heuristics (y1, y2, y3, ...) involved

in addressing the task, and the output of each heuristic is compared with

the target output y. The gating weights of heuristics (g1, g2, g3, ...) are ad-

justed based on the relative performance of that heuristic, compared to

the other heuristics, for the specific input pattern. Within this framework,

each heuristic is required to solve the problem solely within its designated

area of focus, thus mitigating the model’s complexity and training costs

while enhancing the robustness of the generated solutions.

We posit that the learning-assisted ensemble hyper-heuristics model can

deliver enhanced performance characterized by rapid convergence and su-

perior generalization capabilities. Employing a weighted sum in this model

facilitates the effective integration of individual heuristics’ strengths, culmi-

nating in a more robust and powerful decision-making process. Moreover,

including a gated network in the model expedites training by selectively

concentrating on pertinent heuristics and discarding less effective ones,

thereby streamlining the learning process and augmenting overall perfor-

mance. This model is examined and analyzed on a complex multi-scene
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port truck dispatching problem, which involves uncertainty, in the follow-

ing sections.

2.3.4 Recurrent Neural Network and Transformer

In the vast landscape of machine learning, numerous techniques have emerged

to tackle intricate problems within transportation systems. The Recurrent

Neural Network (RNN) and the Transformer model stand out due to their

unique attributes and compelling use-cases.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) have risen to prominence in the domain

of time-series analysis due to their inherent ability to capture temporal dy-

namics and sequential dependencies. This is primarily due to the RNN’s

architecture, which allows for feedback loops, making it particularly apt for

time-series prediction tasks. In logistics, RNNs have demonstrated signifi-

cant prowess in demand forecasting (Zhao et al., 2020) and vehicle routing

(Xu et al., 2021). By leveraging the capacity of RNNs to remember past

information, these networks are ideally suited to address problems where

temporal patterns and sequences are crucial.

Transformers

On the other side of the spectrum, the Transformer model, introduced by

Vaswani et al. in 2017 (Vaswani et al., 2017), has revolutionized various

domains, from natural language processing (Wolf et al., 2020b) and im-

age processing (Chen et al., 2021) to data prediction (Wang et al., 2022).
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Unlike the sequential nature of RNNs, the Transformer model leverages

self-attention mechanisms, allowing it to weigh the relevance of different

parts of an input sequence irrespective of their order. This inherent char-

acteristic makes the Transformer model exceptionally effective in handling

complex relationships and dependencies in data.

RNN, Transformer, and Genetic Programming

While both RNN and Transformer models offer unique advantages, GP has

also solidified its place in optimization. Notably, GP has been employed for

evolving dispatching rules in manufacturing systems (Zhang et al., 2023)

and has found applications in routing within transportation networks (Ah-

vanooey et al., 2019), as well as in pattern recognition tasks such as medical

text classifications (Cui et al., 2019; Liu et al., 2020). However, with its

global search capabilities, GP can sometimes lead to suboptimal solutions

due to its limitations in local search (Khayyam et al., 2020).

Recent initiatives have combined RNN and GP to address this gap, focusing

on symbolic regression problems (Mundhenk et al., 2021), yielding promis-

ing results. This amalgamation leverages the RNN’s temporal sequencing

capabilities with GP’s optimization strengths, creating a synergistic ap-

proach that provides more holistic and efficient solutions.

Moreover, a compelling case emerges for integrating the Transformer model

into this framework. As container port truck dispatching exhibits intricate

dynamics, the ability of the Transformer model to capture complex rela-

tionships can be instrumental. Furthermore, by employing the Transformer

model as a surrogate, the computational efficiency of the system can be

significantly enhanced, thereby boosting simulation speeds. As empirical

evidence suggests, traditional surrogate models may not adequately han-
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dle the nuances of port vehicle assignment, emphasizing the need for more

advanced models like the Transformer.

While RNNs, Transformers, and GPs have individually shown potential

in various domains, their combined strength, especially in dynamic truck

dispatching, offers a promising avenue for future research and applications.

By harnessing their complementary attributes, we can refine dispatching

strategies and significantly boost simulation speeds, resulting in more effi-

cient and robust solutions for port operations.

2.3.5 Reinforcement Learning

Reinforcement Learning is traced back to the 1950s and has gained sig-

nificant momentum with deep Q-learning introduced by DeepMind (Mnih

et al., 2013). By facilitating agents to learn from their environment by

interacting with it, reinforcement learning (Reinforcement Learning (RL))

operates on the principle of rewards and punishments, ensuring optimal

decision-making. The vast potential of deep reinforcement learning has

been harnessed across numerous fields, from operations research to self-

driving technologies (Hubbs et al., 2020; Emuna et al., 2020).

However, despite its vast potential, the application of deep learning, partic-

ularly in real-life port operations, has been somewhat limited. Challenges

such as training feasibility, convergence issues, and the intricate nature

of sparse rewards, especially in dynamic port dispatching scenarios, have

limited its widespread adoption (Khorasgani et al., 2020).

Deep reinforcement learning-based hyper-heuristics (DRL-HH) was intro-

duced to counter these challenges, amalgamating principles with heuristic

algorithms (Zhang et al., 2022; de Santiago Junior et al., 2020). Although it
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showed promise, most proposed methods rely on variants of a single heuris-

tic. This implies that each time the reinforcement learning agent decides,

it can only choose one heuristic as its action.

Considering the above context, a compelling argument arises for using RL

as a gate network in ensemble models (Song et al., 2023). With its inher-

ent capability of understanding and learning the environment and making

decisions based on accumulated knowledge, RL can effectively evaluate

the performance of individual heuristics in real time and adjust the gat-

ing weights accordingly (Lee et al., 2021). Such dynamic adaptability can

be invaluable, particularly in intricate multi-scenario real-world challenges,

allowing the model to focus on pertinent heuristics and discard less effec-

tive ones. This streamlines the decision-making process and potentially

augments solutions’ overall efficiency and robustness.

In conclusion, combining ensemble methods’ strengths and adaptability

to reinforcement learning offers a promising pathway for tackling complex

optimization problems in various real-world scenarios. As we continue to

advance in this domain, combining these methods promises to redefine our

problem-solving capabilities.

2.4 Summary

The monumental intertwining of international commerce with the port in-

dustry has borne witness to several transformative phases, each redefining

the core operational tenets of the sector. The dawn of the Intelligent Port

and Port Optimization paradigm stands as a testament to this evolution,

marking a transition from mere operational adjustments to a comprehen-

sive overhaul powered by technology and innovation. At the heart of this
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paradigm, the intricacies of Container Port Truck Dispatching remain

central, underpinning the essence of port logistics. The repercussions of its

optimization cascade through the entire port infrastructure, determining

its overall efficacy and performance.

Our exploration through the annals of academic and industrial pursuits

in this domain has unveiled a rich tapestry of methodologies, each con-

tributing a unique facet to the dispatching optimization problem. The lay-

ered sophistication of Hyper-Heuristics, the nature-inspired algorithms

of Genetic Programming, the adaptive prowess of Ensemble methods

and Reinforcement Learning, and the combination of GP with the Re-

current Neural Network and Transformer have all showcased their

distinct advantages and challenges. The amalgamation of these techniques,

each complementing the other, can redefine the landscape of dispatching

strategies, infusing them with greater accuracy, adaptability, and speed.

As we conclude this literature review, it becomes evident that the opti-

mization horizons in the container port truck dispatching domain are vast

and ever-evolving. The convergence of classical heuristics with modern

computational paradigms has ushered in a new era of possibilities, setting

the stage for groundbreaking advancements in the field. With this foun-

dation, we now transition into a deeper exploration, commencing with the

intricate dynamics of machine learning in container port truck dispatching,

spotlighting the role of Genetic Programming (GP) in generating truck

dispatching strategies.
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Chapter 3

Genetic Programming in

Dispatching Strategy

Generating

Truck dispatching, especially in the intricate environment of marine con-

tainer terminals, is inherently laden with complex scenarios. One core

observation is the varied impact of problem parameters or features across

different operational scenarios. To elucidate, parameters such as the aver-

age quay crane load time and average quay crane unload time reveal their

paramount influence in scenarios predominantly governed by loading and

unloading operations, respectively. This inherent variability poses chal-

lenges to certain heuristic methods. While traditional Arithmetic Genetic

Programming (Arithmetic Genetic Programming (AGP)) provides signif-

icant advantages over manual heuristics, such as improved adaptability,

efficiency, and solution quality, it still harbors certain limitations in ad-

dressing dynamic scenarios.

In the broader scientific community, Genetic Programming with logic op-
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erators (Logic Genetic Programming (LGP)) often emerges as a favored

choice to overcome these challenges. However, it is imperative to acknowl-

edge that incorporating additional operators can inadvertently inflate the

search space (Ebner, 1999). Such an expansion, while intending to en-

hance flexibility, may conversely lead to prolonged search times and often

culminate in sub-optimal solutions attributable to deficient convergence

qualities.

Despite the aforementioned enhancements brought by LGP over AGP, pri-

marily due to its integration of logic operators, there remains a palpable

challenge. The burgeoning search space, coupled with convergence issues

in certain scenarios, even when the functional expression capability is fully

leveraged, accentuates the need for a more refined approach.

This chapter seeks to bridge this gap. We present an exploration into a

hierarchical genetic programming encoding structure tailored to harness

maximally the strengths of logic operators within the GP framework. A

pivotal aim is to circumvent the potential pitfalls of an exponentially grow-

ing search space. Anchored in inspirations from pioneering research on co-

operative coevolution GP and innovative GP representations, we unveil the

Cooperative Double-Layer GP Hyper-heuristic (Cooperative Double-Layer

Genetic Programming Hyper-heuristic (CD-GPHH)). This novel framework

bifurcates scenario grouping and dispatch ordering into distinct subpopu-

lations. We posit that such a demarcation can augment the readability

and elevate the solution quality in confronting the multifaceted, dynamic

vehicle scheduling quandaries.

Delving deeper into the proposed CD-GPHH, we segregate GP individu-

als into dual cooperative strata: the high-scenario and normal-calculation

layers. These layers operate with autonomy, possessing their distinct mu-
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tation and crossover paradigms. Notably, the high-scenario layer plays a

pivotal role in determining the appropriate normal-calculation individual

to be invoked for solution generation within a specific scenario.

The overarching ambition of this chapter is to forge a robust GP methodol-

ogy. Through its lens, we aim to evolve dynamic truck dispatching heuris-

tics of superlative quality seamlessly. Such evolved heuristics are poised

to empower port companies, facilitating instantaneous decision-making in

real-time and thereby adeptly maneuvering through the multifarious sce-

narios rife with uncertainties. Our empirical investigations span a gamut,

encompassing the AGP, LGP, and the novel CD-GPHH. These were rig-

orously tested on rudimentary function fitting problems and the intricate

real-world marine container terminal truck dispatching challenges. Our en-

deavors culminate in dual seminal contributions. Firstly, we underscore

the potency of GPHH in unraveling real-world online combinatorial opti-

mization challenges reminiscent of those pervading many expansive con-

tainer ports. Secondly, our research brings a pioneering bi-level solution

framework poised to inherently leverage the intricate structures of scenario

switches, a hallmark of myriad real-world challenges, thereby enhancing

the previously propounded GPHH.

To elucidate further, the ensuing sections of this chapter are structured

methodically. Section 3.1, 3.2 and 3.3 delves deep into the intricate de-

tails of AGP, LGP, and our proposed CD-GPHH algorithm. Thereafter,

Section 3.4 unveils the experimental design and its concomitant results, ac-

companied by a meticulous analysis. Concluding this chapter, Section 3.5

encapsulates the core insights, concurrently paving the way for prospective

research avenues.
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3.1 Arithmetic Genetic Programming

Arithmetic Genetic Programming is a seminal methodology within the

broader ambit of GP. It harnesses the raw power of arithmetic operations

to sculpt solutions to complex optimization and symbolic regression tasks.

Grounded in the foundations of mathematics, AGP embeds an inherent

capability to represent and tackle intricate problems, making it especially

relevant for the task at hand: container port truck dispatching.

AGP operates by constructing mathematical expressions, often in tree

forms shown in Fig. 3.1, that best describe a given problem or dataset. In

truck dispatching, this translates to evolving expressions that optimize dis-

patch strategies based on myriad parameters, spanning from truck queues

to QC operation times. Notably, this representation granularity differen-

tiates AGP from manually crafted heuristics, which tend to offer a more

generic outlook.

a 5 c d

- +

*

( a – 5 ) * ( c + d )

Figure 3.1: AGP Tree Structure

The core operation of AGP is shown in Algorithm 2, which involves initial-

izing a population of random arithmetic expressions. Each of these expres-

sions, termed ’individuals,’ represents a potential solution to the problem.

These solutions’ efficacy or ’fitness’ is then gauged against a predefined ob-

jective function, as mentioned in equation (1.4). The most fitting solutions

are identified, and genetic operations—crossover, mutation, and reproduc-
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tion—are applied, ushering in a new generation of evolved solutions. With

each iteration, the solutions evolve, becoming more attuned to the underly-

ing problem, leveraging the arithmetic operations and structures inherent

in AGP.

Algorithm 2 AGP, LGP, and CD-GPHH Evolution Algorithm

Require: Initial Parameters initial
p← NewPopulation
p.initial individuals(initial.population size)
generation← 0
while generation < initial.max generation do

p.calculate fitness()
p.penalize long individuals()
next generation← NewPopulation
while next generation.size() < p.size() do

Insert an individual to next generation by
Crossover, Mutation, or Reproduction in p

end while
p← next generation
generation← generation + 1

end while

To ensure an exhaustive exploration of the solution space and prevent

premature convergence to sub-optimal solutions, AGP employs non-elitist

tournament selection. This strategic choice amplifies genetic diversity in

the population, paving the way for a more varied and robust solution. The

iterative, evolutionary process perpetuates until a predefined criterion, such

as a maximum number of generations or a fitness threshold, is met.

In the following subsections, we provide a comprehensive exploration of

the inner workings of AGP. By examining its fundamental mechanisms

and operational intricacies, we aim to illuminate the unique attributes and

strengths of AGP in modeling and solving complex optimization problems

like container port truck dispatching.
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Figure 3.2: Crossover Operation of AGP & LGP

3.1.1 Crossover

The crossover operation takes two parental individuals selected through

tournament selection and produces two offspring using a single point

crossover operation. An example is illustrated in Fig. 3.2, where a subtree

of parent 2 is combined with parent 1 to generate offspring 1, whereas

offspring 2 has resulted from a merge of subtree 1 into parent 2.

a 5

- b

*

a 5 c d

- /

*

Mutate

Figure 3.3: Mutation Operation of AGP & LGP
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3.1.2 Mutation

The mutation operation takes one individual as input and generates a new

offspring by a slight modification. A mutation point is randomly selected

to grow a new randomly generated subtree that keeps the whole tree within

the depth limitation, as illustrated in Fig. 3.3.

3.1.3 Depth Restriction

To avoid the bloating problem, researchers usually set a depth limit to the

GP trees and discard or prune any result that exceeds the limits. We used

two approaches in this study. The first method introduces a penalty term

into the fitness function to penalize individuals who are too deep or have

too many nodes. The second method sets a maximum depth of subtrees

for crossover and mutation operations to generate resulting offspring within

the required depth limit.

Incorporating principles inherent to natural selection, AGP initiates its evo-

lutionary process with a randomly generated population. This population,

representing diverse solutions, is rigorously assessed based on their fitness

values. Each individual’s fitness reflects its adaptability to the prevailing

environment and its ability to solve the problem at hand.

In the context of the container port truck dispatching issue, the primary

metric of fitness is denoted as TEU/h, which encapsulates the throughput

efficiency of the port. Specifically, TEU/h quantifies the number of con-

tainers (Twenty-Foot Equivalent Units) that can be efficiently dispatched

within an hour of port operations. A higher TEU/h indicates a more effi-

cient truck dispatching strategy, and conversely, a lower value underscores

potential inefficiencies. Therefore, this metric is a crucial determinant in
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gauging the efficacy of truck assignment strategies contrived by each indi-

vidual in the population.

Adhering to genetic algorithm tenets, the premise of GP is rooted in the

belief that proximity to a high-performing individual indicates the presence

of more adaptive solutions. This mirrors the principle of natural selection,

where individuals with superior adaptive traits tend to propagate these

traits through generations. Drawing parallels, in the realm of AGP, indi-

viduals with higher fitness values (TEU/h) are construed to possess ’genes’

or components of strategies that align better with the environmental de-

mands.

By selectively breeding these elite individuals and applying evolutionary

genetic operations such as crossover, mutation, and selection, the GP algo-

rithm aims to refine the population iteratively. Over successive generations,

the intent is to gravitate towards solutions that manifest enhanced adapt-

ability and performance. This progression, grounded in the principles of

evolution, ensures that AGP continually optimizes truck dispatching strate-

gies, fostering diversity and optimization in its quest for the most adaptive

solutions.

GP, being a form of hyper-heuristic, differentiates itself profoundly from

conventional genetic algorithms (GAs). This distinction primarily lies in

the solutions they generate during the evolutionary process. Instead of

directly evolving the strategies for container port truck dispatching, GP

concentrates on evolving methods or heuristics that can produce these

strategies. In simpler terms, while GAs might emphasize generating a

direct sequence of tasks for each truck, GPs are concerned with creating a

programmatic approach to derive such task sequences.

This elevated approach of GP offers it several inherent advantages. It
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doesn’t search within the solution space, as typical algorithms would. In-

stead, GP operates at a higher dimension, navigating the heuristic space.

This means the evolved individuals (methods or heuristics) have enhanced

robustness. Instead of being bound to a specific solution, they have the

adaptability to generate various dispatching strategies contingent upon the

prevailing environmental conditions.

The conventional static methods necessitate a renewed search in the solu-

tion space for every distinct task, rendering them potentially inefficient and

less adaptable. On the other hand, the hyper-heuristic nature of GP allows

it to be environmentally adaptive. By evolving methods that can generate

solutions rather than the solutions themselves, GP ensures a quicker so-

lution derivation time and broader applicability across different scenarios,

thereby achieving enhanced adaptability and efficiency in diverse opera-

tional landscapes.

Meanwhile, the complex nature of the container port truck dispatching

problem necessitates an approach that is not only versatile but also adap-

tive to the dynamic environment of ports. Conventional methods, while

effective in certain scenarios, often lack the flexibility required to address

the myriad of contingencies and evolving challenges that ports face daily

(Kumari, 2021; Pluhacek et al., 2018).

GP emerges as a standout candidate in this context. Its inherent ability

to evolve heuristics rather than concrete solutions, provides a more en-

compassing and adaptive framework. Instead of being confined to a set

strategy, GP can generate diverse dispatching strategies based on the pre-

vailing circumstances. This adaptability ensures that the solutions are not

just effective for a single snapshot of the problem but are versatile across

varying operational conditions.
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Moreover, GP’s focus on evolving methods that produce strategies, rather

than the strategies themselves, enables a broader search space and greater

adaptability. This not only reduces the computation time significantly but

also ensures a higher degree of robustness in the face of dynamic challenges.

In essence, we employ GP for the container port truck dispatching problem

because it promises adaptability, efficiency, and the breadth of its solution

space. Its hyper-heuristic nature ensures that the generated solutions are

optimized for the present and adaptable for the future, making it an indis-

pensable tool in the ever-evolving landscape of container port operations.

3.2 Logic Genetic Programming

In the truck dispatching problem, various problem parameters/features

have different degrees of influence in different scenarios. For example,

the average quay crane load time and average quay crane unload time

have more influence in scenarios dominated by loading and unloading op-

erations, respectively. An AGP method would struggle to deal with such

cases. This can be illustrated, as an example, by a piecewise-linear function

in (3.1), where the value of x decides the scenarios and the corresponding

results. To handle such problems, researchers usually choose the GP with

logic operators (LGP).

y =



x (x < 1)

x2 (1 ≤ x < 3)

x3 (3 ≤ x < 5)

x4 (5 ≤ x < 7)

x5 (7 ≤ x)

(3.1)
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Figure 3.4: LGP structure

Although AGP can address the shortcomings of manually crafted heuris-

tics by evolving parameterized heuristics from historical data, the resulting

solution can be extremely complex and ineffective when handling problems

involving multiple scenarios (i.e., when the distribution of random variables

changes over time). For such problems, using some discrete utility func-

tions is more elegant and efficient. LGP combining logic expressions with

algorithmic trees presented in the previous section, different subtrees can

be generated for different scenarios, which improves the performance of the

algorithm and produces results that are adaptive to complex multi-scenario

problems. This ability to adapt to different scenarios using a combination

of the logic tree with arithmetic trees follows the general framework under-

lying hyper-heuristics (Burke et al., 2010a), and the approach is thus also

named as a GPHH.

LGP trees with a positive probability of generating several logic trees at the

top to select several arithmetic trees at the bottom (Fig. 3.4). LGP shares
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similar crossover and mutation operations with AGP but has additional

operators designed for the logic tree, as shown in Table 3.1. Among these

operators, the majority are binary, having two inputs and producing one

output, such as ”+, -, *, /, >=, <=, and, or, max, min”. Exceptionally,

the ”IF ELSE” operator has three inputs and selects either the second or

third input as the output based on the value of the first input. Addition-

ally, ”max” and ”min” are auxiliary operators used specifically within the

context of real port problems.

Moreover, a loosely-typed GP is used in LGP, which allows arithmetic and

logical operations to be combined freely. When performing logical calcula-

tions, numbers greater than 0 are treated as logically true, and vice versa

as logically false. In this way, after the introduction of the ”IF-ELSE” op-

erator, different subtrees can be selected for calculation through the logical

values of the previous decision tree. Therefore, some multi-scenario prob-

lems difficult to encode by a single depth-constrained arithmetic tree can

now be more effectively addressed in LGP. For example, with the assis-

tance of the ”IF-ELSE” operator and comparison operators, we can evolve

a simple LGP tree to represent the discontinuous function in (3.1) fairly

easily.

In the multifaceted landscape of the truck dispatching problem, different

parameters and features exert varied influences depending on the prevail-

ing scenario. For instance, parameters like the average quay crane load

time and its unload counterpart assume paramount importance in con-

texts chiefly characterized by loading and unloading actions, respectively.

Traditional methods, such as AGP, often find themselves grappling inef-

fectively with these shifting weights and nuances. This dynamic can be

elucidated by considering a piecewise-linear function showcased in (3.1).

In this function, the parameter x serves as a determinant, dictating the
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Table 3.1: AGP, LGP and CD-GPHH Operators

Name Label Description Algorithm

add + Add operation AGP, LGP, CD-
GPHH

sub - Minus operation AGP, LGP, CD-
GPHH

multiply * Multiplication
operation

AGP, LGP, CD-
GPHH

divide / Division opera-
tion (protected)

AGP, LGP, CD-
GPHH

greater or equal >= Greater than or
equal to

LGP, CD-GPHH

less or equal <= Less than or
equal to

LGP, CD-GPHH

IF ELSE if else Conditional op-
erator (if-else)

LGP

and & Logic AND LGP, CD-GPHH
(only in real-world
problem)

or | Logic OR LGP, CD-GPHH
(only in real-world
problem)

max max Return the max-
imum value

LGP, CD-GPHH
(only in real-world
problem)

min min Return the min-
imum value

LGP, CD-GPHH
(only in real-world
problem)
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relevant scenario and its consequential outcomes.

In response to such intricacies, the academic and research community has

predominantly leaned toward genetic programming equipped with logic op-

erators, popularly known as LGP. This choice is rooted in LGP’s inherent

versatility and capacity to address scenario-specific challenges.

Though AGP brings commendable capabilities to the table, especially in re-

dressing the limitations intrinsic to manual heuristics, by molding parameter-

driven heuristics sourced from historical data, its solutions often become

intricate mazes. These solutions, when confronted with problems that oscil-

late across multiple scenarios - especially where there’s a temporal evolution

of the distribution of random variables - can turn out to be convoluted and

ineffectual. In these contexts, the elegance and efficiency of discrete utility

functions shine through as a more compelling choice.

Delving deeper into the capabilities of LGP, its amalgamation of logical

expressions with algorithmic trees (as delineated in preceding sections) al-

lows it to spawn different subtrees attuned to distinct scenarios. This

modular approach significantly bolsters the algorithm’s efficacy, enabling

it to churn solutions that seamlessly navigate the complexities inherent

in multi-scenario challenges. Such dexterity in adaptation, born from the

harmonious blend of logical and arithmetic trees, echoes the foundational

principles of hyper-heuristics. This congruence with the hyper-heuristic

paradigm, as documented by (Burke et al., 2010a), has bestowed upon this

methodology the moniker of GPHH.

A closer inspection of LGP trees reveals their penchant for generating, with

substantial probability, multiple overarching logic trees. These logic trees,

positioned strategically at the apex, serve as gatekeepers, orchestrating the

selection of several arithmetic trees nested below, a relationship vividly
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illustrated in Fig. 3.4. While the crossover and mutation mechanisms of

AGP and LGP share common threads, LGP introduces an enhanced set of

operators, meticulously tailored for its logic tree component, as cataloged

in Table 3.1.

Furthermore, LGP leverages a loosely typed GP framework, facilitating

the unconstrained melding of arithmetic and logical computations. Within

this paradigm, numerical values exceeding the zero threshold are construed

as logical truths, with their antitheses being designated as logical fallacies.

This interpretative mechanism becomes especially pivotal upon incorpo-

rating constructs like the ”IF-ELSE” operator. With this in play, different

subtrees are marshaled into action based on the logical determinations of

antecedent decision trees.

Consequently, challenges previously stymied a solitary depth-constrained

arithmetic tree due to their multi-scenario intricacies can now find their

nemesis in LGP. With tools such as the ”IF-ELSE” operator and a bat-

tery of comparison operators, LGP can effortlessly evolve to epitomize the

fragmented function encapsulated in (3.1) and the complex multi-scenario

container truck dispatching problem.

Building upon our prior analysis, it’s equally vital to appraise the container

port truck dispatching problem through the lens of LGP’s strengths. Al-

though AGP offers specific advantages, several nuances and complexities

inherent to the truck dispatching realm underscore why LGP might, in fact,

be the more robust and adaptive solution.

• Multi-scenario Adaptability: Ports, especially global hubs, encounter

many scenarios. From variations in ship sizes, and differing con-

tainer types, to fluctuating cargo loads, the operational environment
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is riddled with dynamism. LGP’s ability to seamlessly address multi-

scenario problems equips it to craft dispatching strategies that can

pivot and adapt according to varying operational landscapes.

• Logic Expressions with Algorithmic Trees: By combining logical oper-

ations with arithmetic constructs, LGP crafts a more versatile problem-

solving framework. This hybrid approach is well-suited for the dis-

patching problem, allowing the system to make decisions based on

numerical computations (like truck wait times or crane efficiency)

and logical constraints (like operational rules or safety regulations).

• Depth and Breadth of Analysis: While AGP operates more on the

surface level, LGP dives deeper, dissecting problems with greater

granularity. In the context of truck dispatching, this means not just

identifying which crane a truck should go to, but also assessing the

sequence, considering the type of containers, predicting potential bot-

tlenecks, and so forth.

• Loosely-typed GP: LGP’s implementation, which allows arithmetic

and logical operations to merge freely, provides a flexible decision-

making canvas. For instance, in container port operations where

decision parameters might not always be strictly binary (dispatch or

don’t dispatch) but can be influenced by many intermediate factors,

LGP’s loosely typed structure offers an edge.

• Robustness in Complex Environments: Ports can be volatile environ-

ments with sudden changes in weather, unexpected equipment mal-

functions, or unforeseen logistical challenges. LGP’s layered decision-

making approach, utilizing logic trees atop arithmetic ones, ensures

that the algorithm remains resilient to sudden changes, dynamically

recalibrating strategies as scenarios evolve.
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• Efficient Handling of Discontinuities: As highlighted previously, LGP’s

embrace of operators like ”IF-ELSE” makes it adept at dealing with

discontinuous functions or non-linear challenges. In the realm of truck

dispatching, where operations are often non-linear and dependent on

a multitude of interconnected factors, LGP’s ability to seamlessly

handle such discontinuities becomes invaluable.

• Reduced Need for Frequent Retraining: Given LGP’s comprehensive

decision-making framework, once trained, it might not require as fre-

quent retraining as simpler models. It can generalize better across a

broader spectrum of scenarios, ensuring consistent performance even

as the operational environment of the port undergoes minor shifts.

In summation, while both AGP and LGP offer commendable tools to tackle

the truck dispatching conundrum, LGP’s multi-faceted approach, blending

logic with arithmetic and offering depth of analysis, makes it particularly

well-poised to handle the intricacies and dynamism of container port oper-

ations.

3.3 Cooperative Double-Layer Genetic Pro-

gramming Hyper-Heuristic

In tackling the multifaceted and dynamic nature of seaport terminal truck

scheduling, the Genetic Programming (GP) paradigm has exhibited poten-

tial. However, it’s imperative to harness the strengths of logic operators

within GP without succumbing to the perils of an exponentially growing

search space. Taking cues from the existing literature on cooperative co-

evolution GP (Nguyen et al., 2013; Potter and Jong, 2000) and innovative
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GP representations (Nguyen et al., 2012; Hoai et al., 2006; Bi et al., 2020),

this section unveils a novel methodology: the Cooperative Double-layer

GP Hyper-heuristic (CD-GPHH). The hallmark of this approach is its bi-

furcation of scenario grouping and dispatch ordering into two distinct yet

collaborative subpopulations. This structural division enhances the solu-

tion’s interpretability and quality, particularly for intricate dynamic vehicle

scheduling predicaments.

Under the CD-GPHH framework, GP individuals inhabit two collaborative

echelons: the high-scenario layer and the normal-calculation layer. While

both layers have distinct mutation and crossover strategies, they operate

in synergy. The onus of the high-scenario layer individuals is to discern

which counterparts from the normal-calculation layer should be activated

to craft solutions for specific scenarios.

Despite LGP’s prowess in managing intricate discontinuous functions and

adjusting to multiple scenarios, its dependability remains a matter of con-

cern. A noticeable portion of the LGP population struggles to construct

multi-scenario adept solutions innately. The core challenge here is the

substantial expansion of the search space due to the inclusion of logic op-

erators, making it arduous for LGP to attain commendable convergence

within a plausible computational timeframe. Our empirical analysis fur-

ther accentuates this observation: LGP, while often producing noteworthy

results, doesn’t consistently align with the reliability prerequisites of indus-

trial settings. Moreover, the inherent intertwining of logic and arithmetic

constructs within an LGP tree hampers its clarity. This lack of lucidity

became evident during our field tests at the Ningbo Port’s real-world con-

tainer terminal. The intricate LGP-derived solutions were met with skepti-

cism by the port operators, who found them too convoluted for pragmatic

applications.
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In practical problems, performance metrics are typically separable. Take

the truck dispatching problem for ports as an example, where operators

usually consider different scheduling strategies based on, for example, task

categories, yard conditions, the number of trucks available for dispatch,

etc. In fact, these factors are high-level scenarios that are generally not

directly involved in the formulation of task ranking rules; they instead play

a role in the selection of different policies. Some researchers exploit these

decision variables by grammar-based LGP to generate individuals with sce-

nario distinguish ability (Nguyen et al., 2012; Sobania, 2021; Moyano and

Ventura, 2022; Whigham et al., 1995). However, the grammar-based GP

only adds grammar filtering to the normal LGP, not explicitly separating

the scenario selection from the calculation layer. As a result, these factors

do not always appear in the scenario layer to play a decisive role in sce-

nario selection without presetting. Instead, they are often embedded in the

calculation layer, which can cause unreliable performance.

Consequently, to reduce the size of the search space and to improve perfor-

mance, it is necessary to separate scenario information from dispatch rules,

leading to our proposed CD-GPHH method, which reduces the search space

size by separating arithmetic trees and scenario trees into two different lay-

ers. The concept underlying CD-GPHH is to evolve the scenario by group-

ing trees and truck dispatch trees concurrently but at two different layers.

More specifically, each individual in CD-GPHH has a scenario layer and

a calculation layer (Fig. 3.5). The scenario layer contains logic trees for

scenario clustering purposes, and the calculation layer includes arithmetic

trees that share structures similar to those in the AGP method. Each logic

tree in the scenario layer is bound to an arithmetic tree from the calculation

layer and grouped as a rule. In the truck dispatching problem for ports,

when a tree in the scenario layer evaluates to true (greater than zero), then
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the corresponding tree in the calculation layer is invoked to compute utility

scores for different truck–task assignments. Notably, thanks to this layered

structure, our CD-GPHH is also more comprehensible while enhancing the

quality of the resulting solutions.
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b 4 c 3

+ /
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≤ 

2 d

-

Rule 1 Rule 2 Rule 3

a b

&

Figure 3.5: CD-GPHH individual structure

Note that, in CD-GPHH, trees in both the scenario and calculation layers

are bound into rules for easier computation during implementation. The

algorithm operates on a specific rule before processing the two trees inside

each rule. Moreover, since the number of scenarios (number of rules) was

introduced as a hyper-parameter in CD-GPHH, we extend the traditional

mutation operation in GP to enable it to learn and adjust automatically.

These three operations are detailed as follows:

3.3.1 Crossover

The crossover operation takes two individuals (parents) as inputs. As il-

lustrated in Fig. 3.6, one random rule of each parent is then selected, and
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Figure 3.6: Crossover Operation of CD-GPHH
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single-point crossover operations are applied to both layers independently,

resulting in two logic trees and two arithmetic trees that can form four

different rules. When the four rules are inserted back into the two parents

to replace the previously selected rules, eight new offspring are created.

However, to maintain the diversity of the population and prevent the same

pair of parents from producing too many offspring, two randomly selected

offspring are retained in the next generation.

c 3

/

d 5

≤ 

Rule 2

Mutate

b 3

/

d a

≤ 

Rule N

a 5

≥ 

b 4 c 3

+ /

d 5

≤ 

2 d

-

Rule 1 Rule 2 Rule 3

a 5

≥ 

b 4 c 3

+ /

d 5

≤ 

2 d

-

Rule 1 Rule 2 Rule 3

a 5

≥ 

b 4 c 3

+ /

d 5

≤ 

2 d

-

Rule 1 Rule 2 Rule 3

a b

&

Figure 3.7: Mutate Operation of CD-GPHH

3.3.2 Mutation

The standard mutation in CD-GPHH is applied to one parent selected by

the tournament. A rule in the parent is randomly selected for mutation.

For example, in Fig. 3.7 is rule 2 selected for mutation. Either the scenario

layer tree or the calculation layer tree, or both are modified to form a new

rule (same as AGP). This new rule is then inserted into a random location

of the parent to generate a new individual (hence, this new individual has

one more new rule than the parent). Meanwhile, to maintain diversity and

dynamically adjust the number of rules, between zero to two randomly

chosen rules in this new individual are subject to removal. Finally, if the

total number of rules in this new individual exceeds the rule count limit,
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another randomly selected rule will be removed.

3.3.3 Solution Decoding in CD-GPHH

In CD-GPHH, decoding a solution involves testing all logic sub-trees (ex-

cept the last) in the scenario layer in sequence until a sub-tree evaluates

to true. The corresponding calculation tree will be chosen to estimate

the performance of different task assignments. If no logic tree evaluates to

true, without evaluating the last logic tree, the last (default) calculation

tree will be used.

3.4 Experiments and Results Analysis

We evaluated the performance of our proposed CD-GPHH against a con-

ventional AGP as well as an LGP for solving multiscenario problems. We

first compared their performance for the simple multi-scenario function fit-

ting problem described in Section I. Subsequently, we conducted extensive

experiments for the real-life truck dispatching problem for marine container

terminals. For the truck dispatching problem, we also compared our CD-

GPHH against the traditional heuristic method used in real-world and a

manually crafted heuristic reported in (Chen et al., 2016). Since parameter

tuning is not the key focus of this paper, we just adapt the common settings

for all three GP-based algorithms, as listed in Table 3.2. To ensure fairness

in comparison, the depth limitation for AGP and LGP is set to 10, whereas

for CD-GPHH, it is reduced to 5. Given the new structure of CD-GPHH

incorporates multiple internal rules, the rule amount within CD-GPHH is

set as 1 to 10.
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Table 3.2: GP Initialisation Parameters

Population Size 1024

Max Generation 300

Crossover Rate 0.6

Mutation Rate 0.3

Reproduction Rate 0.1

Tree Initialization Method Ramped half-and-half

Selection Method Tournament Size 7

Tree Depth Restriction 10 (AGP&LGP) / 5 (CD-GPHH)

Long Individual Penalize
Scale

0.0001

Rule Amount Restriction
(CD-GPHH only)

1-10

Table 3.3: AGP, LGP, and CD-GPHH Test Results on Problem (3.1)

AGP LGP CD-GPHH

Standard
Deviation

Min 288.46 4.68 2.02× 10−12

Mean 447.21 248.24 0.042

Max 680.65 940.08 0.22
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3.4.1 Simple Multi-scenario Function Fitting Prob-

lem

In this experiment, the task is to fit function (3.1). There is one input

variable x and one constant that corresponds to two terminals in all GP

methods. The variable terminals were set to an actual value during the

calculation process, whereas a constant integer between 0 and 10 was set

as the terminal. During each test, 100 randomly pre-generated instances

of different values of x were used as the test set. Fitness was defined as the

standard variance between the fitted function and the original function. In

other words, a fitness closer to zero indicates a good solution.

The function (3.1) is utilized in this study as a benchmark for a straight-

forward function fitting problem, allowing for comparing various GP al-

gorithms’ performance in addressing multi-scenario challenges. Although

function (3.1) features a single input and output, it is designed to represent

multiple distinct scenarios based on varying values of x. This setup closely

mirrors the real-world environment of port truck dispatching. Different

conditions—weather, time, the number of trucks and ships, and congestion

at intersections—necessitate tailored heuristics for dispatching to maximize

port operational efficiency.

Moreover, while the problem outlined in function (3.1) might seem sim-

plistic, it encompasses the essence of multi-scenario and multi-environment

outputs. Its limited number of variables allows the results to be effectively

visualized and understood through graphical representation. Hence, we

chose this equation as a straightforward example to compare the perfor-

mance and interpretability of AGP, LGP, and the CD-GPHH introduced

in this Chapter.
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Figure 3.8: AGP, LGP, and CD-GPHH best result in fitting Eq. (3.1)
compared with the original function.
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Table 3.3 presents the statistical results from all three GP-based methods in

30 tests. CD-GPHH performed significantly better than AGP and LGP. As

shown in Fig. 3.8, comparing the best results against the original function,

AGP performs the worst, fitting only the case where x is greater than 7,

while LGP fits the range from 3 to 10. When x is less than 3, the fitting

errors lead to a relatively small variance in y (equivalent to a small variance

in individuals’ fitnesses). LGP, therefore, does not fit well in the range of

0 to 3 region in Fig. 3.8, while CD-GPHH has replicated almost 100%

of the original function, indicating the potential benefits of a predefined

hierarchical structure for multi-scenario problems. The simplified best-

performing individuals of each method are as follows:

• AGP:

(3920805∗x10−90391140∗x9+613811750∗x8+zoo∗x8+563298482∗

x7−22692826327∗x6+78451667966∗x5−16277641800∗x4+−218951495280∗

x3 +62156445120∗x2 +14180443200∗x)/(3991680∗x5−103783680∗

x4) + 1010892960 ∗ x3 − 4372885440 ∗ x2 + 7090221600 ∗ x

• LGP:

if else(−(5 >= 2 ∗ x + (x <= 7))/5 + (7 <= x)/5, x ∗ (x4 − 1) +

x, x ∗ ((x− if else(if else(if else((x− 3)/(2 ∗x), (5−x <= −(5 >=

2∗x+(x <= 7))/5+(7 >= x)/5), 1− if else((x2 ∗ (x <= 8)+(x <=

0)), 0, 1)) + 1, if else((3 <= 2 ∗ x), x− 11/10, 1), 0), 1, 7) + 5) ∗ (40 ∗

x2 − x3 + 40 ∗ (9 >= x)− 440) + 320)/40)

• CD-GPHH:

89



3.4. EXPERIMENTS AND RESULTS ANALYSIS

Rule Scenario Calculation

1 7 <= x x5

2 −16 ∗x2 ∗ (x− 10)2 + 51 ∗x− 6)/(4 ∗x ∗ (x− 10)) >=

(x + 3/x >= 4)

x2

3 x2 + x <= 4 x

4 x− 10/x <= 3 x3

5 x > 3/4 x4

Obviously, the results by AGP and LGP are hard to interpret and differ

greatly from the true function in (3.1). Although LGP evolved the ”IF-

ELSE” and relational operators that were in the original expression, the

results are rather confusing and do not fit the original function well. By

contrast, with the help of its bi-level structure, CD-GPHH obtained a con-

cise and easy-to-understand function that is almost identical to the original

one.

Among the best evolution results of the three methods in Fig. 4.4, CD-

GPHH has escaped the local optimum trap and converged to the global

optimum at the 150th generation, while both AGP and LGP ended up with

a poor result. In general, under the evolutionary framework designed in this

research, CD-GPHH takes advantage of two cooperative populations and

obtains well-performed, concise, and understandable results, confirming its

superiority in solving the simple multi-scenario function fitting problem.

3.4.2 Results for Real-life Truck Dispatching

The three different GP methods are further evaluated on the truck dispatch-

ing problem described in Section 1.2.2. The 14 features in the proposed
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Table 3.4: Features of AGP, LGP, and CD-GPHH in Real-World Truck
Dispatching Problem

Name Acronym Description

travel time tt Travel time form truck to
task start crane

operate type ot The ship load/unload task
type (0 for load and 1 for
unload)

dispatch type dt The task dispatch type (0
for normal tasks and 1 for
tasks need to be merged)

yard crane type yct The yard crane type (0
for normal crane and 1 for
remote-controlled crane)

total truck num ttn Total trucks number can be
dispatched

num to min truck ntmt The difference between the
quay crane trucks number
and the minimum trucks
number

start node truck num sntn Total trucks number of the
task start crane

end node truck num entn Total trucks number of the
task end crane

start node wait truck num snwtn Waiting trucks number of
the task start crane

end node wait truck num enwtn Waiting trucks number of
the task end crane

remain task num rtn Remaining tasks number of
the task related quay crane

average load time alt Average load time of the
crane

average unload time aut Average unload time of the
crane

Constant Number - Random constant number
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Table 3.5: Traditional Heuristic Methods for Truck Dispatching Problems

Name Acronym Description

fixed - Dispatchings are according
to the binding QCs

manual - Select the task though man-
ual crafted heuristic (Cur-
rently used in Meishan Port,
Ningbo)

random - random dispatch

first-in-first-out FIFO Dispatchings are sequenced
first-in-first-out

shortest traveling time STT Select the task with the
shortest traveling time

longest traveling time LTT Select the task with the
longest traveling time

most task remaining MTR Select the task with most
task remaining

smallest task remaining STR Select the task with smallest
task remaining

CD-GPHH are shown in Table 3.4. The other settings are given in Table

3.2. To better tackle this complex real-world problem, the four new oper-

ators in Table 3.1 were added. The performance of the proposed three GP

methods is compared with other traditional heuristic methods (Table 3.5)

in this subsection.

To update the environment state values of these features and evaluate the

fitness of each individual in all GPs, we built an event-based simulator

based on the mathematical model described in Section 1.2.2. The simulator

interacts with the dynamic truck dispatching system (Fig. 1.2) to provide

functions for evaluating the fitness of each individual and generating new

environment data after each truck dispatch. It can simulate all events

occurring in real-world truck dispatching in marine container terminals,

such as vehicle movement, container loading and unloading, and real-time
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3.4. EXPERIMENTS AND RESULTS ANALYSIS

data exchange with the dynamic dispatching system.

The data sets used in this experiment were extracted from the actual histor-

ical operational data at the Ningbo Meishan Port. The data sets simulate

a typical situation where one container ship berths at the port to load and

unload containers, and the port needs to complete the work of the ship as

soon as possible to release the ship from the port earlier. Several instances

were generated based on this situation, and each with one ship berth with

six QCs. The number of trucks is set to be the actual number of trucks

working during the data extraction time period, between 24 and 48, and

the traffic map is shown in Fig. 1.1.

As aforementioned in Section 1.2.2, due to strict traffic regulations (mainly

single-direction road segments), there are very few route options between

QCs and YCs. Therefore, the truck travel time is pre-computed through

the shortest path algorithm on the port road network, assuming an average

truck speed of 8km/h. Meanwhile, the operating (load/unload) time of the

crane for the container on the truck is uncertain.

We extracted 10 sets of historical task data from different time periods

(ports have different operating scenarios at different times), with five sets

for training (sets 1-5) and five sets for testing (sets 5-10). Each set (both

training and testing) contains 10 instances in the same time period, with

200 tasks consisting of a mixture of both loading and unloading operations.

For each training instance, 30 independent runs with different random seeds

were conducted, leading to a total of 10 * 30 = 300 runs on each training

set. The average results over these 300 runs for each set are presented in

Table 3.6.

Recall that the objective is to maximize the number of tasks handled per

unit time (hour). Therefore, larger values indicate better performance. The
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best-performing individuals from the three GP algorithms are evaluated on

test sets 6-10. Each instance in the test sets was run only once (because the

evolved GP trees are deterministic). However, since each set contains 10

instances, there are a total of 10*5 test instances that are not seen during

GP training. Therefore, they represent significant robustness tests for all

the methods. Table 3.7 provides the average results of all the methods

across 10 test instances in each set as well as the averages across all 5 sets.

Below we include the best-performing individuals of AGP, LGP, and CD-

GPHH. Note that these trees have been simplified for ease of interpretation.

• AGP:

(((entn + sntn) − rtn) + snwtn) + (ttn/((((((ttn + ot)/(((tt/yct) ∗

rtn)))+((rtn∗alt)/(ntmt+alt)))−(((rtn+ntmt)/(entn+snwtn))+

((yct+ttn)∗(enwtn−sntn))))/((((entn+entn)∗(snwtn∗2))/((aut/ttn)

/(dt ∗ sntn)))/(((ntmt + dt) − (tt ∗ rtn)) + ((snwtn ∗ aut) − (tt −

sntn))))) + rtn))

• LGP:

((((max(((ot|7|((entn/10)+ot))|min(max(2, rtn),−ntmt)), snwtn) <=

ot)/10) ∗ (entn ∗ dt)) <= if else(rtn, tt, sntn)) ∗ ((ttn/(((1 + if else

(yct, 6, rtn))∗((((sntn/max(dt, ntmt))∗(rtn&snwtn))/snwtn)&(sntn∗

dt)))+(((ttn/rtn)/((entn/if else(tt, sntn, enwtn))&enwtn)) >= ((10−

tt) <= (4 ∗ entn)))))/(enwtn >= ntmt))

• CD-GPHH:
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Figure 3.9: The performance of AGP, LGP and CD-GPHH in Training Set
4.

Rule Scenario Calculation

1 ((((ntmt >= sntn)− ntmt+

entn)) + (ot + snwtn + min

(ctn, tt)))|((min(tt, enwtn)+

max(dt, ot))/tt)

(dt >= enwtn) + max(entn,

ctn) + rtn

2 ctn >= 5 snwtn/3 + alt ∗ aut

3 (min(tt, ctn)/(ot&snwtn)

<= (ot + tt))/((dt >=

entn) <= (ot <= sntn))

min(((enwtn <= entn) + ntmt

), ((ctnentn) ∗ ntmt))

4 max((entn >= 5), ntmt) ctn ∗ alt

A t-test on the experiment (α = 0.001, p = 0.00) demonstrates the supe-

96
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rior performance of all three GP algorithms than the traditional heuristic

algorithms, and CD-GPHH achieved the best. Using manual and fixed

heuristic algorithms as benchmarks, the improvement percentages (Imp.

Pct.) of AGP, LGP, and CD-GPHH are about 7%/15%, 11%/19% and

14%/25% , respectively. By further comparing the listed individuals of

three GP algorithms, we can find that CD-GPHH not only produced more

efficient heuristics but is also much more readable thanks to its double-layer

structure. In contrast, AGP, and particularly LGP produced heuristics dif-

ficult to understand. The operator must further modify these heuristics in

practice, while the heuristics produced by CD-GPHH have better usability.

In order to observe the evolution process of the three GP algorithms, one

result of example training set 4 is plotted in Fig. 3.9. It can be seen that

for the real-world multi-scenario problem, the performance of AGP without

scenario grouping is quite limited, while LGP and CD-GPHH can achieve

better results. In particular, CD-GPHH did not suffer from the obvious

limitations of AGP and performed best in the end.

3.4.3 Truck Dispatching Under Special Scenarios

Although problem instances based on real-life data are important to evalu-

ate the practicality of the proposed method, they are less useful for gaining

useful insights due to the real-life complexities and the combinatory ef-

fect of several uncontrolled factors. In this subsection, we evaluate the

performance of different methods under three different scenarios created

artificially. In a container terminal, the multiple scenarios are associated

mainly with the following dynamically changing factors.

• The operation times of the load and unload QC tasks along the berth

97



3.4. EXPERIMENTS AND RESULTS ANALYSIS

line are practically known to follow different distributions. The un-

loading tasks are often less likely to be disrupted by truck delays

due to the less strict precedence requirements. On the other hand,

loading tasks must follow the predefined sequences exactly, and hence

delays can propagate exponentially, causing significant QC waiting.

Therefore, different dispatch policies are required for scenarios with

tasks dominated by either load or unload tasks.

• Distribution of operation nodes at yard cranes (YCs) for the tasks is

also crucial. Clustered operation nodes at a few YCs are more likely

to lead to conflicts, as YCs need to support multiple QCs at the time.

Specific policies are required to resolve these conflicts.

• The available number of trucks for dispatch is also important. When

enough trucks are available, the priority should focus on reducing

empty truck travel distances; otherwise, the priority is to avoid costly

QC waiting.

Following these considerations, we use operation type, yard crane type,

and total truck num to distinguish these scenarios respectively. This is

also based on the observation that over 75% of the of best-performing CD-

GPHH individuals use all three features in the scenario selection layer.

Therefore, we created 3 new data sets (sets 11-13), each containing 20

instances with 2 special scenarios based on these 3 scenario features. In-

dividuals were trained (30 runs per instance) with corresponding scenario

features and then to simulate the situations with or without scenario infor-

mation.

The statistics in Table 3.8 demonstrate the significantly enhanced perfor-

mance from CD-GPHH in the special scenarios data sets. There is no

obvious impact on the performance of AGP without the scenario features.
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However, the performance of LGP dropped by 2.9% when scenario features

were excluded, compared with 8.1% from CD-GPHH. This justifies the ef-

fectiveness and importance of the scenario identification used in CD-GPHH

on multi-scenario problems.

Table 3.8: AGP, LGP, and CD-GPHH Result in Special Scenarios Truck
Dispatching Problem (units/h)

Set Feature Manual AGP LGP CD-GPHH

Set11
With 107.46 113.85 122.64 131.69

Without 107.46 114.44 118.32 119.68

Set12
With 105.02 107.67 115.51 125.72

Without 105.02 105.17 113.33 113.71

Set13
With 99.38 104.96 110.69 123.34

Without 99.38 106.00 106.28 112.74

Mean
With 103.95 108.83 116.28 126.92

Without 103.95 108.54 112.64 115.38

Imp.
With 0.00 % 4.48 % 10.60 % 18.09 %

Without 0.00 % 4.23 % 7.72 % 9.90 %

Finally, it was confirmed that CD-GPHH could produce better results than

AGP and LGP in real-life multi-scenario problems. The generated results

can also be understood and then modified by operators. According to our

statistics, the average test time and training time of each generation of

AGP, LGP, and CD-GPHH for 100 tasks is 0.02s / 0.7s, 0.02s / 0.73s, and

0.021s / 0.78s, respectively. This proved the improved performance of CD-

GPHH does not require a significantly increased computational cost based

on AGP and LGP. Although CD-GPHH has not yet been adopted in a

real-life port, our manually crafted heuristic algorithm has been practiced

at the Ningbo Port for years. Statistical analysis conducted by the port

showed that the work efficiency increased by 8.1% and ship docking time

decreased by 2.2%. This well-performed algorithm saved time, allowed for
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the operation of more ships, and in turn, increased the profit of the port

company significantly. Our next plan is to work with the collaborators to

fully evaluate and deploy the proposed algorithm in the real world.

3.5 Summary

This chapter embarked on an expedition to delve into the challenging do-

main of truck dispatching at marine container terminals, which presents

itself as a crucible for innovative solutions due to its inherent complexi-

ties. Beginning with the AGP, which provided an initial groundwork for

handling the container port truck dispatching problem, we quickly real-

ized its limitations in the face of scenarios dominated by varying problem

parameters and transitions.

The LGP, with its incorporation of logic operators, presented an advance-

ment by exhibiting prowess in managing intricate discontinuous functions

and multi-scenario problems. However, despite its enhancements over AGP,

LGP lacked consistent reliability, especially in industrial environments char-

acterized by real-world uncertainties.

It was these insights and challenges that led to the inception of the novel

CD-GPHH algorithm. Distinguished by its cooperative double-layer struc-

ture, CD-GPHH champions a pragmatic approach in the real-life domain of

marine terminals. With an architecture that embraces scenario transitions’

dynamism, CD-GPHH efficiently exploits logic and arithmetic operators

without succumbing to an overwhelming search space. This was evident in

its superior performance, outclassing both AGP and LGP by an impressive

margin of 8-10%. Furthermore, the clear demarcation between the logic

and arithmetic layers in CD-GPHH enhanced the usability and legibility
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of the evolved heuristics.

GP, as a hyper-heuristic method, manifested strong generalizability by op-

erating at a hyper-level, thus affording us a broad view of solution spaces.

CD-GPHH, building upon the foundations of LGP, capitalizes on this

strength of GP, offering an effective tool against multi-scenario challenges

prevalent in truck dispatching tasks.

However, the journey of refining CD-GPHH is by no means at its terminus.

Future research avenues beckon, especially in addressing its existing weak-

nesses like generalization issues and the existence of redundant subtrees.

A confluence of human intuition and algorithmic rigor might provide the

necessary impetus, guiding evolution more effectively. Additionally, tailor-

ing redundancy removal algorithms specifically for CD-GPHH could pave

the way for more streamlined and efficient solutions.

In conclusion, the marine container terminal truck dispatching domain,

while fraught with challenges, presents fertile ground for innovation. The

AGP, LGP, and CD-GPHH serve as testamentary milestones in this evolv-

ing journey, with each bringing its strengths and lessons. As we navigate

forward, the fusion of human expertise with algorithmic advances holds

the promise of even more refined and robust solutions for this intricate

problem.

101



Chapter 4

Reinforcement Learning

Assisted Method in

Dispatching Strategy

Generating

After we tested the manual heuristic, we found that this traditional expert

heuristic consumes a significant amount of time and labor to build and

adjust and can still not cope with diverse scenarios. Thus, auto-generated

heuristics based on real-life data were proposed to adapt to complex sce-

narios in real-world operating environments. Genetic programming (GP)

and reinforcement learning (RL) are considered capable of automatically

learning parameter settings and dispatching methods for different scenar-

ios based on historical data, thus achieving better scenario adaptability.

However, it is disappointing to observe the poor performance of these two

algorithms when directly applied to the dynamic container port truck dis-

patching problem Chen et al. (2023).
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Consequently, we pivoted to a hyper-heuristics framework, distinguished by

its enhanced robustness and generalization capabilities Burke et al. (2013).

Based on the proven efficacy of deep reinforcement learning-based hyper-

heuristics (Deep Reinforcement Learning-based Hyper-heuristics (DRL-HH))

Zhang et al. (2022) and genetic programming hyper-heuristics (GPHH)

Chen et al. (2020) in simplistic training environments, we aim to extrap-

olate this effectiveness to unseen, more complex real-world testing envi-

ronments. Considering the port’s need for interpretability of dispatch

methods, we introduced a framework that employs high-level heuristics

to select explainable low-level GP heuristics training in different environ-

ments. This approach aggregates the intelligence of multiple GP heuristics,

thereby dramatically improving the performance of DRL-HH and GPHH

in complex real-world environments while eliminating the dependence on

expert-designed heuristics.

In the realm of high-level heuristics in this framework, both GP and RL

emerge as strong contenders due to their adaptability and data-driven ca-

pabilities. However, our experiments demonstrated that using GP as a

high-level heuristic to select low-level GP heuristics (CD-GPHH) Chen

et al. (2022) yielded promising results in small, generated datasets but

faltered with more extensive, real-world datasets. To overcome this limi-

tation, we propose a reinforcement learning-assisted genetic programming

hyper-heuristic (Deep Reinforcement Learning-assisted Genetic Program-

ming Hyper-heuristic (DRL-GPHH)). This new approach incorporates a set

of GP-generated low-level heuristics and employs a reinforcement learning

agent to act as the selector among these heuristics for various scenarios.

Comparative evaluations indicate that DRL-GPHH outperforms its coun-

terparts in simulated real-world conditions.

Nonetheless, it is noteworthy that the performance enhancement observed
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in DRL-GPHH was not remarkably superior to the results achieved by the

best GP individual. This is because in DRL-GPHH, multiple GP evolved

heuristics participate in the process, but during each decision point, only

one GP individual is chosen to calculate the dispatching preference. Such

an approach wastes the knowledge embedded in other unselected GP in-

dividuals, weakening the algorithm’s performance and generalization ca-

pabilities. With this hypothesis, we propose a reinforcement learning-

assisted genetic programming ensemble hyper-heuristics (Deep Reinforce-

ment Learning-assisted Genetic Programming Ensemble Hyper-heuristics

(DRL-GPEHH)) method, which uses a reinforcement learning agent to as-

sign different weights to different GP individuals during each dispatch and

subsequently combines the results of all GP heuristics according to their

weights to produce the final dispatching solution.

By seamlessly integrating the preference discrimination power of multi-

ple auto-evolved GP heuristics, DRL-GPEHH excels in complex dynamic

optimization tasks, exemplified by port truck dispatching. This frame-

work not only performs outstandingly during training but also remains

resilient against unseen test data, highlighting its potential for address-

ing various real-world dynamic optimization challenges. DRL-GPHH and

DRL-GPEHH, distinctive from traditional DRL, DRL-HH, or GPHH, mark

a pivotal leap in generative, fully automated optimization methods. Our

proposed method significantly contributes to solving real-life optimization

problems in the presence of uncertainties and dynamics.

The primary content of this chapter is:

• We propose DRL-GPHH, an approach that employs DRL to select

GP-generated low-level heuristics. This approach effectively increases

the adaptability of the algorithm, eliminating the dependence on ex-
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pertly designed low-level heuristics inherent in DRL-HH, resulting in

a much higher level of automation in algorithm design.

• We further propose a novel GP ensemble hyper-heuristics frame-

work DRL-GPEHH, which leverages the knowledge of multiple auto-

evolved GP heuristics simultaneously during scheduling, leading to

significantly improved performance and robustness compared to DRL-

HH and DRL-GPHH.

• We design a multi-action proximal policy optimization (PPO) agent

with a novel reward to effectively adjust the weights of several lower-

level heuristics within an action, promoting collaboration and perfor-

mance improvement.

• We conduct comprehensive experiments and ablation studies on bench-

mark instances, covering diverse scenarios and terminal configura-

tions, to fully test the performance of DRL-GPEHH in comparison

with its main variants, DRL-HH, DRL-GPHH, and a deep reinforce-

ment learning-assisted ensemble hyper-heuristics (Deep Reinforce-

ment Learning-assisted Ensemble Hyper-heuristics (DRL-EHH)). The

results demonstrate the superiority of DRL-GPEHH in the dynamic

truck dispatching problem.

• We analyze the differences between manual heuristic and GP-generated

heuristic ensemble methods and explain why a continuous weight

adjustment is necessary for GP ensembles to achieve higher perfor-

mance, further highlighting the compatibility of DRL-GPEHH with

GPHH integration and establishing a novel approach for RL and GP

cooperation.

The rest of this chapter is organized as follows. The proposed DRL-GPHH

and DRL-GPEHH methods are delineated in Section 4.1 and 4.2. Section
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4.1. DRL-GPHH & DRL-HH

4.3 delineates the experimental outcomes and provides ablation & sensi-

tivity analysis of DRL-GPEHH. Finally, conclusions are drawn in Section

4.4.

4.1 DRL-GPHH & DRL-HH

In recent years, Reinforcement Learning (RL) methods, particularly Deep

Reinforcement Learning (DRL), have gained considerable traction in the

scientific community due to their ability to successfully address a broad

spectrum of complex optimization problems. They employ a trial-and-error

learning mechanism to provide solutions, often outpacing traditional meth-

ods in terms of adaptability and optimization quality Zhou et al. (2019).

However, the application of DRL in real-world, mission-critical scenarios

has been met with skepticism, primarily due to its inherent black-box na-

ture. In many real-life operations, especially in contexts like port opera-

tions, the opaqueness of DRL’s decision-making process can be a signifi-

cant impediment. When DRL encounters unknown scenarios, its decision-

making process can yield unpredictable outcomes. This unpredictability,

combined with the lack of clear rationale behind decisions, is particularly

concerning in environments where safety, reliability, and accountability are

paramount. Decisions in high-stakes situations should ideally be transpar-

ent, traceable, adaptable, and readily understandable to human operators.

Recognizing this critical gap, we propose a novel approach, termed Deep

Reinforcement Learning with Genetic Programming Hyper-Heuristic (DRL-

GPHH). The fundamental premise behind DRL-GPHH is to synergistically

combine the strengths of RL and Genetic Programming (GP) for truck dis-

patching. Specifically, the reinforcement learning network is trained to se-
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4.1. DRL-GPHH & DRL-HH

lect from a repertoire of GP-generated heuristics. Each of these heuristics,

rooted in the GP paradigm, inherently possesses a white-box characteris-

tic, which ensures transparency and interpretability. Thus, even when the

DRL chooses a particular heuristic, the ensuing decision is derived through

the transparent and interpretable heuristic.

In this study, we employ RL as the high-level heuristic for selecting low-level

heuristics, primarily for several compelling reasons. First, given that the

truck dispatching problem is an NP-hard issue and is not amenable to solu-

tions via supervised learning, RL stands out for its ability to learn the cor-

rect solution iteratively without needing pre-defined solutions. This char-

acteristic is particularly advantageous in navigating the complex decision-

making required in truck dispatching. Secondly, the DRL-GPEHH method

introduced in this chapter necessitates dynamically generating continuous

weights for various low-level heuristics. RL, capable of producing contin-

uous values based on distribution, is inherently more suited to this re-

quirement. Lastly, as highlighted in the work of Zhang et al. (2021b), RL

is chosen for its demonstrated performance and training stability. It has

been successfully applied across different domains, including edge comput-

ing (Chen et al., 2018c) and recommendation systems (Zheng et al., 2018),

showcasing its versatility and effectiveness in addressing various problems.

The amalgamation of DRL’s adaptability and GP’s transparency paves the

way for a method that strikes a harmonious balance between optimization

efficiency and decision interpretability. Such a method not only retains

the optimization prowess of DRL but also ensures that every decision is

underpinned by a discernible rationale, courtesy of the GP heuristics. In

essence, DRL-GPHH has the potential to be a game-changer for real-world

port operation scenarios, ensuring both operational efficiency and decision-

making transparency.
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4.1. DRL-GPHH & DRL-HH

Figure 4.1: DRL-HH/DRL-GPHH & DRL-GPEHH/DRL-EHH Framework

As illustrated in Fig. 4.1, in the context of reinforcement learning genetic

programming hyper-heuristics, given the state of an environment, the al-

gorithm selects an appropriate virtual action according to a specific

policy. This action subsequently picks a heuristic. Upon executing the

heuristic, the actual action alters the environment, leading to a transition

to a new state, denoted as S ′. With each action execution, the algorithm

receives a reward value and the estimated quality of the new state. The

algorithm then adjusts its policy based on the magnitude of the reward

value, ultimately maximizing the sum of rewards obtained when all steps

are completed and the state reaches the terminal state.

In contrast to DRL-HH, which relies heavily on experts’ domain knowledge

for task scheduling and compromises its performance and generalization,

DRL-GPHH replaces expert manual heuristics with GP-generated heuris-

tics. In experiments, DRL-GPHH outperformed DRL-HH, highlighting
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4.1. DRL-GPHH & DRL-HH

the potential for collaborative problem-solving between RL and GP. Fur-

thermore, given that GP-generated heuristics do not require the input of

experts with extensive knowledge of the problem, they present a scalable

solution for a range of similar complex optimization problems.

Specifically, DRL-GPHH and DRL-HH in this paper follow all the DRL

settings in previous work Zhang et al. (2022), which adopts the double

deep Q-learning (DDQN) algorithm Van Hasselt et al. (2016) as a high-

level heuristic and uses a four-layer DRL network. The number of neurons

in each layer is set as follows: 80, 100, 180, and 10, respectively. Recti-

fied linear unit (ReLU) functions serve as the activation functions for each

hidden layer, and the learning rate is set at 0.001.

The details of DRL-GPHH and DRL-HH are as follows:

4.1.1 Environment

The above-mentioned event-based port simulator serves as the training

environment for DRL-GPHH and DRL-HH. This simulator uses the map

and historical data of the Ningbo Meishan port that we cooperate with

to simulate the real-world port. The simulator inputs the current state

(S) into DRL-HH, and after the action (assignment of the truck) made by

DRL-HH, it will deduce according to the rules and historical data to obtain

the subsequent state (S ′). While the simulator is running, various metrics

are calculated, which are used as rewards to assist the training of DRL-HH.
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4.1. DRL-GPHH & DRL-HH

4.1.2 State

The state, a set of matrices, represents the current operating environment

in which the DRL-GPHH and DRL-HH will learn to select distinct actions

depending on the state. In this study, the state is generated based on the

trucks requiring task assignment, the current tasks and queuing statuses

of QC) and YCs, the QC type and working status, the remaining number

of tasks, and the average operating time of the cranes. The state matrix

is of dimensions i ∗ j, where i denotes the number of parameters incorpo-

rated within the state to describe a QC status, and the number of QC is

represented by j. The specific parameters include:

• The QC remaining task number.

• The QC available task number.

• The QC bounded trucks number.

• The QC working status: 0 for unload and 1 for load.

• The QC type: 0 for standard and 1 for remote control.

• The minimum truck move time to a task start crane.

• The minimum waiting truck number of beginning cranes.

• The minimum waiting truck number of ending cranes.

• The average loading time of the beginning cranes.

• The average unloading time of the ending cranes.

It is important to note that since this truck dispatching problem in the

container port is an optimization problem involving uncertainty, the state

transition in this problem does not follow the conventional s′ = E(s, a)

form. Instead, an uncertain parameter u is introduced, resulting in s′ =

E(s, a, u). In this case, a represents the action chosen by the low-level

heuristic selected by DRL-HH, while u is obtained during the simulator

110



4.1. DRL-GPHH & DRL-HH

run.

4.1.3 Actions

DRL-GPHH and DRL-HH agents produce a virtual action to select a low-

level heuristic, generating a real action for interacting with the environ-

ment.

DRL-GPHH uses the GP-generated low-level heuristics. Genetic program-

ming was employed to learn and generate 10 distinct heuristics on training

datasets across different scenarios. Each heuristic can manage the scenarios

it has been trained on.

DRL-HH uses the manually designed low-level heuristics. These manual

heuristics consider the distance from the task’s starting point to the crane,

the uniformity of the workload distribution among QC job lists, and the

task’s urgency. For each indicator, three thresholds are designed, result-

ing in nine manual heuristics. In conjunction with the aforementioned

expert-designed manual heuristic 1.2.4, there are 10 heuristics available for

selection.

4.1.4 Reward

Concerning rewards, the design for the DRL-GPHH and DRL-HH rewards

adheres to the approach employed in the previous study Zhang et al. (2022),

using the idle time of QCs as the primary reward component. For each as-

signed task i, its reward ri is computed as ri = ei−1 − si. The objective

is to enhance port operational efficiency and reduce QC idle time; thus,

the reward is a negative number, indicating that the smaller the QC idle
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time, the greater the reward. Moreover, since the QC idle time cannot

be calculated when the action is executed, it must be updated after com-

pletion, requiring intermittent reward calculations. This process involves

episodically computing the rewards for previous actions upon completing

each task.

4.2 DRL-GPEHH & DRL-EHH

Although DRL-GPHH has demonstrated promising performance, it ex-

hibits poor generalization when dealing with real historical data. Specif-

ically, its performance deteriorates when encountering previously unseen

data during training. This occurs because each scheduling operation in

DRL-GPHH utilizes only one GP heuristic, with each heuristic incorpo-

rating information from the trained scenarios. Optimal performance is

achieved only when the current scenario closely resembles one of the trained

scenarios. However, the unselected heuristics in DRL-GPHH also encom-

pass valuable information. By judiciously combining this information, the

algorithm can adapt to a broader array of unseen scenarios and enhance

performance.

As illustrated in Fig. 4.2, single-choice hyper-heuristics approaches (e.g.,

DRL-HH, DRL-GPHH) enable the high-level heuristic to select only one

low-level heuristic for a given situation. For instance, if the high-level

heuristic prioritizes task urgency, other factors, such as task proximity and

node busyness, are consequently disregarded. In contrast, the ensemble

hyper-heuristics frameworks proposed in this paper, namely DRL-EHH and

DRL-GPEHH, dynamically allocate different weights to various low-level

heuristics depending on the situation. This allows for a more nuanced
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consideration of multiple factors based on their assigned weights, includ-

ing task proximity, node busyness, and task urgency. As a result, these

ensemble frameworks make more accurate judgments and perform better

in handling multi-scenario, complex, real-world optimization problems, as

evidenced by our experimental results.

Figure 4.2: Single-choice Hyper-heuristic vs Ensemble Hyper-heuristic

Our experiments tested various methods for integrating multiple GP heuris-

tics, as presented in Section 4.3. We found that the best-performing ap-

proach was to use DRL to adjust the weights of each GP heuristic contin-

uously. As illustrated in Fig. 4.1, DRL-GPEHH employs a reinforcement

learning agent as a gating mechanism to assign weights to multiple heuristic

experts, subsequently combining the results of these heuristics to produce

the final assignment. The DRL-GPEHH offers several advantages over

DRL-GPHH primarily due to the integration of multiple expert heuris-

tics, which leads to improved decision-making and adaptability. The key

benefits include:

• Diversity and adaptability: DRL-GPEHH incorporates various GP

heuristics, each with strengths and weaknesses. This diversity allows

the algorithm to adapt to different situations and select the most

suitable heuristic for a given scenario, leading to better overall perfor-
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mance and leveraging the strengths of other heuristics to compensate

for their limitations.

• Learning efficiency: By utilizing the knowledge and experience em-

bedded in multiple heuristics, DRL-GPEHH can potentially acceler-

ate the learning process. As a result, the algorithm can converge to

a near-optimal solution more quickly than a normal DRL-HH, which

relies solely on its learning and exploration.

• Knowledge transfer: DRL-GPEHH can benefit from knowledge trans-

fer between the heuristics, allowing the algorithm to capitalize on

their combined knowledge. This leads to more effective exploration

and exploitation strategies, ultimately improving the quality of the

solutions.

• Scalability: The ensemble approach enables DRL-HH to handle a

broader range of problems and larger-scale instances. By combining

the expertise of multiple heuristics, the algorithm can scale better to

tackle complex tasks and adapt to new, unseen scenarios.

• Algorithm automation: The utilization of GP-generated heuristics

obviates the need for expert inputs, thereby significantly enhancing

the automaticity of algorithm generation. This culminates in an effi-

cient and self-reliant design process. This heightened level of automa-

tion simplifies the task of addressing complex real-world problems,

thereby extending the versatility and applicability of the method.

In summary, DRL-GPEHH outperforms DRL-GPHH by leveraging multi-

ple GP heuristics’ strengths, improving adaptability, robustness, learning

efficiency, knowledge transfer, and scalability. These advantages make it

more suitable for solving complex and dynamic problems like container

terminal truck dispatching in various domains.
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Furthermore, to facilitate a more precise comparison of the performance of

DRL-HH, DRL-GPHH, and DRL-GPEHH, DRL-EHH is proposed to act

as a control. DRL-EHH employs the same manual heuristics as those in

DRL-HH, replacing the GP-generated low-level heuristics in DRL-GPEHH.

Except for the low-level heuristics, all settings of DRL-EHH are identical

to those of DRL-GPEHH. Consequently, we only describe the structure of

DRL-GPEHH.

To handle multi-dimensional actions and output continuous weights for

multiple heuristics simultaneously, DRL-GPEHH employs a multi-action

proximal policy optimization (PPO) as a gate agent instead of the double

deep Q-Network (DDQN) used in DRL-GPHH.

PPO is an advanced policy optimization algorithm introduced in 2017

Schulman et al. (2017) designed to overcome the challenges faced by other

algorithms, such as trust region policy optimization (TRPO) and asyn-

chronous advantage actor-critic (A3C). It enhances sample efficiency and

stability by utilizing a trust region approach and employing a clipped ob-

jective function shown in (4.1). Here, rt(θ) is the probability ratio between

the current policy and the old policy, represented as πθ(at|st)
πθold

(at|st) . The vari-

able Ât denotes the estimated advantage function at time step t, and ϵ is a

hyperparameter controlling the degree of trust region in the policy update.

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(4.1)

Combined with the formula, the training process of the multi-action PPO

is described in Algorithm 3.

To maintain fair competition, DRL-GPEHH retains the deep neural net-

work (DNN) settings of DRL-GPHH. However, it doubles the networks to
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Algorithm 3 Proximal Policy Optimization (PPO) Training

1: Initialize policy parameters θ and value function parameters ϕ
2: for each iteration do
3: Collect a set of trajectories τ using the current policy πθ

4: Compute rewards-to-go Rt for each time step in trajectories
5: Compute advantage estimates At using value function Vϕ

6: for each optimization epoch do
7: for each time step t in trajectories do
8: Compute probability ratio ρt(θ) = πθ(at|st)

πθold
(at|st)

9: Compute surrogate objective Lt(θ) =
min(ρt(θ)At, clip(ρt(θ), 1− ϵ, 1 + ϵ)At)

10: Perform gradient ascent on θ to maximize Et[Lt(θ)]
11: Update value function parameters ϕ by minimizing the value

loss
12: end for
13: end for
14: Update policy πθold ← πθ

15: end for

Figure 4.3: Neural Network Output of DRL-GPEHH and DRL-EHH
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4.2. DRL-GPEHH & DRL-EHH

serve as a policy network and a value network, respectively. Furthermore, a

softmax activation function is incorporated following the DNN output. As

illustrated in Fig. 4.3, DRL-GPEHH produces a continuous weight vector

for each heuristic. Based on these weights and the outputs of the heuristics,

DRL-GPEHH synthesizes the final real action for dispatching the truck.

The environment and status settings of DRL-GPEHH are consistent with

DRL-HH, but some modifications have been made in the following parts:

4.2.1 Actions

Similar to DRL-GPHH, DRL-GPEHH does not directly interact with the

environment through actions as depicted in Fig. 4.1. Instead, it employs

the same GP-generated heuristics used in DRL-GPHH as low-level heuris-

tics. The distinction between the two lies in their utilization of low-level

heuristics: in DRL-GPEHH, instead of directly selecting the most appro-

priate task for output as in DRL-GPHH, the low-level heuristics generate

a task ranking based on their internal rules.

Algorithm 4 Weighted Ensemble Ranking

Require: tasks, heuristics, weights
Ensure: best task
1: scores← {ta : 0 | ta ∈ tasks}
2: for h,w in heuristics, weights do
3: ranked tasks← h.rank(tasks)
4: for i, t in enumerate(ranked tasks) do
5: scores[t]← scores[t] + (i + 1) ∗ w
6: end for
7: end for
8: best task ← arg mint∈tasks scores[t] return best task

Based on the rankings of available tasks generated by heuristics, DRL-

GPEHH employs the weighted ensemble ranking method, as illustrated

in Algorithm 4, to combine the ranks and determine the best task. This
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algorithm takes a set of tasks, an array of heuristics, and their respective

weights as input, with the objective of identifying the optimal task from

the available options.

4.2.2 Reward

Given that the action space of DRL-GPEHH is much larger than that of

DRL-GPHH, and considering the challenges introduced by delayed rewards

in terms of temporal credit assignment, exploration, and convergence, the

rewards employed in DRL-GPHH become less suitable for DRL-GPEHH.

Specifically, the temporal credit assignment problem arises due to the diffi-

culty associating the correct action with an observed reward when rewards

are delayed. This can slow the learning process or cause the agent to

learn suboptimal policies. Additionally, delayed rewards can impact the

exploration-exploitation trade-off, as the agent may need to explore the

environment extensively before discovering the long-term consequences of

its actions, potentially delaying convergence to an optimal policy.

To address these challenges, we introduced a new reward function that

combines reward shaping and imitation learning to enhance the learning

process in the presence of delayed rewards by improving credit assignment,

encouraging efficient exploration, and stabilizing convergence. The new

rewards are designed as reward = ei−1 − si − δcov(Or, Om), where δ is the

weight, cov is the covariance calculation function, Or is the task ranking

given by DRL-GPEHH, and Om is the ranking given by manual heuristics

described in Section 1.2.4.

The reward for rankings similar to the manual heuristic can be adjusted

by setting different weight values, denoted by δ. In this paper, δ is set to
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Figure 4.4: Performance of DRL-GPEHH with Varying Reward Structures

κ/en, where κ is a scaling factor that can be adjusted according to the size

of the previous reward term, which is set to 10 in this study, and en repre-

sents the number of training episodes. The weight of this reward gradually

decreases as the number of training generations increases, encouraging the

algorithm to learn from the manual expert heuristic initially and reducing

the influence of convergence to the manual heuristic on the algorithm’s

ability to reach a superior solution during later stages of learning.

Although the reward component of ei−1 − si in DRL-GPEHH is the same

as that in DRL-HH, it must be calculated after the task completion, while

the −δcov(Or, Om) component can be obtained immediately, addressing

the reward delay issue. In our newly designed reward structure, we guide

the DRL-GPEHH to learn like the manual heuristic by encouraging reward

allocations that resemble task rankings generated by the manual heuris-

tic. According to the experimental results in the training datasets detailed
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in Section 4.3 with 10 random seeds shown in Fig. 4.4, the newly de-

signed rewards indeed achieve better performance, speed up convergence,

and resolve the problem of delayed rewards in container terminal truck

dispatching problem.

4.3 Experiments and Discussion

In the ensuing section, we undertake a comprehensive evaluation of DRL-

GPHH and DRL-GPEHH, focusing on a multifaceted container port dis-

patching problem marked by uncertain parameters. This analysis is po-

sitioned against DRL-HH and DRL-EHH to elucidate the advantages of

integrating GP with RL. Given the proven robustness and reliability of the

manually delineated heuristic outlined in Section 1.2.4, which has demon-

strated considerable efficacy in practical port applications, we employ it as

a benchmark baseline. Thus, all ensuing comparative analyses are premised

on enhancements made relative to this manual heuristic (Imp.). Addition-

ally, this section incorporates ablation studies and sensitivity analysis, fur-

nishing insights into the conducive elements underpinning the exceptional

performance of DRL-GPEHH.

4.3.1 Experiment Design

As this work aims to develop an algorithm that can be deployed in a real-

world port to enhance its operational efficiency, all data used in the experi-

ments are derived from actual historical operating data of Ningbo Meishan

Port, with which we collaborate. We sampled 20 days of operation data

to generate 10 training sets and 10 test sets, each containing 4,000 tasks.

All experiments are conducted using the event-driven simulator we devel-
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oped, with simulator parameters adjusted based on historical operating

data. There are two ship berths 10 operating QCs, and the number of

container trucks varies between 50 and 80. Moreover, as mentioned in Sec-

tion 1.2.3, the operating times for QC and YC are derived from real-world

historical data, while the truck travel times are drawn from the historical

time distribution.

We trained 10 GPs for 300 generations with 100 different random seeds

on the same set of 10 training datasets and selected one best-performing

individual from each dataset to form 10 GP-generated low-level heuristics.

The GP algorithm and parameters are consistent with the GP algorithm

with logic operators (LGP) described in our previous paper Chen et al.

(2022), featuring a population size of 1024 and crossover, mutation, and

reproduction rates of 60%, 30%, and 10%, respectively. All algorithms were

executed 100 times with different random seeds, and the training phase

consisted of 1000 episodes. Subsequently, we assessed the performance of

DRL-HH Zhang et al. (2022), DRL-GPHH, DRL-EHH, and DRL-GPEHH

on the test sets.The average results of the training are presented in Table

4.1.

4.3.2 Experiment Results

The experimental results demonstrate that, regardless of whether using

DRL to select single heuristics or a set of heuristics, GP-generated heuris-

tics outperform manually-designed heuristics. Replacing human-designed

low-level heuristics in DRL-HH with GP-generated heuristics provides a

performance boost of 1.42%, while DRL-GPEHH achieves a 9.88% im-

provement over DRL-EHH when multiple GP heuristics are jointly involved

in decision making as an ensemble at each step. It is worth noting that
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due to the theoretical optimization upper bound in the port truck dispatch

problem, the closer the TEU/h is to the upper limit, the more difficult it be-

comes to improve performance further. The 17.77% performance improve-

ment of DRL-GPEHH over manual heuristics demonstrates its effective

combination of knowledge from multiple GP-generated heuristics. Unlike

DRL-GPHH, although both use the same 10 heuristics, the ensemble-based

approach leverages the knowledge from multiple GP-generated heuristics

to achieve better performance.

Table 4.1: DRL-HH, DRL-GPHH, DRL-EHH and DRL-GPEHH Training
Results (TEU/h)

No. Manual
DRL DRL DRL DRL

HH GPHH1 EHH GPEHH1

1 202.36 222.91 225.50 218.18 240.75

2 188.54 205.56 204.56 201.46 225.10

3 182.31 199.26 201.73 198.14 212.46

4 191.33 205.66 207.86 204.54 219.60

5 186.26 196.52 204.75 202.54 221.28

6 190.69 204.51 211.14 205.85 220.87

7 193.33 202.14 204.17 208.60 234.28

8 191.59 203.24 198.27 203.33 224.02

9 186.14 198.19 204.97 203.05 216.79

10 190.98 204.97 206.91 208.05 226.54

Avg. 190.35 204.30 206.98 205.37 224.17

Imp. N.A. 7.32% 8.74% 7.89% 17.77%
1 DRL-GPHH and DRL-GPEHH significantly differ from other al-
gorithms, p < 0.05.

In contrast to the excellent performance of the GP-generated heuristic en-

semble, the application of a manual heuristic ensemble in DRL-EHH results

in only a 0.57% performance improvement compared to DRL-HH. This can

be attributed to the simplicity and high similarity across the adopted man-

ual heuristics, which, while capable of producing satisfactory results for

straightforward and popular scenarios, makes it challenging to improve
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performance further. Conversely, the GP-generated heuristic ensemble,

owing to its complex internal structure and knowledge that encompasses

various scenarios, has the potential to achieve superior performance. How-

ever, continuous weight adjustments are required in different environments

to maximize the utilization of knowledge from multiple GP heuristics. The

experiments supporting this statement and the reasons for the excellent

performance of DRL-GPEHH will be presented in the subsequent subsec-

tion.

Next, we put the trained DRL-HH, DRL-GPHH, DRL-EHH, and DRL-

GPEHH into a test environment completely different from the training

environment with a broadly similar baseline.

As delineated in Table 4.2, the algorithms DRL-GPHH and DRL-GPEHH,

which employ GP-generated low-level heuristics, outperform their manu-

ally designed heuristic counterparts, DRL-HH and DRL-EHH, by margins

of 0.43% and 8.14%, respectively. This substantiates the notion that inte-

grating DRL with GP-generated heuristic ensembles can yield substantial

performance improvements, even in unfamiliar testing conditions. More-

over, DRL-EHH and DRL-GPEHH exhibit enhanced consistency in the

test set by leveraging an ensemble of GP heuristics at each decision point.

The performance decrement observed for these ensemble-based models on

the test set is approximately 1% less than that for the non-ensemble al-

ternatives. This finding not only reinforces the effectiveness of ensemble

approaches in navigating unknown scenarios but also highlights the robust-

ness and practical applicability of our proposed techniques, which demon-

strate minimal performance attrition in dynamically changing real-world

contexts.

Across both training and test sets, DRL-GPEHH outperforms all other al-
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Table 4.2: DRL-HH, DRL-GPHH, DRL-EHH and DRL-GPEHH Test Re-
sults (TEU/h)

No. Manual
DRL DRL DRL DRL

HH GPHH1 EHH GPEHH1

1 190.48 199.74 203.41 215.88 227.40

2 203.54 209.55 210.20 203.01 231.24

3 189.82 195.91 205.08 203.83 217.97

4 187.04 198.26 195.73 202.24 213.35

5 191.43 202.51 202.96 199.57 216.45

6 182.90 193.37 192.97 203.92 207.67

7 193.62 204.61 201.89 202.78 221.44

8 185.86 194.05 193.95 201.60 212.82

9 191.29 200.59 203.29 198.85 217.13

10 188.87 195.22 192.55 199.95 221.30

Avg. 190.48 199.38 200.20 203.16 218.68

Imp. N.A. 4.67% 5.10% 6.66% 14.80%

Dec. N.A. -2.65% -3.64% -1.24% -2.96%
1 DRL-GPHH and DRL-GPEHH significantly differ from other al-
gorithms, p < 0.05.
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gorithms, substantiating the synergistic potential between DRL and GP en-

sembles in augmenting algorithmic performance. This ensemble approach

not only enhances generalization and robustness but also resolves the lim-

itations of DRL-HH, which is overly reliant on the quality and diversity

of pre-defined heuristics. Incorporating GPHH adds a new dimension of

diversity, adaptability, and efficiency. Furthermore, by automating the

generation of low-level heuristics through GP, both DRL-GPHH and DRL-

GPEHH eliminate the need for manual expert design, thereby considerably

increasing the level of automation in algorithm design for complex problems

like marine port truck dispatching. This automated approach proves advan-

tageous in adapting to various complex, real-world optimization challenges,

offering a scalable, flexible, and robust solution across diverse problems.

Finally, it has been substantiated that DRL-GPEHH can yield superior re-

sults compared to DRL-HH, DRL-GPHH, DRL-EHH, and manual heuris-

tics in container port truck dispatching. Although DRL-GPEHH has not

yet been implemented in real-life port settings, our manually crafted heuris-

tic algorithm, used as a baseline in this study, has been successfully uti-

lized at Ningbo Port for several years. Statistical analysis conducted by

the port reveals that work efficiency has increased by 8.1%, while ship

docking time has decreased by 2.2%. This high-performing algorithm has

resulted in time savings, facilitated the handling of more ships, and conse-

quently, significantly enhanced the profitability of the port company. As a

future endeavor, we plan to collaborate with relevant stakeholders to com-

prehensively evaluate and deploy the proposed DRL-GPEHH algorithm in

real-world scenarios.
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4.3.3 Ablation and Sensitivity Analysis

Subsequently, we extend our experimental investigation to corroborate the

superior performance of the DRL-GPEHH. We formulate three hypothe-

ses to guide this analysis: first, that standard RL algorithms struggle to

converge in complex dynamic environments with extensive action spaces,

thereby necessitating a hyper-heuristics framework; second, that basic GP

hyper-heuristics are limited in their generalizability and capacity to handle

intricate scenarios, thus impeding overall algorithmic performance on test

sets; third, The optimal performance of the GP ensemble methodology is

realized by dynamically assigning weights to GP individuals.

To empirically evaluate the performance of standard RL algorithms in com-

plex test environments, we trained DDQN and PPO algorithms using train-

ing sets. The configurations for DDQN and PPO were strictly in line with

established settings in the literature Van Hasselt et al. (2016); Schulman

et al. (2017), and each was subjected to 1,000 training episodes. For a

more comprehensive assessment, we also incorporated a random dispatch-

ing algorithm into our evaluation framework. As the test results presented

in Table 4.3, it is unequivocally evident that DDQN failed to acquire any

meaningful information during training, performing on par with random-

ized strategies. Similarly, PPO exhibited only marginal improvements over

random dispatching and did not approach the effectiveness of heuristic

methods. These experimental outcomes compellingly substantiate our first

hypothesis: conventional RL algorithms face significant challenges in con-

verging within complex and dynamic environments characterized by sparse

rewards and expansive action spaces. This underscores the necessity for

adopting a hyper-heuristics framework, where low-level heuristics replace

traditional actions to stabilize the learning environment. Such an arrange-
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4.3. EXPERIMENTS AND DISCUSSION

ment permits RL algorithms to assimilate valuable information and exhibit

improved performance, as the DRL-HH model exemplifies.

Based on the second hypothesis, we trained two distinct populations using

LGP and Cooperative Double-Layer Genetic Programming hyper-heuristics

(CD-GPHH) Chen et al. (2022). Both approaches employ a hyper-heuristics

framework that leverages GP as a high-level selector for low-level GP

heuristics. The configurations for LGP and CD-GPHH were consistent

with those outlined in our prior work Chen et al. (2022). During train-

ing, each population was exposed to a sequence of 1000 generations across

multiple training sets, each initialized with 100 different random seeds.

The best-performing individuals were then selected for further analysis.

Evaluation of the training set yielded average performance improvements

over the manual heuristic of 4.24% and 9.53% for LGP and CD-GPHH,

respectively. However, the corresponding gains on the test set were com-

paratively modest: 1.98% and 4.06%, as shown in Figure 4.3. Although

CD-GPHH outperformed LGP due to its double-layer architecture, it fell

short of the 15% improvement observed in smaller test datasets from our

previous study Chen et al. (2022). The diminished performance on the

test set underscores the limitations of relying solely on GP hyper-heuristics

for complex optimization tasks in large-scale, multi-scenario environments.

This substantiates our decision to integrate RL with heuristic ensembles

for tackling real-world, large-scale challenges.

To further validate our second hypothesis, we implemented three distinct

ensemble methods—voting, ranking, and weighted ranking—to amalga-

mate manual and GP heuristics. The effectiveness of these methods was

then assessed using the test set delineated in Section 4.3. Each heuristic

selects an optimal task in the voting mechanism, with the majority vote

determining the final output. Ranking involves each heuristic assigning
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a rank to all tasks, culminating in the task with the highest aggregated

rank chosen as the output. The weighted ranking method extends this

by applying weights to the summed ranks according to Algorithm 4. For

comparative analysis, we also introduced the Best GP Ensemble (BGPE)

method, which involves assessing 10 unique GP low-level heuristics on each

dataset and choosing the most productive one.

Then, to get the weight value used in the weighted ranking method, we

calculated the probabilities of DRL-HH and DRL-GPHH, selecting each

heuristic, as depicted in Figure 4.5. For manual heuristics, DRL methods

preferred one or two specific actions, such as Act1 and Act2, while less

frequently opting for actions like Act8, Act9, and Act10. In contrast, the

selection probabilities for GP heuristics were more evenly distributed, with

no single heuristic predominating. This suggests that while DRL methods

gravitate towards better-performing manual heuristics, the uniform perfor-

mance exhibited by GP heuristics makes it challenging for DRL-GPHH to

identify a singular, superior heuristic. Such findings imply that the GP

ensemble harbors a wealth of knowledge, making optimally assigning fixed

weights nontrivial.

The inferior performance of the vote manual heuristic ensemble (VMHE)

and rank manual heuristic ensemble (RMHE) in Table 4.3, compared to

the expert manual heuristic, indicates that when multiple manual heuris-

tics make decisions, the subpar performance of certain heuristics adversely

affects the overall decision-making performance. This leads to a final per-

formance that is 10.94% and 7.23% worse than the individual expert manual

heuristics in the manual heuristic ensemble, respectively. Moreover, when

utilizing the statistical DRL probabilities to select each action shown in Fig.

4.5 as weights for the weighted rank manual heuristic ensemble (WRMHE)

method, it achieves performance comparable to DRL-GPHH. This further
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Figure 4.5: DRL-HH/DRL-GPHH Action Selection Ratio

underscores the significance of adjusting the weights of heuristic ensembles.

However, as demonstrated in Table 4.3, we find that the vote GP ensem-

ble (VGPE) and rank GP ensemble (RGPE) methods, which use the GP

heuristic ensemble, perform significantly better than the best GP ensem-

ble (BGPE) method that relies on a single heuristic. Nevertheless, the

weighted rank GP ensemble (WRGPE) method, which utilizes the pro-

portions of different actions selected by DRL-GPHH as weights, does not

improve performance compared to RGPE. The performance of WRGPE is

worse than that of the unweighted RGPE. This observation supports the

argument that applying fixed weights to the GP heuristic ensemble does

not enhance performance and may prove detrimental.

Furthermore, we calculated the standard deviations of the weights assigned

to different actions by DRL-EHH and DRL-GPEHH. As shown in Table

4.4, the standard deviation of DRL-EHH is 1.38%, indicating that for man-

ual heuristics, DRL-EHH tends to assign relatively consistent weights to
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each action. In contrast, the standard deviation of DRL-GPEHH is 6.47%,

illustrating that the weights of each action in DRL-GPEHH vary during

each scheduling, contributing to its superior performance.

These supplementary experiments substantiate our initial hypotheses: Con-

ventional RL methods struggle with large-scale real-world problems and

thus necessitate integrating a hyper-heuristics framework. Likewise, sim-

plistic GP hyper-heuristics approaches fail to formulate a universally ap-

plicable model capable of managing large-scale, real-world scenarios. How-

ever, DRL-GPEHH by continually fine-tuning the weights of diverse low-

level GP heuristics during the decision-making process—effectively capital-

izes on the rich knowledge reservoir inherent in the GP heuristic ensemble.

This leads to marked enhancements in performance, stability, and general-

ization capabilities.

4.4 Summary

This chapter has delved into the intricate realm of dynamic truck dispatch-

ing in container terminals and has successfully introduced two pioneer-

ing methodologies—DRL-GPHH and DRL-GPEHH, both of which employ

learning-assisted genetic programming. Among the duo, the DRL-GPEHH

stands out, ingeniously amalgamating an ensemble of GP heuristics, thus

bridging the gaps present in DRL-HH and DRL-GPHH methodologies.

One of the most salient achievements of DRL-GPEHH lies in its ability to

generate heuristics autonomously. This eliminates the heavy dependence

on expert intervention, fostering greater adaptability to a myriad of oper-

ational environments and propelling the field of algorithmic development

toward a higher echelon of automation. Such a transition is crucial, espe-
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cially in a dynamic domain like truck dispatching in container terminals,

which demands flexibility and accuracy.

A meticulous experimental evaluation has further validated the supremacy

of the DRL-GPEHH approach. With its stellar performance across piv-

otal metrics such as dispatching efficiency, adaptability, and generalization,

DRL-GPEHH has set new benchmarks. The embodiment of a deep rein-

forcement learning agent as a sentinel, meticulously distributing weights to

individual GP heuristics, symbolizes an advanced phase in algorithmic de-

sign. By facilitating a synergistic interaction between the ensemble of GP

heuristics and DRL, the system guarantees optimal task assignments. This

symbiotic relationship, enhanced by an innovative action-reward schema,

ensures swift convergence, bestowing the algorithm with augmented stabil-

ity and superior generalization.

This chapter’s revelations underscore the immense potential of Genetic Pro-

gramming, particularly with its ensemble counterparts, within the overar-

ching framework of reinforcement learning hyper-heuristics. Such method-

ologies stand poised to revolutionize complex real-world optimization prob-

lems. As we gaze into the future, we envision extensive exploration into

collaborative training mechanisms involving GP and DRL. Such endeavors

promise not only to refine performance metrics but also to broaden the

applicability of the DRL-GPEHH model, ushering it into a wider array of

domains and thereby redefining the boundaries of optimization.
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Chapter 5

Machine Learning Assisted

Methods in Dispatching

Strategy Evaluation Accuracy

Enhancing

While we have previously discussed various methods to enhance truck dis-

patching efficiency, it is crucial to highlight that their testing and training

were rooted in traditional event-based simulators. Nevertheless, an in-

herent limitation has surfaced in these simulators: they frequently neglect

certain specific route or junction-related regulations, leading to overly opti-

mistic performance estimates. An in-depth comparison between authentic

port operation data and these simulated results unveiled a notable dispar-

ity. In particular, the time trucks spend at intersections, which tends to

be overlooked in event-based simulations, was consistently underestimated.

In such simulations, trucks are seamlessly transitioned from one crane to

another without accounting for potential delays at intersections.
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To address this issue, we developed a time-stepped simulation that tracks

truck actions and interactions at every time step. This approach allows

for a comprehensive tracking of trucks’ positions, resulting in a more ac-

curate performance estimation. However, time-stepped simulations pose a

dilemma concerning the setting of the time step. If the time step is exces-

sively large, the truck route simulation will lack precision. Conversely, if

the time step is too small, the computational cost becomes prohibitively

high. Our findings reveal that a time-stepped simulator with a one-second

time step is approximately 200 times more computationally intensive than

an event-based simulation in the context of container truck dispatching.

The magnitude of this computational overhead primarily stems from the

need to accurately assess a truck’s passage through an intersection, which

necessitates the evaluation of the truck’s collision relationship at each time

step. This computational cost is particularly prohibitive when training

auto-generated truck dispatching strategies, which often require tens of

thousands of simulation runs (Chen et al., 2020).

Figure 5.1: The Difference Between Traditional and Proposed Simulation

To reconcile the need for controlled simulation accuracy with computational

efficiency, we introduced intersection nodes into the event-based simulation

model. This modified framework enables trucks to move from node to node

instead of directly from crane to crane (Fig. 5.1). Intelligent intersection
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nodes automatically estimate the passing time of trucks at intersections

based on learned data from previous truck movements and current envi-

ronment status.

Despite this advancement, a new challenge emerged. Most ports lack pre-

cise Global Positioning System (Global Positioning System (GPS)) data for

trucks, and when available, the data is often unreliable and requires sub-

stantial pre-processing. To overcome this, we introduced learning-based

methods to infer truck movements at intersections using existing port op-

eration data.

This chapter presents a comparison of two such learning-based methods -

Genetic Programming and Reinforcement Learning - to generate estimates

of truck passing times at intersections. Our findings reveal that while RL

outperforms GP in accuracy, it is also significantly more computationally

intensive. To optimize this trade-off, we propose a hybrid method combin-

ing the advantages of GP and RL, augmented by an intersection impor-

tance analysis framework. Utilizing insights derived from data, we rank

the influence of all intersections on simulation accuracy. Consequently, we

designate the more critical intersections to be controlled by RL, while GP

manages the remainder.

This innovative approach successfully strikes a balance between perfor-

mance and computational cost. Furthermore, it enables us to generate

more precise performance estimates and develop more efficient truck dis-

patching strategies. Importantly, our method can be readily applied to

other transportation simulation challenges, significantly improving simula-

tion accuracy even without detailed GPS location and other precise oper-

ation data.

This chapter delineates key advancements in enhancing the precision of
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event-based simulations for truck dispatching in container ports. The pri-

mary content can be summarized as:

• We introduce learning based surrogate nodes in event-based container

port truck dispatching simulations. This novel approach improves

simulation accuracy without significantly increasing computational

cost, addressing a key limitation of traditional event-based simula-

tions.

• We propose the integration of GP, RL, and a novel GP and RL hybrid

(Genetic Programming and Reinforcement Learning Hybrid (GPRL-

H)) method to simulate truck actions at these intersections. The

hybrid method provides a preferable balance between simulation ac-

curacy and computational cost.

• We develop a method for enhancing the accuracy of truck dispatch-

ing simulations in the absence of precise GPS location data. This

approach opens avenues for increased simulation precision in settings

without precise data.

• We introduce a data-driven framework for analyzing the importance

of intersections. This innovative approach ranks intersections based

on their significance, facilitating more effective control over intersec-

tion simulations.

• We provide empirical evidence demonstrating the superior perfor-

mance of our proposed methods. Through rigorous experimentation,

we show that our new hybrid method achieves an excellent perfor-

mance.

The rest of this chapter is organized as follows. Section 5.1 and 5.2 in-

troduces the dynamic truck dispatching and the simulation problem. The
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proposed learning-based methods are delineated in Section 5.4, 5.5 and

5.6. Section 5.7 presents the experimental results and offers insights into

the strong performance of our new framework. Finally, conclusions are

drawn in Section 5.8.

5.1 Truck Dispatching Simulation Problem

Given the critical role of simulation in container truck dispatching op-

timization within container ports, numerous researchers have employed

simulation-supported optimization methods to address this problem (Tao

and Qiu, 2015; Rajendran, 2021; Mirzaei-Nasirabad et al., 2023). Most,

however, have favored the use of event-based simulations. While these sim-

ulations offer simplicity and speed, a significant drawback is their neglect

of trucks traveling complexities on the road.

Traditional event-based simulations typically calculate the distance be-

tween the start and end positions and then divide this distance by a fixed

or fluctuating speed to estimate the travel time (Juan et al., 2013). As

such, they overlook the actions occurring during the travel process, par-

ticularly the interactions of trucks at intersections, which heavily influence

the accuracy of the final simulation outcome (Arvin et al., 2020).

Fig. 5.2 illustrates two typical situations: when a truck aims to cross an

intersection and another truck is already present from a perpendicular di-

rection, the first truck must wait. And even when there’s no truck from

a perpendicular direction, if a truck is approaching from the opposite di-

rection, the initial truck intending to turn left must wait. These situations

only consider two trucks, but the complexity increases with more trucks

involved.
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Figure 5.2: Examples of Intersection Actions

This complexity is crucial in container port truck dispatching simulations

and should not be overlooked. To simulate truck routes and actions at

intersections precisely, we would ideally employ time-stepped simulation

instead of event-based simulation to track truck statuses at each time point

(Gould et al., 2007). Regrettably, very few studies have used time-stepped

simulation when optimizing truck dispatching due to its high computational

cost and its difficulty in algorithm training and strategy optimization.

This challenge was the impetus for introducing learning-based methods in

event-based simulation to simulate intersection actions. Our approach aims

to enhance accuracy by accurately simulating intersection behaviors, yet it

avoids the substantial computational cost of time-stepped simulation. In

the following, we introduce two possible solutions for tackling this challenge.

5.2 Truck Dispatching Simulation Accuracy

The primary aim of a container port is to maximize the number of ships

served within a given time period and thereby increase the port’s turnover

efficiency. As illustrated in Fig. 1.1, container ports comprise two signifi-
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cant areas – the berths and the yards – linked by container trucks.

Fundamentally, there are two primary operations within a container termi-

nal: loading and unloading containers onto or from ships at the berths, and

to or from the containers in the yards, with the help of container trucks.

There are two prevalent container sizes: the small Twenty-Foot Equivalent

Unit (TEU) and the large container, equivalent to two TEUs. Each truck

can carry one large container or two small containers. Typically, a small

container is bundled with another small container to form a standard task,

while a large container is treated as a task. However, in specific scenarios,

dynamic truck dispatching algorithms may be necessitated to dispatch two

separate small containers when possible.

Throughout loading and unloading operations, trucks convey containers be-

tween yards and ships. QCs are tasked with loading or unloading contain-

ers from and onto ships, while YCs manage the yard operations. QCs can

handle one large container or two small containers in one action, whereas

YCs can only operate one small or large container due to differences in

clamp types. The fact that QCs and YCs can only operate containers from

one truck at a time results in waiting periods and congestion under these

cranes. Moreover, as illustrated by the passage direction arrows in Fig

1.1, trucks must comply with the port’s traffic regulations. Certain routes

permit bidirectional traffic, whereas others allow for unidirectional move-

ment only. This regulatory structure is critical for maintaining a safe and

efficient circulation of trucks within the port.

All container operations conform to pre-designed work instructions (tasks).

Each task comprises unique information such as task id, container id, source

node, destination node, task type (load/unload), container size, weight, and

bound task id. To maintain a balanced ship’s allotment, all tasks must be
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executed in sequence, except for unloading tasks where the sequence can

be swapped within a certain number (sn).

Considering the crucial role of maintaining continuous operation of the QCs

for optimal ship operation efficiency, the QC waiting time (Quay Crane

Waiting Time (QCW)) has emerged as a vital metric for evaluating dis-

patching strategies. Let sij and eij denote the start and end times, respec-

tively, for task j of QC i, with ni representing the total number of tasks

for QC i and m being the number of QCs. The total QC waiting time can

be represented in Equation (5.1). Another important metric is the number

of TEUs processed per hour (TEU/h, TEUs Processed per Hour (TPH))

for the entire port. This metric has a direct impact on the ship docking

time and overall turnover efficiency of the port. Let n be the total number

of tasks, sizei represent the size of task i, E denote the end times for the

task set, and S represent the start times for the task set. The TPH can

then be expressed in Equation (5.2).

QCW =
m∑
i=1

n∑
j=2

sij − ei(j−1) (5.1)

TPH =

∑n
i=1 sizei

maxE −minS
(5.2)

Given the formidable challenges of testing dispatching strategies in real-

world scenarios, most research efforts have turned to surrogate simulators.

These are used to replicate the port operation process and to train and

test dispatching algorithms (He et al., 2013; Jaoua et al., 2012; Sarmiento

et al., 2019). Typically, work instructions are input into these simulators,

which then simulate the entire task completion process. The dispatch-

ing algorithms within the simulator distribute trucks, subsequently out-
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putting TPH and QCW values to evaluate algorithmic performance. Al-

though many studies have demonstrated substantial improvements in these

metrics, the development of their surrogate simulators frequently neglects

the interaction between trucks during transit. Although it’s customary

to exclude ostensibly non-essential processes when constructing surrogate

simulation models, this approach can introduce complications in specific

applications, such as truck dispatching in container terminals.

Our tests at Ningbo Meishan Port highlighted that dispatching algorithms,

trained using conventional event-based simulators, do not consider intersec-

tion conditions during truck dispatching. This omission can lead to inad-

equate dispatching decisions, resulting in an uneven distribution of trucks

across QCs, with some experiencing a surplus and others a shortage. Such

imbalances necessitate constant monitoring of QC statuses by port dis-

patching operators, who must make on-the-fly adjustments to dispatching

plans to maintain operational efficiency within the port. It is clear from

these findings that there is a need for a more sophisticated surrogate simu-

lator to train and test dispatching algorithms effectively, ensuring that the

strategies developed are both feasible and efficient in real-world container

port settings.

Furthermore, as detailed in Section 5.7, our analysis revealed that tradi-

tional event-based simulators often overestimate TPH and QCW values.

Such miscalculations could lead to misjudgments of algorithm performance

in real-world scenarios. Recognizing this limitation, we were motivated

to develop an innovative truck dispatching simulator. By integrating a

data-driven, learning-based approach, we aim to enhance simulation ac-

curacy without significantly increasing computational overhead. In the

subsequent sections, we outline the structure of our simulator and discuss

the algorithms implemented to emulate truck movements at intersection
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nodes accurately.

5.3 Learning-Based Methods for Simulation

In our endeavor to simulate the truck movement process more precisely, we

have segmented the traveling route of trucks, which typically extends from

crane to crane. The route now comprises intermediary stops at intersection

nodes, as depicted in Fig. 5.1. To elucidate the role of these intersection

nodes in the simulation, we have drawn a logic map of the previous sample

container port map as seen in Fig. 1.1.

Figure 5.3: Example of Truck Routing in Logic Map

As illustrated in Fig. 5.3, the traditional event-based simulation calculates

the truck movement path based on the actual path length but neglects in-

tersections. This method is akin to a truck moving instantaneously from

YC1 to QC3, bypassing all intermediate steps such as Intersection (Int.)

1 and 2. However, our proposed learning-based simulation method moves

the truck from node to node. All nodes on the path, such as Int. 7, 8,

and 9, are considered, as demonstrated in the figure. This segmented path

can more accurately simulate truck movement, considering all actions and

interactions at intersection nodes. For instance, a situation as depicted
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in Fig. 5.2, wherein situation 1 occurs at an intersection node along the

truck’s route. Upon the truck’s arrival at this intersection node, the in-

telligent node autonomously assesses its current state. Drawing from this

assessment, the node determines a passage time that accommodates for the

truck’s waiting, deceleration, and acceleration phases. This comprehensive

computation of passage time not only enables adjustments to truck speeds

but also assists in accurately simulating truck actions at intersections. As

a result, it significantly enhances the precision of the truck dispatching

simulation.

The calculation incorporates the following state factors in this paper:

• The current number of trucks at the node.

• The maximum passage time of the current node trucks.

• The truck number coming from the left/right/up/down.

• The closest truck distance from the left/right/up/down.

According to the above description, the truck operation function is pre-

sented in Algorithm 5. In this function, in addition to a dispatchable truck

list, and a task list to be completed, routing is a procedure that calcu-

lates the shortest path from the start crane to the end crane of each task

while respecting traffic regulations set by the port. To simplify the exper-

imental process, the route from one crane to another is a pre-computed

fixed path. For the path from QC8 to YC4, the traditional event-based

simulation output merely the O-D pair [QC8, YC4] with a constant travel

time, with truck interactions at intersections being overlooked. In our pro-

posed learning-based simulation, however, the output path will be [QC8,

Int.7, Int.8, Int.9, YC4]. When passing the intersection nodes, the func-

tion n.passing() will generate a passing time for this node by using the

forecast model with the environmental states as inputs. In this way, the
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Algorithm 5 Truck Operation Function

Require: truck, task, routing, env
1: truck.start task(task)
2: truck.path← routing(truck.pos, task.start crane)
3: for n in truck.path do
4: truck.wait(truck.travel(n))
5: truck.pos← n
6: if n.type = crane then
7: truck.wait until(n.available)
8: truck.wait(task.operate())
9: if truck.pos = task.twin task.start crane or truck.pos =

task.twin task.end crane and task.twin task then
10: if n.type ̸= quay crane then
11: wait(task.twin task.operate())
12: end if
13: end if
14: else if n.type = intersection then
15: truck.wait(n.passing(env.states))
16: end if
17: truck.leave(n)
18: end for
19: truck.end task(task)

traffic states at each intersection node are modeled as a decisive factor in

the forecasts.

Despite the considerable advances in our simulation strategy, we still face

a fundamental issue: how to use state factors to reliably predict the truck

passing time to boost the precision of our simulations. Conventionally, if

we can access historical data that elucidates the relationship between the

truck’s passing time and intersection status parameters, a forecast model

can be built to leverage this rule to calculate passing time. Moreover,

it is possible to extract this correlational data from detailed truck GPS

information to build a deeper understanding.

Container ports present a significant challenge due to a scarcity of high-

quality truck GPS data. This dearth of reliable information impedes our

ability to identify hidden relationships between various operational parame-
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ters. Despite substantial investments in real time kinematic (RTK) devices

and numerous engineering efforts, the GPS-unfriendly port environment

still yields a high proportion of erroneous positioning data. In the absence

of precise GPS data for trucks and information on the queuing wait time

at each crane, the accurate replication of the trucks’ historical route poses

a substantial challenge.

To address this issue, we propose a learning-based method that estimates

intersection passing times using a reward-based system. This approach

facilitates the discovery of traffic flow rules, even in contexts where oper-

ational data might be sparse or limited. Learning-based methods like GP

and RL do not rely on explicit programming or hand-crafted rules. Instead,

they learn from available data, iterating over numerous cycles, making and

learning from errors, and progressively improving their predictions. The

central mechanism is a reward-based system: the more a prediction or

model’s action aligns with actual outcomes, the higher the reward. The

algorithms strive to maximize these rewards, thereby gradually improving

their performance, even in the face of limited data.

GP and RL are particularly suited to the task at hand due to their flexi-

bility, their ability to manage complex, non-linear relationships, and their

resilience against noisy or sparse data. These attributes make them ideal

for enhancing the accuracy of our truck dispatching simulator.

In the subsequent sections, we provide detailed insights into the selected

algorithms and learning methods, highlighting their contribution to accu-

rately predicting intersection crossing times despite data limitations.
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5.4 Data-driven Genetic Programming in Sim-

ulation

GP is an evolutionary computation method inspired by the principles of

biological evolution. Its essence lies in refining a population of solutions

through consistent modifications of crossover and mutations. Hence, by

designing a fitness function that encourages the generated individuals to

provide truck intersection passing times that match the historical data best,

we can allow the model to learn hidden rules through its evolution.

Figure 5.4: AGP and LGP Structure

GP employs various representations, but the tree structure is the most

common and easy to understand and is also adopted in this study. As

depicted in Fig. 5.4, GP can be divided into two types: arithmetic genetic

programming and logical genetic programming, contingent upon whether

logical operators are included or not.

In this paper, AGP utilizes operations such as addition, subtraction, mul-

tiplication, and protected division. Meanwhile, LGP integrates additional

logic operators, including greater than or equal to, less than or equal to,

if-else, and, or, maximum, and minimum. The terminals in GP are the

state factors enumerated in the previous subsection, amounting to 10 state

factors plus one random constant.

In the context of the learning-based simulation, GP individuals act as the
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n.passing() function to compute the passing time of trucks at intersections.

To train these GP individuals, the fitness function is set up according to

Equation (5.3), which combines the metrics detailed in Equations (5.1) and

(5.2).

In the equation above, S/s and E/e represent the task start and end times

observed in actual operations, respectively, analyzed collectively and indi-

vidually. Correspondingly, S ′/s′ and E ′/e′ symbolize the same times as the

simulated results.

The fitness function, denoted as Rf , measures the disparity between the

actual data from operational records and the simulation outcomes. This

function focuses on two main metrics: TPH and QCW, as observed in the

training dataset. By gauging the performance of GP individuals, this fit-

ness function aids in pinpointing the entities possessing accurate knowledge

necessary for estimating truck intersection passing times. As a result, the

simulation developed is highly reflective of actual operational data. The

parameter δ is implemented to balance the relative importance of the two

metrics, and for the purpose of this study, it is set to 1. It’s important to

note that in this paper, we don’t distinguish between different intersections;

we instead employ a single model to fit all intersections. This approach is

consistent across both GP and RL methods.

Rf = δ

m∑
i=1

n∑
j=2

|sij − ei(j−1) − s′ij + e′i(j−1)|

+|maxE −minS −maxE ′ + maxS ′|

(5.3)

The GP evolution process, as outlined in Algorithm 6, continually uses

genetic operations such as crossover and mutation methods to produce

new individuals. This method screens out and eliminates individuals with
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low fitness, allowing the entire population to evolve toward individuals with

higher fitness. This paper employs tournament selection for better control

on the selection pressure. The crossover and mutation methods align with

those mentioned in our previous work (Chen et al., 2022). Notably, since

the fitness of GP signifies the disparity between metric values of real data

and simulated results, lower fitness indicates higher simulation accuracy.

Algorithm 6 AGP, LGP Evolution Function

Require: Initial Parameters initial
p← NewPopulation
p.initial individuals(initial.population size)
generation← 0
while generation < initial.max generation do

p.calculate fitness()
p.penalize long individuals()
next generation← NewPopulation
while next generation.size() < p.size() do

Insert an individual to next generation by
Crossover, Mutation, or Reproduction in p

end while
p← next generation
generation← generation + 1

end while

While our experimental results indicate that both AGP and LGP can sig-

nificantly improve the accuracy of simulations, they have a key limitation:

the fitness function of traditional GP can only be calculated upon comple-

tion of the entire simulation process. This delay means that the valuable

data generated during the simulation cannot be fully exploited to optimize

the accuracy of simulations in real-time.

In light of these considerations, we believe that leveraging RL to learn the

truck’s passing time at intersections could greatly enhance the efficiency

and accuracy of our simulations. By using RL, we can fully utilize the

historical data at our disposal and acquire more precise and informative

insights in real-time, which ultimately leads to more accurate simulations.
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This RL-based approach will be discussed in detail in the following subsec-

tion.

5.5 Reinforcement Learning in Simulation

RL is a machine learning algorithm that trains an agent to select an ap-

propriate action to obtain maximum rewards. Unlike GP, which relies on

evolutionary principles to refine its predictive models, RL leverages its on-

going interaction history, often via mechanisms like experience replay, to

progressively enhance its decision-making policies. In the traditional GP

context, Rf is calculated as a reward (fitness) after completing all task

simulations, providing limited feedback to the learning process. In this en-

vironment, the trajectory-based experiences gathered by the agent do not

offer substantial information about the quality of the action, which in turn

considerably impacts the quality of the final simulation results.

Figure 5.5: RL Structure

However, RL introduces a notable paradigm shift in the learning approach

compared to GP. Rather than being completely disconnected from the en-

vironment during the evolutionary process, as is the case with GP, RL

allows the agent to engage in continual interaction with the environment.

The agent performs actions and receives feedback in the form of rewards,

as depicted in Fig. 5.5. This dynamic interaction facilitates a more adap-
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tive learning process and can help to optimize the actions more effectively.

Specific aspects of this feedback mechanism, including its immediacy and

influence on the learning process, will be explored in detail in the results

section.

Thus, we introduce a timely reward, Rt, formulated as per Equation (5.4)

in the RL method. The symbols sij and eij represent the start and end

times in the actual data for the jth task of the ith QC, respectively, while

s′ij and e′ij denote the start and end times in the simulation. The reward

Rt is calculated as the discrepancy between the actual and simulated truck

movement times for each task. As with the reward Rf , smaller Rt values

signify a higher simulation accuracy.

Rt = |Eij − Sij − E ′
ij + S ′

ij| (5.4)
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Figure 5.6: Performance of RL with Different Rewards

The novel aspect of our RL approach is the concurrent use of the real-time
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computed reward Rt and the episode-end reward Rf to guide the learning

process. This combined guidance allows the RL agent to learn the logic of

truck operations at the intersection more effectively from historical data.

By incorporating the real-time computed reward Rt following each action

At by the RL agent, we can better use the previously ignored data on the

truck movement time for each task. Consequently, the agent can acquire

more information, improving the quality of actions and, ultimately, a more

accurate simulation.

In our experiment on the test dataset, we ran 10 iterations and trained for

500 episodes to assess the impact of different rewards on RL performance.

As illustrated in Fig. 5.6, using the traditional final reward approach did

not lead to effective convergence. RL failed to acquire helpful knowledge,

resulting in a high simulation error rate. Conversely, our proposed com-

bination of two types of rewards significantly improved RL’s convergence.

This approach enabled RL to converge on complex problems, overcoming

challenges associated with RL in intersection simulations and substantially

increasing the accuracy of the simulations.

In the context of this research, RL is expected to output the truck cross-

ing time at an intersection as a continuous variable. This requirement

presents a challenge to traditional RL methods such as deep Q-learning

(Mnih et al., 2013) (DQN) and double deep Q-learning (Van Hasselt et al.,

2016) (DDQN), which are not optimized for handling continuous action

spaces effectively. To resolve this issue, we adopt the proximal policy

optimization (PPO) method to calculate the truck crossing time at the

intersection.

The RL training environment used in this study is similar to the one for

the port dispatch simulator previously discussed. Like in the GP method,
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the RL agent performs the function n.passing() in Algorithm 5, producing

a continuous number representing the time a truck took to cross the inter-

section, given the current environment parameters. The environment state

is defined by the 10 state parameters as described in the below Sections.

During the training process, the simulator provides the agent with intersec-

tion state information St, and the agent outputs the predicted intersection

passage time based on its learned knowledge. Each time the agent makes

an action At, the simulator returns a reward Rt. Once all actions are com-

pleted, a final reward Rf is computed. The entire training process of the

PPO-based RL algorithm is illustrated in Algorithm 3.

Experimental results indicate that RL demonstrates superior simulation

accuracy compared to GP. This improvement is largely attributed to the

inclusion of the timely reward Rt, which provides RL agents with an imme-

diate response to their actions, leading to more refined decisions. However,

this added precision has a significant drawback: increased computational

cost. Our experiments show that utilizing RL for simulation requires ap-

proximately twice the computational time of using GP.

The higher computational cost results from the RL-generated agent being

invoked to predict every time a truck passes an intersection. While indi-

vidual predictions may take minimal time, a complete simulation requires

hundreds or thousands of computations. This cumulative computation time

can render the RL’s learning-based simulation too time-intensive when used

to train dispatching strategies, thereby limiting its practicality.

To strike a balance between accuracy and computational efficiency, we pro-

pose a hybrid GP and RL simulation approach. This strategy involves using

GP to simulate less important intersections and RL to simulate intersec-

tions of high importance. By leveraging the strengths of both methods in
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this way, we aim to minimize the computational cost while preserving the

accuracy of the simulation. The effectiveness and efficiency of this GPRL-H

simulation approach will be examined in the subsequent part.

5.6 Hybridizing GP and RL in Simulation

Unlike GP, wherein the acquired knowledge is directly translatable into

arithmetic functions, thereby substantially accelerating each truck pass

time calculation, RL enhances simulation accuracy and considerably ex-

tends the simulator’s runtime. Empirical results indicate that RL-based

simulations demand about thrice the computational time compared to GPs.

To reduce this simulation time while preserving the accuracy of the sim-

ulations, this paper puts forward an innovative approach: the GPRL-H

method for fast estimation of truck passage times at intersections.

Figure 5.7: GPRL-H Method Flow Chart

As visualized in Fig. 5.7, when the simulation necessitates the computa-

tion of intersection passing time, the GPRL-H method determines whether

to employ GP or RL for this calculation based on the current intersec-

tion’s significance where the truck is positioned. Our analysis of histori-

cal truck movement data revealed that certain intersections, particularly

those at critical locations, frequently witness multiple trucks crossing si-

multaneously, while at other intersections, such instances are rather rare.

Consequently, we hypothesize that these critical intersections, given their
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complex traffic conditions, demand a detailed simulation facilitated by RL.

In contrast, intersections with less complex traffic patterns could be effec-

tively simulated using GP, yielding a level of accuracy similar to that of

a comprehensive RL simulation. This hypothesis forms the basis for our

proposal of the GPRL-H method, striking a balance between simulation

accuracy and computational efficiency.

Nevertheless, the GPRL-H approach brings forth a challenge - determining

the importance of each intersection. Given the unavailability of accurate

GPS data, direct analysis of each intersection’s congestion levels using his-

torical GPS data to determine intersection significance is unfeasible. There-

fore, drawing inspiration from the Pareto chart (Harvey and Sotardi, 2018),

we propose a data-driven method incorporating the previously mentioned

RL-based intersection simulation to evaluate the significance of various in-

tersection nodes.

Initially, let’s denote that there are a total of o intersections within the

port. In this research, we have o = 66, and all intersections in the default

simulator sd are controlled by RL agents. The process can be outlined as

follows:

1. Train the GP-based and RL-based agents independently on the train-

ing sets.

2. Replace the RL agent of one of the o intersections in the sd with the

GP individual sequentially, generating o distinctive GPRL-H simula-

tors.

3. Execute these substituted o simulators on test data sets and tally the

final simulation results.

4. Implement the paired sample t-test method to compare the results of
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the o simulations with the sd, and compute the t-value. The higher

t-test results indicate a greater discrepancy between the outcomes

before and after removing a specific node. This suggests the higher

importance of the node, implying that it should not be substituted

with GP for control.

5. Choose the replaced intersection in the simulator with the lowest t-

value (lowest influence on simulation accuracy) as the least important

intersection and replace the RL agent at this intersection with a GP

individual in default simulator sd. Set o = o − 1 to save simulation

time and return to step 2 to continue replacing the next intersection

until GP individuals control all intersections.

Moreover, we utilize the LGP-generated individual as the GP part in the

GPRL-H method. This approach has been adopted due to its superior

performance compared to AGP in our experiments while maintaining a

comparable execution time. Following the previously outlined steps, we

derive the intersection importance diagram in Fig. 5.8. This diagram shows

that when the performance of RL agents at all intersections is considered

100%, replacing 40 out of 66 intersections with GP-regulated agents retains

approximately 96% of the performance characteristics seen in a simulation

entirely driven by RL agents. As a result, the proposed GPRL-H method in

this paper defaults to controlling these 40 less significant intersections using

GP, thereby ensuring an effective balance between simulation accuracy and

speed.

Our experimental results reveal that the proposed GPRL-H method com-

bines the strengths of both GP and RL and strikes an effective balance

between simulation accuracy and computational cost. We propose that

this innovative method can be applied not only to the port dispatch sim-
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Figure 5.8: Intersection Importance Analysis Result

ulation discussed in this paper but also to a broader range of road traffic

simulation applications, including factory-automated guided vehicle (Au-

tomated Guided Vehicle (AGV)) path simulation, urban traffic simulation,

and mine vehicle scheduling. To demonstrate the superiority of the GPRL-

H algorithm, a series of experiments and comparisons will be conducted in

the next section.

5.7 Experiments and Discussion

In this section, we present the validation of the traditional event-based

simulation and the learning-based AGP, LGP, RL, and GPRL-H methods

that we have proposed, utilizing real-life historical data obtained from the

Ningbo Meishan Port. Our primary objective is to highlight the excellent

performance of our emphasized GPRL-H method. As articulated in Section
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5.2, our central focus remains on the computation time and errors of two

principal metrics: QCW and TPH.

The validation leverages real-world data and maps from Ningbo Meishan

Port. The designated truck routes comply with the stipulations of the port;

each route from crane to crane is unique and pre-set. The historical opera-

tional data chiefly constitutes the initiation sij and termination eij timings

for the truck operations at the loading crane i and task j, supplemented

with the start and end times of operations at the unloading cranes.

We have processed 20 days of historical operational data to generate 10

training and 10 test sets. Each set comprises roughly 20,000 job tasks,

approximating the daily job volume at the port. The port comprises 5

berths, 35 QCs, and 75 YCs. Moreover, there are 66 intersections, and the

number of trucks varies between 100 and 200, which is determined by the

actual count of trucks in the historical data.

The parameter configurations and evolution methodologies for all GP meth-

ods are consistent with our prior work on AGP and LGP methods (Chen

et al., 2022), having a population size of 1024, and crossover, mutation,

and reproduction rates of 60%, 30%, and 10%, respectively. The GPRL-H

method utilizes RL to regulate the 26 crucial intersections and employs

LGP to fit the remaining 40 less critical intersections. The AGP, LGP,

RL, and GPRL-H methods are trained on the 10 training sets using 100

distinct random seeds for 1000 generations each.

For the RL component of our study, we have chosen PPO and configured it

to use two distinct deep neural networks. One of these networks serves as

the policy network, or the ’actor network,’ while the other functions as the

value network, often termed the ’critic network.’ The learning rate has been

predetermined at 0.0003 for the actor network, and for the critic network,
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it is set at 0.001. These neural networks consist of layers with neuron

quantities as follows: 10, 100, 180, and 1, respectively. The Rectified Linear

Unit (ReLU) is implemented as the activation function across all layers.

In the experiment, the error percentage for TPH and QCW is calculated

using the formula Error =
(

Simulated TPH or QCW−Historical TPH or QCW
Historical TPH or QCW

)
×100.

The final performance of the models, post-training, on the training sets is

illustrated in Table 5.1.
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As outlined in the table, the unit of measure for TPH is TEU/hour, while

that for QCW is hours. The error term represents the average absolute

deviation in comparison with historical data across the ten datasets. No-

tably, our learning-based simulations consistently outperform conventional

event-based simulations, irrespective of the intersection simulation method

employed. We also incorporated an error parameter into our experiments to

gauge the accuracy of various simulation techniques. It is crucial to clarify

that this error is not merely an average of the last two metrics but rather

represents the cumulative error in predicting individual segments of truck

travel time. Hence, scenarios may arise where the final metrics exhibit

a smaller mean error but a larger cumulative error. Traditional event-

based simulations display a significant error rate of approximately 35%. In

contrast, AGP and LGP demonstrate considerably improved performance,

with respective error rates of around 25% and 18%. Intriguingly, the in-

corporation of logical operators into GP enables LGP to outperform AGP.

This suggests that intersection simulation is not a simple linear problem; it

encapsulates diverse conditions that warrant the inclusion of logical oper-

ators for more accurate fitting. Remarkably, reinforcement learning (RL)

exhibits a significantly lower error rate of around 6.5%, substantiating our

claims in Section 5.5 that GP’s performance is considerably influenced by

its singular interactions with the environment during each evolutionary cy-

cle. Although LGP manages some less critical nodes, the GPRL-H method

maintains performance metrics comparable to RL, with an error rate of

approximately 7%, essentially on par with RL.

Subsequently, we deployed the AGP, LGP, RL, and GPRL-H methods,

initially trained on the training sets, into the test sets as shown in Table

5.2. To circumvent potential distortion due to disparities in the histori-

cal data when comparing the training and test sets, we elected test sets
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closely aligned with the training sets and historical data. The performance

of the conventional method remained relatively unchanged, with an error

rate persisting around 36%. Meanwhile, the AGP, LGP, RL, and GPRL-H

methods all experienced nominal decreases, though these were not signif-

icant, merely around 1%-2%. This suggests our training did not lead to

overfitting, and the intersection traffic rules gleaned from the learning-based

methods are indeed generalizable, yielding effective performance even on

datasets not previously encountered. This further affirms the versatility of

our proposed method and its potential applicability in other simulations.
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5.7. EXPERIMENTS AND DISCUSSION

Additionally, we computed the simulation time (SimT) consumed over each

instance for each method. As presented in Table 5.3, it is evident that the

standard event-based simulation is the most time-efficient, with an aver-

age simulation duration of approximately 5 seconds. The mean simulation

times for AGP and LGP do not exhibit a notable difference, both hov-

ering around 11 seconds, which is approximately twice as long as that of

the standard method. However, RL incurs the longest simulation time,

with an astounding average of 35 seconds—sevenfold that of the standard

method. Despite RL exhibiting the most impressive performance among

all methods, such an extensive runtime is untenable. In the process of em-

ploying the simulator to train port container truck dispatching strategies,

many simulation executions are required. A simulation time seven times

longer implies a corresponding increase in training duration when using the

standard simulator, substantially impeding training efficiency. In contrast,

our innovative GPRL-H method necessitates an average simulation time of

around 17 seconds, merely half of that required by the RL method, while

retaining near-equivalent simulation precision. This underscores that the

GPRL-H method achieves a commendable equilibrium between two crit-

ical metrics: simulation time and simulation accuracy. It is capable of

substantially reducing simulation time while preserving adequate simula-

tion precision.

The empirical results compellingly demonstrate the efficacy of our learning-

based simulation methodology for container port truck dispatching. Under

the purview of our proposed framework, applying AGP, LGP, RL, and

GPRL-H methodologies to model truck throughput times at intersections

substantially enhances the simulation’s precision. Our GPRL-H method

warrants specific mention. By amalgamating the computational speed of

GP and the superior accuracy of RL, this approach is uniquely positioned

163



5.7. EXPERIMENTS AND DISCUSSION

Table 5.3: Traditional, AGP, LGP, RL, GPRL-H Methods Simulation Time
(second)

Set No. Tradit. AGP LGP RL GPRL-H

Train

1 4.88 9.42 11.73 36.55 17.70

2 5.36 11.33 8.93 28.25 17.04

3 4.91 11.87 11.73 34.74 16.13

4 5.04 10.64 10.92 36.82 16.29

5 4.21 10.36 12.55 34.35 17.20

6 4.20 11.28 11.43 39.82 17.70

7 4.46 10.01 10.94 37.54 16.06

8 5.28 13.10 10.66 34.34 16.79

9 5.33 11.16 11.24 40.81 20.76

10 5.88 10.52 11.41 35.74 17.59

Test

1 4.76 10.79 9.73 35.11 18.22

2 5.10 11.16 10.50 31.90 17.58

3 5.98 10.57 11.63 36.85 18.22

4 5.31 10.34 11.89 44.54 16.04

5 4.82 9.48 11.38 41.09 15.49

6 4.58 11.93 12.26 35.37 18.55

7 5.22 10.80 13.16 31.54 17.62

8 4.57 11.66 10.84 37.00 18.62

9 4.52 9.03 11.26 32.41 17.06

10 4.93 12.00 11.19 45.08 19.29

Avg. 4.97 10.87 11.27 36.49 17.50
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5.7. EXPERIMENTS AND DISCUSSION

to deliver high-grade simulation accuracy within a significantly reduced

time frame.

This study’s key strength resides in its capacity to provide a sophisticated,

learning-based tool that transcends conventional event-based simulations.

The GPRL-H method, by being anchored in both GP and RL, exploits

the strengths of these paradigms to yield a potent framework that is both

time-efficient and high in precision. This innovative fusion of techniques

renders the model responsive and adaptable, making it a powerful tool for

real-world applications.

The empirical data derived from our work suggests a promising degree of

generalizability for our learning-based GPRL-H simulation method. Our

results support the claim that this method not only provides enhanced

performance in port dispatching problems but also carries the potential for

applicability in similar contexts. However, we acknowledge that a broader

applicability claim requires further validation across multiple scenarios and

domains.

The integration of GP and RL in our method is an innovative approach

that could be employed in other fixed-area vehicle simulations, to improve

simulation accuracy. While surrogate models are prevalent in simulation

studies, our unique combination of GP and RL provides a novel contribu-

tion to the field. We must note, however, that the true reach of this method

and its applicability beyond port dispatch is a promising prospect that war-

rants further investigation and corroboration. Its potential to significantly

contribute to sectors where precise and efficient simulation is paramount is

a compelling avenue for future exploration.
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5.7.1 Discussion and Supplementary Experiments

In the previous experimental section, we provided evidence supporting the

efficacy of our proposed learning-based simulation approach. In this sec-

tion, we delve further into the necessity of implementing intersection simu-

lations and the importance of integrating learning-based methods for more

precise simulation. The cornerstone of our hypothesis is that the wait-

ing times incurred by trucks at intersections during container transport

markedly influence the overall transportation time. By enhancing the pre-

cision of truck passage time simulations at intersections, we can significantly

improve the overall accuracy of the container port truck dispatch simula-

tion. In turn, refining the simulation of truck passage through intersections

bolsters the accuracy of the entire simulation. Moreover, the process of cal-

culating waiting times for trucks at intersections presents a complex task,

necessitating the consideration of various conditions present at the inter-

section during the truck’s passage. Thus, a constant intersection waiting

time falls short in accurately simulating varying truck traffic conditions.

Upon reviewing our experimental data, we noted that the standard event-

based simulation generally overestimated TPH and underestimated QWT.

This observation could potentially stem from the disregard of additional

transit times that trucks incur at intersections during the transportation

process. Consequently, we first introduced the fixed extra travel time

(Fixed Extra Travel Time (FETT)) method, which is rooted in an ex-

haustive search approach (Nievergelt, 2000). This method endeavors to

identify a constant additional truck travel time that minimizes the average

error on the training set by exhaustive searching.

As illustrated in Table 5.4, introducing a fixed extra travel time decreases

the error on the training set to approximately 28%, substantiating the
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Table 5.4: FETT, FIPT, DT, DNN and XGBoost’s Performance and Sim-
ulation Time

Method
Train Test

Average Error SimT Average Error SimT

FETT
TPH 466.15 27.35%

5.37
424.34 34.50%

5.62
QCW 72.09 29.28% 80.30 34.93%

FIPT
TPH 421.48 20.26%

8.72
427.28 28.63%

8.66
QCW 80.87 21.35% 78.73 28.95%

DT
TPH 412.15 22.35%

6.35
424.34 33.50%

6.21
QCW 82.09 23.28% 79.43 32.93%

DNN
TPH 431.48 18.26%

6.87
415.28 30.63%

6.52
QCW 77.87 17.35% 85.73 31.95%

XGBoost
TPH 419.15 5.54%

7.32
432.34 27.63%

7.24
QCW 79.89 5.26% 78.30 26.95%

effectiveness of considering additional travel time. Nonetheless, this reduc-

tion in error is notably limited. This observation suggests that given the

substantial variance in the time required for each truck transit, it is im-

practical to identify a universal extra truck travel time that significantly

reduces the average simulation error across multiple training sets. Further-

more, it was noted that on the test sets, the error reduction achieved with

the FETT method closely mirrored that of the conventional event-based

method. This suggests that, while it may be feasible to identify a rela-

tively optimal extra truck travel time for a specific subset of data sets, this

value lacks broad generalizability. When the data set is changed, the error

rate escalates dramatically, underscoring the necessity for more adaptable,

learning-based approaches.

To further our exploration, we proposed the fixed intersection passing time

(Fixed Intersection Passing Time (FIPT)) method, anchored in the in-

tersection simulation framework elaborated in this paper. Like the FETT

method, the FIPT approach also leverages an exhaustive search but instead
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aims to identify a fixed intersection passing time that minimizes the average

error on the training set. Remarkably, this method demonstrates a signif-

icantly lower error rate on the test sets compared to the FETT method,

with an error rate of approximately 20%. This figure is comparable to the

error rate associated with the GP methods and is even slightly superior

to that of the AGP. These findings suggest that upon the introduction of

data-driven methodologies to learn intersection passing times, a relatively

satisfactory solution can be achieved, even with the utilization of a simple

exhaustive search method. This highlights the significance of simulating

intersections and employing data-driven approaches. Through continuous

testing on historical data, the exhaustive search method yielded a relatively

fine solution, thereby fully substantiating the efficacy of the data-driven,

learning-based simulation approach proposed in this study. Conversely,

the FIPT method also exhibited a considerable increase in error on the

training sets. This indicates that a fixed intersection passing time is not

a universal rule; it solely represents the knowledge derived from a specific

data set and does not constitute an abstract principle. This underlines the

importance of incorporating sophisticated algorithms like GP and RL to

learn the real-world dynamics of intersection passage.

After evaluating the impact of fixed extra travel time and fixed intersec-

tion passing time, we extended our comparative analysis to include three

state-of-the-art supervised learning methods: decision tree (Decision Tree

(DT)) (Myles et al., 2004), deep neural network (Deep Neural Network

(DNN)) (Montavon et al., 2018), and extreme gradient boosting (XG-

Boost) (Chen and Guestrin, 2016). These methods were applied using

the default settings in the sklearn framework (Pedregosa et al., 2011), with

hyper-parameter tuning performed through a 5-fold halving grid search

cross-validation method during training.
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Figure 5.9: Error and Simulation Time (seconds) of All Methods in Test

While we lack real-time data on truck intersection passing, we do pos-

sess comprehensive data on total travel time between work cranes. Conse-

quently, we employed these supervised learning algorithms to predict truck

travel time under various states. All algorithms were trained on a uni-

form dataset, utilizing state descriptors such as task type, container type,

total number of trucks operating under the current bridge crane, port-

bound truck count, target crane workload, historical average travel time,

and overall port truck count. The algorithms were trained using default

hyperparameters from the scikit-learn library, and their performance is tab-

ulated in Table 5.4. Both DT and DNN exhibited poor convergence on the

training set with approximately 20% error, while XGBoost outperformed

them with an error rate of roughly 5.5%. However, when transitioned to

the test set, all three algorithms displayed an error rate of about 30%,

comparable to the simple FETT and FIPT methods. Moreover, XGBoost

demonstrated significant performance degradation, indicative of overfitting

during training.

From these experiments, it becomes evident that predicting truck travel
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time solely based on current port operation states is inherently flawed,

especially in the absence of data on truck intersection passages. Despite

XGBoost’s initially promising training performance, it too falters on the

test set due to overfitting. This underscores the crucial role of incorporat-

ing intersection simulations for a more accurate representation of port truck

operations. Notably, even a rudimentary method like FIPT approximates

the performance of these supervised algorithms, attesting to the impor-

tance of intersection simulation in this context. Given the unavailability

of intersection-specific data, employing unsupervised learning approaches

in port truck dispatching simulation becomes indispensable, thereby justi-

fying our initial focus on data-driven unsupervised learning in intersection

simulation for more precise port simulation.

In the subsequent analysis, we plotted the simulation time and associated

error for the Traditional, AGP, LGP, RL, GPRL-H, FETT, FIPT, DT,

DNN, and XGBoost methods in Fig. 5.9. It is discernible from the graph

that RL and GPRL-H methods markedly outperform the other approaches

in terms of simulation error. Simultaneously, it is evident that each method

holds its unique advantages when optimizing the two key objectives - simu-

lation time and accuracy. Thus, in practical applications, decision-makers

can tailor their method to meet their specific requirements. Furthermore,

the graph underlines that the GPRL-H method attains a high degree of

simulation accuracy without significantly increasing simulation time. This

reinforces the superiority of the method introduced in this study, lending

further credence to its effectiveness in balancing simulation accuracy and

efficiency.

As a result of comprehensive experimental analysis, our research validates

the initial hypothesis that accurately predicting the truck transit times at

intersections plays a crucial role in the accuracy of simulation models. Fur-
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thermore, incorporating unsupervised learning techniques to model these

transit times significantly enhances the precision of the simulation. The

key findings of our study are summarized as follows:

• Experimental results substantiate the pivotal impact that truck tran-

sit times at intersections exert on the accuracy of simulation models.

• The inclusion of simple transit events in the simulation substantially

improves model accuracy, emphasizing the necessity of accurately

representing complex real-world conditions.

• Findings from using the FIPT method reveal the inherent complexity

of intersection passing rules, which simplistic temporal metrics cannot

capture.

• Traditional supervised learning methods, such as DT, DNN, and XG-

Boost, are inadequate for the precise prediction of truck travel times

in the absence of intersection considerations.

• The observed complexities validate the necessity for the employment

of unsupervised algorithms like GP and RL to decode intricate in-

tersection rules. This lends credence to the efficacy of a data-driven,

learning-based approach for addressing the challenges in container

port truck dispatch scenarios.

5.8 Summary

The role of intersection simulation in container port logistics is paramount,

critically shaping the precision of the final simulation outcomes. This re-

search underscores that harnessing data-driven, learning-based simulations
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brings about substantial advancements in the fidelity of intersection sim-

ulations, amplifying the operational efficiency of truck dispatch processes.

Given the intricate nature of intersection passing rules and their nuanced

impact on logistics, the application of cutting-edge machine learning al-

gorithms emerges as imperative for generating authentic and actionable

simulations.

Our analytical endeavors, encompassing a spectrum of learning-based tech-

niques like AGP, LGP, RL, GPRL-H, DT, DNN, and XGBoost, elucidate

the distinct prowess of the GPRL-H approach. By adeptly leveraging the

inherent problem structures, this methodology harmonizes the merits of

RL and GP. The outcome is a commendable synthesis of high simulation

accuracy and computational thriftiness, positioning GPRL-H as a premier

choice for confronting multifaceted intersection simulation challenges.

This investigation not only enriches the existing literature but also marks a

pivotal orientation in research ethos. It accentuates the latent potential of

data-driven and learning-centric methodologies in fine-tuning transporta-

tion simulation accuracy, extending well beyond the confines of port logis-

tics. The formidable versatility exhibited by the GPRL-H approach in our

empirical exercises forecasts its expansive utility across diverse vehicular

and equipment movement simulations. In our forward-looking endeavors,

we envision harnessing RL as a guiding force for the evolution of GP, in-

tending to engender more streamlined equation models for intersection sim-

ulations. This aligns with our aim of achieving swifter and more accurate

logistics simulations.

Furthermore, the incorporation of nuanced transit events unequivocally el-

evates the authenticity of the simulations. The empirical insights derived

from the FIPT method shine a spotlight on the intricate dynamics under-
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pinning intersection passing rules. A rudimentary time metric for intersec-

tion passage proves insufficient in encapsulating these dynamics. Even if

such a metric exhibits utility for a select data set, its efficacy wanes across

broader datasets owing to intrinsic temporal variances. This accentuates

the indispensability of sophisticated computational tools, particularly GP

and RL, in deciphering the labyrinth of intersection rules. In culmination,

our study robustly advocates for a data-driven, learning-augmented simula-

tion paradigm in addressing the myriad complexities inherent in container

port truck dispatch dilemmas.
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Chapter 6

Neural Networks Assisted

Methods in Dispatching

Strategy Refinement and

Evaluation Acceleration

In the evolving digital era, the prowess of neural networks and deep learn-

ing has undeniably reshaped the landscape of computational methodolo-

gies. Their unparalleled capabilities in learning intricacies and addressing

multifaceted problems have heralded a new dawn in myriad sectors. Yet,

their inherent ”black-box” nature, an obscurity that masks the internal

mechanics of their decision-making processes, has often posed challenges in

deriving intuitive interpretations. Such opacity has inevitably raised eye-

brows, limiting their ubiquitous implementation, especially in applications

demanding explicit rationale behind decisions.

One such critical domain is container port truck dispatching—a realm

where the imperatives of timeliness, decipherability, and efficacy converge.
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Given the magnitude of these requirements, it’s perhaps not surprising

that neural networks haven’t yet fully penetrated this space, despite their

evident computational supremacy.

Notably, GP revered for its innate transparency and robust generalizability,

has carved a niche for itself, becoming a preferred choice in such demanding

scenarios. Moreover, when juxtaposed with RL—a paradigm resembling

neural networks—it is evident that the amalgamation with GP acts as a

catalyst, enhancing RL’s efficiency.

However, it’s imperative to dispel the notion that the capabilities of neural

networks are orthogonal to the needs of container port truck dispatching.

Far from it. This chapter unravels how neural networks can be harmo-

niously integrated into this domain. By elucidating their application in

two pivotal facets of the container port truck dispatching conundrum, we

aim to illuminate the path for marrying computational rigor with practi-

cal exigencies, fostering a symbiotic coexistence between advanced neural

architectures and real-world logistical challenges.

The evolving landscape of computational intelligence is underpinned by

integrating diverse methodologies, each with its unique vantage point, con-

verging to address the multifaceted challenges of intricate problems. As

we navigate the complex domain of container port truck dispatching, the

utility of neural networks emerges as a potent force, particularly when jux-

taposed against the established prowess of GP.

In the realm of GP, its strength is undeniably anchored in its adeptness at

traversing vast solution spaces, illuminating potential solutions that might

remain elusive to more conventional techniques. However, it is not without

its constraints. The challenges encountered with GP are its relatively tepid

convergence rate in localized optimization scenarios and the occasional in-
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stability observed during post-evolutionary phases. Such phases can lead

to an undesirable genetic uniformity in the population, undermining the

rich diversity essential for robust evolutionary outcomes. This scenario

unveils a pivotal juncture where the capabilities of neural networks can

be seamlessly integrated. By leveraging their granularity in optimization,

neural networks can intricately refine the promising solutions identified by

GP. Moreover, as these neural architectures modify individual entities, they

pave the way for the genesis of novel genotypes, ensuring a diverse and vi-

brant genetic pool, and thus bolstering the overall quality of evolutionary

results.

Transitioning to the facet of creating and evaluating truck dispatching

strategies, the unique intricacies inherent to real-world operational sce-

narios necessitate reliance on simulators. An often underappreciated yet

critical determinant in this equation is the simulation speed, which directly

influences the efficacy of the truck dispatching strategies. While traditional

simulation methodologies offer robustness, they are frequently entangled in

many computational complexities, leading to extended evaluation periods.

This is where the intricate architectures of neural networks come to the fore.

With their innate ability to emulate diverse operational scenarios, they can

effectively assess the performance of myriad dispatching strategies. This

capability offers a dual advantage: not only do neural networks provide

insights that closely mirror real-world outcomes, but they also achieve this

in a fraction of the time required by conventional simulators.

Finally, it is imperative to underscore that the discourse surrounding the

potential interplay between neural networks and truck dispatching is still

nascent. The vast and dynamic terrain of this domain presents a plethora

of unexplored avenues and challenges. The synergistic melding of neural

networks with sophisticated dispatching paradigms heralds a new era, ripe
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REFINEMENT

for exploration and innovation, beckoning researchers to delve deeper, un-

earthing transformative strategies that promise to reshape the contours of

logistics and computational intelligence.

6.1 Neural Networks in Truck Dispatching

Strategy Refinement

6.1.1 Recurrent Neural Network

RNNs have been increasingly recognized for their ability to process se-

quence data, making them particularly suitable for producing heuristics in

dynamic dispatching (Klug et al., 2019).

Figure 6.1: RNN Workflow

Like GP, RNN also produces heuristics for truck dispatch, but it employs

a different representation. The RNN sequentially forms a heuristic, rep-

resented as a list using Polish notation. For instance, a LGP tree can

corresponds to [if else,≥, a, 5, ∗, b, c, 2]. As shown in Fig. 6.1, to generate

this list, the RNN calculates probabilities for choosing different operators
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and parameters, considering both parent and sibling nodes. A token is

then randomly selected based on these probabilities, leading to the step-

wise construction of the Polish notation, or heuristic. Logical operators

from the LGP framework have been integrated into the RNN model to

improve its performance. Additionally, the RNN model includes an ”End

Token,” which differs from other tokens. Once this token is encountered,

the RNN ceases generation. This specific token enables the RNN model

to produce subtrees, allowing for variable tree sizes instead of generating

exclusively full trees.

Commonly, an RNN is selected such that the parameters θ render the like-

lihood of an expression tractable, thereby enabling the back-propagation

of a differentiable loss function. For the ith token, denoted as τi, its likeli-

hood is conditionally independent given the preceding tokens τ1, ..., τ(i−1).

Therefore, p(τi|τj ̸=i, θ) = p(τi|τj<i, θ).

This study implements the RNN structure as informed by prior research

(Mundhenk et al., 2021), specifically adopting an auto-regressive RNN con-

stituted of a single-layer Long Short-Term Memory (LSTM) with 32 hid-

den nodes. Concurrently, the traditional Vanilla Policy Gradient (VPG)

method has been utilized to train the RNN in this research.

VPG employs the well-established reinforce rule, with training conducted

over the batch T . This results in the following loss function: L(θ) =

1
|τ |

∑
τ∈T (R(τ)− b)∇θlog(p(τ |θ)), where b is a baseline term or control vari-

ate, such as an exponentially-weighted moving average of fitness.

The fitness function used to train the RNN is defined as reward = (maxE−

minS)−∆cov(Or, Om), where maxE−minS represents port operation ef-

ficiency, ∆ is a weight factor set to one in this study, cov is a covariance

function, Or is the task ranking produced by RNN, and Om is the rank-
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ing given by the aforementioned manual heuristics. This function aims

to increase the dispatching efficiency of the RNN while also guiding the

RNN to mimic the learning of the manual heuristic, thus enhancing both

performance and convergence efficiency.

Our tests indicate that when used alone, the RNN does not provide op-

timal solutions to the port truck dispatching problem. This is due to its

difficulty in establishing an effective starting position for search, which re-

stricts the full potential of its excellent local search capabilities. To address

this issue, we propose the Neural Network Assisted Genetic Programming

(Neural Network Assisted Genetic Programming (NN-GP)) model which

promotes cooperative interaction between GP and RNN to enhance overall

performance.

6.1.2 Neural Network Assisted Genetic Programming

While both GP and RNN possess distinct advantages, their standalone ap-

plication also presents certain limitations. Consequently, we propose the

NN-GP approach in this section. This integrated method aims to amalga-

mate the strengths of both GP and RNN while simultaneously mitigating

their individual shortcomings.

Figure 6.2: NN-GP Framework
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The framework of the NN-GP model, as illustrated in Fig. 6.2, proceeds

as follows: Firstly, the RNN—initialed with random neural networks, both

logical and arithmetic operators, and feature parameters—follows the pro-

cedure depicted in Fig. 6.1 to construct N heuristics, which subsequently

act as the initial population for the forthcoming GP processes. According

to the findings in Mundhenk et al. (2021), optimal performance is typically

achieved when M is twice the size of N . Furthermore, the remainder of

the GP individuals are initialized using the traditional ramped half-and-

half method in this section. After K generations of training predicated on

this initial population, the GP yields M heuristics. The N heuristics ini-

tially generated by the RNN are then amalgamated with the M heuristics

derived from the GP. If the predetermined maximum number of training

generations is attained, the training process halts. Otherwise, the fitness

for each heuristic in the merged set is calculated. Subsequently, the RNN is

trained using these computed fitness values and the corresponding heuris-

tics. This training allows the RNN to continuously adjust the probability

distribution of its output across diverse inputs, thereby fostering the gen-

eration of improved heuristics. Following this step, the RNN generates N

new heuristics for the next cycle.

The hybrid NN-GP model presents several key advantages that bolster

both the efficacy of the training process and the quality of the solutions:

• Population Diversity: The integration of RNN enhances the diver-

sity of the GP populations, promoting a more efficient evolutionary

process.

• Local Search Capabilities: RNN augments GP with strong local

search capabilities. By effectively exploring the solution landscape

around promising areas identified by GP, RNN can uncover solutions
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that GP’s broader, population-based search might miss.

• Complementarity: GP and RNN complement each other, leading

to an improvement in the overall quality of the solution. GP’s apti-

tude for broad, population-based search is supplemented by RNN’s

expertise in refined local search, resulting in a comprehensive explo-

ration and exploitation of the solution space.

In summary, the NN-GP model harnesses the strengths of both GP and

RNN, culminating in a robust, efficient, and versatile tool for addressing

the dynamic truck dispatching problem.

6.1.3 Experiment and Discussion

This section is devoted to assessing the performance of AGP, LGP, RNN,

and NN-GP in addressing a complex container port dispatching problem

characterized by uncertain environmental parameters. These methods are

juxtaposed against the standalone GP and RNN method, with NN-GP ex-

emplifying the benefits derived from the collaboration of GP and RNN.

Furthermore, considering the stable performance and successful implemen-

tation of the manual heuristic, we opt to use it as a benchmark for com-

parison.

The environmental parameters, or GP/RNN terminals, used in this study

adhere to those defined in our previous research (Chen et al., 2022). A

total of 14 features—including truck travel time, the current number of

QC trucks, the number of waiting trucks, the number of remaining tasks,

and other pertinent characteristics—are utilized to depict the current op-

erational state of the container port. The GP features a population size of

1024, with crossover, mutation, and reproduction rates set at 60%, 30%,
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and 10%, respectively. The fitness function utilized within the GP is de-

noted by equation (1.4). All algorithms are subjected to 300 training gen-

erations, with the RNN’s learning rate fixed at 0.001. In alignment with

the NN-GP framework delineated in Fig.6.2 and following the guidance of

Mundhenk et al. (2021), K is established at 20, indicating the involvement

of RNN every 20 GP training iterations. M equals the GP population size

of 1024, and the N value is set at half of M , which is 512.

The datasets used in this experiment are the same as our previous research

(Chen et al., 2022), and were procured from historical operational data at

the Ningbo Port. The port scenario encompasses a single ship berth with

six QCs. The number of trucks is in accordance with the actual number of

working trucks during the data extraction period, varying between 24 and

48. Variables such as truck travel time and container load and unload times

are computed based on real operation time distributions, characterizing

them as uncertain variables.

Historical task data from different time periods were collected into 10 dis-

tinct sets, mirroring the diverse operational scenarios encountered at var-

ious times. Of these sets, half were employed for training purposes, while

the remaining half were reserved for testing. Each set for training or testing

contains 10 instances from the same time period, encompassing 200 tasks

comprising a mixture of loading and unloading operations. For each train-

ing instance, 100 independent runs were conducted with distinct random

seeds. The average training and testing results over these 300 runs for each

set are presented in Table 6.1.

Owing to the disparate benchmark performances on real data, we intro-

duce the improvement over the manual heuristic (Imp.) as a baseline, with

all subsequent comparisons illustrating the improvement over this baseline.
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Table 6.1: AGP, LGP, RNN and NN-GP Experiment Results (TEU/h)

Set No. Manual AGP LGP RNN NN-GP1NN-GP2

Train

1 106.87 114.37 122.70 106.19 116.37 126.15

2 118.91 125.18 131.36 123.64 129.25 134.78

3 114.27 122.81 125.98 117.65 124.59 128.21

4 121.48 131.68 135.59 122.15 132.96 143.49

5 116.88 126.47 125.92 119.93 134.49 138.37

Avg. 115.68 124.10 128.31 117.91 127.53 134.20

Imp. 0.00% 7.28% 10.92% 1.93% 10.24% 16.01%

Test

1 105.35 104.06 113.54 104.56 110.88 115.07

2 126.85 136.19 136.69 123.89 128.10 135.64

3 115.72 120.20 125.98 117.44 122.77 129.49

4 106.01 112.89 117.34 108.03 112.98 114.74

5 121.37 128.93 126.03 119.05 127.27 138.21

Avg. 115.06 120.46 123.92 114.59 120.40 126.63

Imp. 0.00% 4.69% 7.70% -0.41% 4.64% 10.06%
1 This refers to the pared-down version of NN-GP, which solely incorporates
the Arithmetic operators.

2 This refers to the comprehensive version of NN-GP, enriched with the inclu-
sion of the Logic operators.
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Experimental results indicate that LGP incorporating logical operators out-

performs AGP on training and test sets. Through a t-test on the exper-

iment (α = 0.001, p = 0.00), the full version of NN-GP further improves

performance compared to either GP or RNN alone, surpassing LGP by

5.09% and 14.08% on the training and test sets, respectively. Conversely,

RNN alone exhibits inferior performance, with only a 1.93% improvement

on the test set and even worse results than the artificial heuristic on the

test set. These findings suggest that both GP and RNN individually un-

derperform compared to NN-GP, indicating that NN-GP, by leveraging the

strengths of both RNN and GP, achieves enhanced performance and more

effectively addresses the dynamic port assignment problem.

To investigate the reasons behind NN-GP’s superior performance, we re-

moved the logical operators from the full NN-GP and observed a substan-

tial drop in performance. Although its performance on the training set was

similar to that of LGP, its test set performance deteriorated significantly,

resembling that of AGP. This highlights the contribution of incorporating

logical operators into NN-GP. In addition, we evaluated the impact of fit-

ness by employing a fitness function, fitness = (maxE − minS), which

solely considers the port work efficiency. The findings reveal that this mod-

ification led to an approximate decrease of 17% in the average performance

of both RNN and NN-GP. This observation underscores the efficacy of our

newly designed fitness function in accelerating the convergence speed of

RNN and NN-GP, whilst concurrently enhancing their performance.

In summary, the NN-GP model effectively integrates the strengths of RNN

and GP, demonstrating superior performance in both training and test

scenarios. It adeptly handles the intricacies of dynamic truck dispatch-

ing in multi-scenario ports, despite inherent uncertainties. Given its suc-

cessful application, the model shows considerable potential for extension
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to other dynamic transportation optimization problems, thus indicating a

wide scope for future applications.

6.1.4 Conclusion

In conclusion, this research introduces the novel NN-GP model, a combi-

nation of GP and RNN, to tackle the complex dynamic truck dispatching

problem. The combination of GP’s broad exploration of the solution space

and RNN’s superior local search capabilities ameliorates the limitations

of the standalone methodologies. Additional enhancements, such as the

integration of logic operators and the design of a new fitness function, fur-

ther expedite convergence speed and elevate the overall performance of the

NN-GP model.

Experimental results robustly attest to the effectiveness and efficiency of

the NN-GP approach. Compared to individual applications of GP, RNN,

and traditional dispatching methods, the NN-GP model exhibits supe-

rior performance and stability, particularly in complex, multi-scenario con-

tainer port dispatching problems characterized by uncertainty. The model’s

reusability and quick adaptability to new operating scenarios underscore

its potential for real-world implementation in dynamic environments.

While this study constitutes major progress in applying hybrid methodolo-

gies to logistical problems, future research could delve deeper into potential

enhancements to the NN-GP model. This could include the integration of

additional machine learning techniques or the creation of a more refined

fitness function, further expanding the model’s capabilities in addressing

dynamic and uncertain operational environments.
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6.2 Neural Networks in Truck Dispatching

Simulation Acceleration

6.2.1 Transformer Surrogate Model

The limitations inherent in conventional GP implementations, specifically

regarding the restricted number of evolutionary generations in unit time

and frequent converging failures, necessitate a more efficient approach to

evaluating individual fitness. To address this challenge, we introduce a

transformer surrogate model as a viable alternative to the traditional sim-

ulation based fitness evaluator.

Figure 6.3: Transformer Surrogate GP Framework

A transformer model, initially proposed for natural language processing

tasks (Vaswani et al., 2017), has demonstrated its versatility and efficacy

across various domains. In this study, the transformer model is a surrogate

for the conventional simulation, providing rapid and accurate evaluations

of GP individual candidates. As shown in Fig. 6.3, in the process of GP

evolving, all newly generated individuals have to go through the port truck

dispatching simulator to compute their fitness. Even though this part of

the work can be calculated in parallel using multi-threaded computation, it

still consumes many computational resources. Therefore, we propose to use

a transformer surrogate model instead of the port truck dispatching simu-
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lator to accelerate the GP training. The transformer model in the paper

follows the default model of the Transformers (Wolf et al., 2020a) except

for changing the expected and actual output to one double float. Accord-

ing to our experimental results, using the transformer surrogate model can

reduce the fitness computation time by more than 65% and is not affected

by the increased number of tasks.

For the training of the transformer surrogate model, we propose to use the

fitness data corresponding to the GP individual structure generated during

the GP evolution process to train the transformer directly so that it does

not need to consume time to produce data to prepare the transformer.

The training process of the transformer can be carried out simultaneously

with the GP evolution process, so in this paper, training the transformer

surrogate model does not increase the training time of the algorithm. The

transformer training process can be carried out simultaneously with the

GP evolution process, so in this paper, training the transformer surrogate

model does not increase the training time of the algorithm.

In addition, for the trained transformer surrogate model to perform well

on datasets with different operating environments and to eliminate the in-

terference of operating environments, the transformer surrogate model will

not directly output the same TEU/h data as the simulator but will instead

generate a number between 0 and 1, which represents the corresponding

size of the GP individual’s fitness. Once trained, the model estimates the

fitness of new GP individuals with a substantially reduced computational

cost.
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6.2.2 Transformer-Surrogate Genetic Programming

After constructing the transformer surrogate model, we integrate it with

GP to formulate the Transformer-Surrogate Genetic Programming (Transformer-

Surrogate Genetic Programming (TSGP)) algorithm. As delineated in Al-

gorithm 7, the evolutionary process of TSGP is carried out in multiple

stages. Initially, up to generation x, fitness values for GP individuals are

computed using a traditional simulator, while simultaneously training the

transformer surrogate model with the newly generated data. Subsequently,

for y generations, the fitness computation shifts to the transformer surro-

gate model. After this, the algorithm reverts to the simulator for z genera-

tions, updating the surrogate model in tandem. This loop continues unless

the termination criteria are met.

Algorithm 7 Transformer-Surrogate Genetic Programming Evolving

1: Initialize: GP Population, Transformer Surrogate Model
2: t← 0 ▷ Initialize training generation counter
3: while Training time or number of generations not reached do
4: if t < x then ▷ First x generations
5: Compute Fitness of GP individuals using Simulator
6: Update Transformer Surrogate Model with Individual - Fitness

Data
7: else if t mod (x + y + z) < x + y then ▷ Next y generations
8: Compute Fitness of GP individuals using Transformer Surrogate

Model
9: else ▷ Next z generations
10: Compute Fitness of GP individuals using Simulator
11: Update Transformer Surrogate Model with Individual - Fitness

Data
12: end if
13: Perform GP operations (Selection, Crossover, Mutation)
14: t← t + 1 ▷ Increment generation counter
15: end while

The hyperparameters x, y, and z can be adjusted based on the complexity

of the problem and the optimization goals. Our exploratory experiments

indicate that setting y to be ten times z results in improved performance.
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Additionally, x should ideally be greater than 100 to ensure sufficient data

for training the surrogate model. Consequently, this study empirically es-

tablishes these parameters at 100, 1000, and 10, respectively. Nonetheless,

determining the optimal hyperparameter settings for NN-GP remains a

critical issue, warranting in-depth investigation in future research.

Building upon TSGP, we extend the algorithm to TSGP*, an enhanced ver-

sion that leverages the trained transformer surrogate model for generating

a more effective initial population. Unlike the traditional ramped half-and-

half initialization method in standard GP, TSGP* employs a transformer

surrogate generator. As elaborated in Algorithm 8, this generator also

uses the ramped half-and-half technique to produce initial GP individu-

als. However, following their generation, the trained transformer surrogate

model is invoked to estimate their fitness values. Only those individuals

surpassing a fitness threshold f are retained. The value of f is a tunable

hyperparameter set to 0.5 in this study.

Algorithm 8 Transformer Surrogate Generator

1: Initialize: Empty GP Population, Transformer Surrogate Model
2: mcount ← 0 ▷ Initialize individual counter
3: f ← Fitness threshold
4: while mcount < m do ▷ Until m individuals are generated
5: individual← Generate GP tree using ramped half-and-half
6: fitness← Evaluate fitness using Transformer Surrogate Model
7: if fitness > f then
8: Add individual to GP Population
9: mcount ← mcount + 1

10: end if
11: end while

In the subsequent section, we shall empirically assess the efficacy of both

TSGP and TSGP* algorithms by applying them to a real-world case study

involving dynamic truck dispatching in container ports. This performance

evaluation will juxtapose multiple state-of-the-art methodologies, facilitat-

ing a comprehensive comparative analysis.
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6.2.3 Experiment and Discussion

This section is devoted to a comprehensive evaluation of a diverse array

of algorithms, specifically Data-Driven Genetic Programming (GP) (Chen

et al., 2020), Deep Reinforcement Learning Hyper-Heuristic (DRL-HH) (Zhang

et al., 2022), Neural Network Assisted Genetic Programming (NN-GP) (Chen

et al., 2023), TSGP, and TSGP*. The primary focus rests on elucidat-

ing the performance merits of TSGP and TSGP*, emphasizing the col-

laborative efficacy of amalgamating GP and transformer surrogate models.

Given its robust and empirically validated performance, the manual heuris-

tic (Chen et al., 2016) is the chosen benchmark for this comparative study.

The feature set used in this study, often termed GP terminals, closely fol-

lows the specifications outlined in our prior research (Chen et al., 2022). It

encompasses 14 distinctive features, such as truck travel time, the current

quantity of QC trucks, the number of trucks in waiting, and the remaining

task count, among other salient variables, to accurately portray the opera-

tional state of the container port at any given moment. The GP algorithm

is configured with a population size of 1024 and employs crossover, muta-

tion, and reproduction rates of 60%, 30%, and 10%, respectively. All the

algorithms in this study were subjected to a 10-hour training regimen.

The datasets leveraged in this experiment are consistent with those used

in our previous work (Chen et al., 2022), originating from historical oper-

ations at Ningbo Port. The experimental setup mimics a real-world single

ship berth featuring six QCs, with the number of trucks being variable

and reflecting the actual operational conditions, ranging between 24 and

48. Uncertain variables like truck travel time and container loading and

unloading times are modeled based on empirical distributions derived from

genuine operational data.
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For this study, historical task records were categorized into ten unique sets,

each representing a distinct operational scenario encountered at different

temporal intervals. Five of these sets were used for training, while the

remainder were for testing. Each training or testing set consists of ten

instances sourced from a similar time frame, incorporating 200 tasks that

include a blend of loading and unloading operations. Each training instance

was executed 100 times, employing different random seeds for each run.

A comprehensive summary of the average training and testing results is

provided in Table 6.2.

Table 6.2: GP, DRL-HH, NN-GP, TSGP and TSGP* Experiment Results
(TEU/h)

Set No. Manual GP DRL-HH NN-GP TSGP TSGP*

Train

1 106.87 118.76 117.17 117.84 122.05 130.84

2 126.85 133.84 139.85 145.21 147.99 149.01

3 114.27 120.76 127.00 126.14 132.30 134.36

4 106.31 113.78 112.91 117.14 123.55 122.31

5 116.88 129.17 125.75 132.60 133.90 136.91

Avg. 114.236 123.26 124.53 127.79 131.96 134.68

Imp. 0.00% 7.90% 9.02% 11.86% 15.51% 17.90%

Test

1 105.87 113.05 115.01 111.19 118.70 119.46

2 118.91 125.93 126.59 134.01 135.50 133.47

3 115.72 122.58 124.48 126.06 133.81 133.78

4 121.48 130.10 132.59 134.92 135.93 139.37

5 117.25 120.63 125.28 127.15 135.72 132.23

Avg. 115.846 122.46 124.79 126.67 131.93 131.66

Imp. 0.00% 5.71% 7.73% 9.34% 13.89% 13.65%

In light of varying benchmark performances observed in real-world data, we

introduce the Improvement over the Manual Heuristic (Imp.) as a reference

baseline. All subsequent performance metrics are framed as improvements

over this established baseline. A t-test conducted on the experimental out-

comes (α = 0.001, p = 0.00) substantiates that the fully realized TSGP
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and TSGP* variant exhibits notable performance enhancements over GP,

DRL-HH, and NN-GP counterparts—registering an improvement of ap-

proximately 7%, 5%, and 3% on the training and test sets, respectively.

Notably, the TSGP model demonstrates negligible performance degrada-

tion when transitioning from training to test sets. This underscores TSGP’s

robustness and effective generalization capabilities, rendering it highly ap-

plicable to previously unseen datasets.

To explore TSGP’s capabilities further, we assessed TSGP*, a variant that

integrates a transformer-based surrogate GP generator. TSGP* is designed

to outperform its predecessor by utilizing a surrogate model to select the

initial GP population, theoretically enhancing its quality and efficacy. How-

ever, while TSGP* demonstrates improved performance on the training set,

its effectiveness diminishes on the test set, suggesting an overfitting issue.

This problem arises because the surrogate model, trained on the training

data, tends to favor individuals that excel on the training data, thereby

reducing the genetic diversity of the GP population and adversely affecting

test performance.

This outcome underscores the need for further research to address TSGP*’s

overfitting challenge. One potential solution could involve introducing a

more diverse range of GP individuals during TSGP*’s evolution process

to mitigate the diversity shortfall. Future research could delve deeper into

the utilization of surrogate models for initializing GP populations. This

area holds significant promise for enhancing the efficiency and effectiveness

of genetic programming by potentially streamlining the selection of high-

quality initial individuals after handling the overfitting problem.

In conclusion, the TSGP framework adeptly amalgamates the strengths

of both the transformer and GP paradigms, showcasing superior perfor-
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mance in varied training and testing conditions. The model addresses the

high simulation cost inherent in dynamic truck dispatching across multi-

scenario ports, even amidst uncertainties. Given its successful implementa-

tion, TSGP holds substantial promise for broader applications in dynamic

transportation optimization problems, opening up a wide avenue for future

research endeavors.

6.2.4 Conclusion

This study introduces the TSGP approach, a groundbreaking methodology

that addresses the computational inefficiencies in traditional GP applied to

truck dispatching in container ports. By employing a transformer model

as a surrogate evaluator during the fitness calculation stage, TSGP not

only drastically reduces the algorithmic training time but also enhances

the performance of GP. The transformer model further serves a dual role

by generating optimized initial populations for GPs, demonstrating a syn-

ergistic integration of the computational strengths of transformer models

with the heuristic search capabilities of GPs.

Our empirical results confirm the efficacy of TSGP, especially its ability to

significantly accelerate the training process while maintaining or improving

operational efficiency. The transformer model effectively learns to approxi-

mate the fitness landscape of the GP, thereby streamlining the evolutionary

process. However, while TSGP and TSGP* showed robust performance in

both training and testing scenarios, some challenges related to initial pop-

ulation diversity in our extended model, TSGP*, indicate directions for

future research.

In summary, the TSGP approach marks a substantial advance in container
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port optimization, particularly in truck dispatching systems. By marrying

the capabilities of transformer models and GPs, we open new avenues for

applying machine learning techniques in operational logistics and beyond.

The demonstrated success of TSGP and TSGP* sets the stage for their

broader application across various domains where computational efficiency

and effective heuristic search are critical.

6.3 Summary

In this chapter, we have embarked on an enlightening journey through

the intersection of intricate logistical problems and state-of-the-art compu-

tational methodologies. Through this exploration, two promising models

emerge, namely the NN-GP model and the TSGP approach, both tailored

to address the dynamic truck dispatching problem in container ports.

The NN-GP model represents a harmonious fusion of GP and RNN. By

capitalizing on the extensive solution space exploration capabilities of GP

and the nuanced local search prowess of RNN, the NN-GP model success-

fully overcomes the limitations inherent to each methodology when applied

in isolation. Augmenting this combination is the integration of logic op-

erators and the innovative design of a new fitness function, both of which

significantly bolster the convergence speed and the model’s overall effi-

cacy. On the other hand, the TSGP approach, while bearing its roots in

GP, introduces a transformative change by harnessing the computational

strengths of transformer models. These models not only accelerate the GP

training process but also function as invaluable tools in generating opti-

mized initial populations for GPs, embodying a seamless amalgamation of

heuristic search with cutting-edge machine-learning capabilities.
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Empirical evaluations conducted during this study provide compelling evi-

dence supporting the robustness, efficiency, and adaptability of both mod-

els. In juxtaposition with traditional dispatching methods, standalone GP,

and RNN applications, the NN-GP model and the TSGP approach con-

sistently demonstrate superior performance, stability, and resilience, espe-

cially in intricate, multi-scenario container port dispatching environments

riddled with uncertainties. The models’ ability to rapidly acclimatize to

evolving operating scenarios further solidifies their prospects for deploy-

ment in real-world, dynamic logistical settings.

However, the journey of exploration is seldom without challenges. While

the TSGP and its extended version, TSGP*, have shown commendable

results in diverse scenarios, issues related to initial population diversity in

TSGP* furnish cues for subsequent research endeavors.

In synthesizing the insights from both models, it becomes palpable that the

convergence of advanced machine learning techniques with heuristic algo-

rithms heralds a promising frontier in logistical optimization. The successes

delineated by the NN-GP and TSGP models underscore the vast potential

of such hybrid methodologies in reshaping the future of operational logistics

and computational intelligence.

Regarding the interpretability of the learned models, RNN and Trans-

former models are inherently challenging to interpret due to their reliance

on complex deep neural network architectures. Despite their effectiveness,

both models lack straightforward interpretability. Conversely, the TSGP

and NN-GP methods introduced in this chapter are more comprehensible,

thanks to their integration with the inherently interpretable GP method.

This fusion of machine learning models with GP, an interpretable meta-

heuristic approach, offers innovative pathways for developing interpretable
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AI solutions.

As we conclude this chapter, we remain optimistic about the potential

extensions, refinements, and broader applications of these models, confident

that they will continue to pave the way for breakthroughs in domains where

efficiency, adaptability, and innovation are paramount.
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Chapter 7

Conclusion and Future Work

As we draw this thesis close, we must revisit our journey, delving into

the myriad applications of machine learning within container port truck

dispatching. From its outset, this research explored how machine learn-

ing, with a particular focus on Genetic Programming, can be harnessed to

reimagine and optimize processes within the intricate tapestry of port oper-

ations. Our narrative has spanned from enhancing operational efficiency at

ports and augmenting the accuracy of simulations to the strategic deploy-

ment of neural networks for truck dispatching, demonstrating the extensive

applicability of machine learning across diverse port functionalities.

Given the unique characteristics and demands of real-world port envi-

ronments, this thesis emphasized GP methodologies inspired by decision

trees to address truck dispatching dilemmas. While exhibiting potential

for widespread adoption, such an approach undeniably encounters perfor-

mance constraints. However, it’s imperative to recognize the transforma-

tive combination birthed when GP is fused with various advanced machine

learning techniques. By integrating methods such as Ensemble Learning,

Reinforcement Learning, Recurrent Neural Networks, and Transformers,
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the revamped GP retains its merits of interpretability and computational

efficiency and experiences a significant elevation in its performance metrics

for truck dispatching problems.

This concluding chapter aims to encapsulate the entirety of the thesis,

offering a synthesized overview of the content and spotlighting the semi-

nal contributions made. It is designed to reflect coherently on the strides

taken, challenges encountered, and knowledge advanced. Beyond merely

cataloging the achievements, this chapter will underscore the limitations

observed and pave the way by outlining potential directions for future re-

search.

When aligning our retrospective gaze with prospective aspirations, we in-

tend to validate this research’s endeavors and position it as a foundational

stepping stone, inspiring further academic and industry-driven inquiries

into the expansive domain of machine learning-infused container port op-

erations.

In this landscape of rapid technological advancements, the potent amal-

gamation of machine learning methods and logistical operations emerges

as both an opportunity and a necessity. The port industry, characterized

by its dynamic environment and the ever-present imperative for efficiency,

provides a fertile ground for such interdisciplinary explorations. Having

charted the course of this intricate fusion over the preceding chapters, we

find ourselves poised to distill the essence of our findings and their impli-

cations for academia and industry.
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7.1. SUMMARY OF THE STUDY

7.1 Summary of The Study

As the world of port logistics pivots toward ever-increasing efficiency and

throughput, this thesis embodies that transformative aspiration. This ex-

tensive investigation was borne from recognizing a quintessential challenge:

synchronizing containerized freight’s burgeoning demands with global ports’

intricate operational capabilities. The research trajectory charted here

sought to merge the frontiers of multiple disciplines, thus providing an

interdisciplinary vista into the realm of container port operations.

At the heart of this research lies the crucial operation of container truck

dispatching. Recognizing its significance, we embarked on a journey to un-

derstand, enhance, and optimize the strategies that govern this essential

function. The container truck, as this thesis illustrates, isn’t merely a ve-

hicle—it’s a conduit that bridges the vast infrastructural expanse of a port

with the relentless rhythm of global trade. Therefore, the efficiency with

which it operates has ripple effects, impacting everything from economic

viability to the entire port’s work efficiency.

The cornerstone of our approach involved the innovative fusion of tradi-

tional logistical know-how with cutting-edge machine learning methodolo-

gies. We ventured beyond the conventional, transitioning from manual

crafted heuristic methods that have traditionally dominated the domain to

advanced algorithmic paradigms, notably Genetic Programming and Rein-

forcement Learning. This evolution represents not just a technological ad-

vancement but a paradigm shift. By harnessing the power of these machine

learning techniques, the research unveiled the potential for automatically

curating dispatching strategies that are both efficient and adaptable.

One of the salient features of our exploration was its adaptability. Tra-
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ditional heuristic methods, despite their provenance, are inherently rigid.

They often lean heavily on the expertise of seasoned professionals, whose

invaluable insights are not always scalable or adaptable to every nuanced

change in the operational context. Our foray into machine learning tran-

scended this limitation. The resultant methodologies exhibited a versatility

that was hitherto uncharted. They demonstrated an ability to leverage vast

and intricate data patterns, synthesizing them into suitable dispatching

strategies for various scenarios.

Additionally, our study addressed the complex task of simulating port traf-

fic environments, particularly in scenarios where GPS data may be impre-

cise. By merging the self-learning attributes of GP and RL, the fidelity of

truck dispatching simulation in sparse data scenarios was notably enhanced,

especially at intersections within the harbor. Incorporating transformer-

based techniques in our research marked a significant advancement in sim-

ulation accuracy and speed. This not only paved the way for devising

strategies that are efficient but also remarkably precise.

Beyond the technical and operational dimensions, the research also illumi-

nated the broader impacts of optimized dispatching. The study enriched

the discourse on port logistics by mapping the intricate correlations between

efficient dispatching, judicious resource utilization, sustainability, and over-

all operational throughput. This wasn’t just about moving containers more

swiftly; it was about understanding how every operational enhancement

resonated across the economic, environmental, and organizational fabric of

port operations.

The thesis represented a synthesis of insights from various fields: com-

puter science, operations research, industrial engineering, and environmen-

tal studies. It offered a kaleidoscopic view into the world of port operations,
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capturing its multifaceted challenges and presenting algorithmic solutions

that were efficient, sustainable, and environmentally conscious.

In this thesis, we emphasized solutions applicable to real-world scenarios

and introduced the use of GP to generate interpretable heuristics resem-

bling manual heuristic decision trees to address the problem. This ap-

proach met the requirements for interpretability in practical port operation

settings and enabled swift dispatching during equipment downtime. Ad-

dressing the generalization limitations of heuristic methods, such as average

performance and weak adaptability to different environments, we proposed

various structures combining GP with GP, GP with RL, and GP with

(NN. While retaining the advantages of GP-based heuristics, these struc-

tures substantially enhanced their performance, presenting new directions

for optimizing container port truck dispatching and other multifaceted sce-

narios.

On another front, we introduced learning-based methods for intersection

simulation to address the accompanying port simulation challenges in con-

tainer port truck dispatching. This significantly improved the accuracy of

port simulations. Furthermore, we proposed using the Transformer archi-

tecture to construct surrogate models, accelerating port simulations and

achieving commendable results.

The research journey, organized meticulously across multiple chapters, started

with an extensive literature review, encapsulating the existing body of

knowledge on container port logistics, dispatching, and the burgeoning role

of machine learning. Subsequent chapters delved deep into specific method-

ologies, from Genetic Programming to Reinforcement Learning, exploring

their implications, methodologies, and contributions. The narrative culmi-

nated in a comprehensive conclusion, synthesizing the multifarious insights
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gleaned and paving the way for future explorations.

In summation, this study stands as a testament to the transformative po-

tential of interdisciplinary research. It pushed the boundaries of what’s

possible in container port logistics and forged new pathways, intertwining

machine learning, environmental sustainability, and operations research.

The thesis has contributed profoundly to academic discourse and real-world

operational paradigms in port logistics through its nuanced exploration of

container truck dispatching and its broader implications.

7.2 Contributions to The Field

The port logistics and operations sphere has been an evolving area of study,

with constant strides made toward improving efficiency, sustainability, and

overall operational excellence. This research has aimed to add to this col-

lective body of knowledge and carve out new avenues and perspectives that

could redefine paradigms in container port operations. The contributions

to the field from this research can be delineated as follows:

Innovative Integration of Machine Learning: While introducing technol-

ogy into port operations isn’t novel, this thesis heralds the seamless and

pioneering integration of advanced machine learning methodologies into

the domain of container truck dispatching. The research has established a

new standard for automated, adaptive, and efficient dispatching strategies

by leveraging Genetic Programming, Reinforcement Learning, and other

algorithmic paradigms.

Reimagining Traditional Methods: By juxtaposing traditional heuristic ap-

proaches with machine learning techniques, this study has highlighted the
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limitations of relying solely on manual strategies and the advantages of al-

gorithmic ones. This comparison is a blueprint for future research and prac-

tical implementations, promoting a shift towards more automated, data-

driven methods.

Enhanced Simulation Techniques: One of the standout contributions has

been the innovative use of learning-based methodologies for simulating port

traffic environments. This advancement has addressed the lacunae in pre-

vious simulation methods, especially in contexts where precise GPS data

might be limited, thereby improving the accuracy of formulating dispatch-

ing strategies. Moreover, the transformer-based model presented in this

thesis demonstrated how neural networks can enhance simulation speed.

Holistic Operational Insights: This research extends beyond technical achieve-

ments to comprehensively understand how operational efficiency and re-

source utilization are interconnected. The explainability of the GP-generated

model offers operators a new avenue for gaining insights, moving beyond

traditional methods. This approach illuminates alternative strategies for

understanding port operations, emphasizing the value of learning from

machine-generated models.

Interdisciplinary Combination: By amalgamating insights from computer

science, industrial engineering, operations research, and environmental stud-

ies, the thesis has emphasized the importance and potential of interdisci-

plinary research in port logistics. This cross-disciplinary approach stands

as a template for future studies, advocating for a comprehensive perspective

when addressing challenges in the field.

Impact on Organizations: The methodologies proposed in this thesis sig-

nificantly impact port operations in various aspects. Port operations have

become more intelligent by integrating machine learning and metaheuristic-
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based dynamic dispatching approaches. This advancement aids ports in

achieving an intelligent transformation, effectively utilizing the data gener-

ated during port production activities. It reduces the excessive reliance on

experienced operators, decreases the workload on operators, and enhances

operational efficiency in port settings.

Explainable Decision Process: Unlike traditional machine learning methods

that rely on deep neural networks and carry the stigma of being ”black-

box” and uninterpretable, the hybrid machine learning approaches using

GP proposed in this thesis do not suffer from these drawbacks. Even when

combined with inherently uninterpretable models such as RNNs, RL, and

transformers, the GP-based methods retain a degree of interpretability.

This feature is indispensable in practical applications where decisions must

be substantiated and traceable. GP-based approaches enable the identi-

fication of the rationale behind each decision, allowing for the tracing of

errors when incorrect decisions are made. This capability ensures that sim-

ilar issues can be avoided, making these methods particularly valuable for

operational transparency and accountability.

In conclusion, this research has bequeathed the field of port logistics with

groundbreaking methodologies, fresh perspectives, and a new direction.

The insights derived have the potential to revolutionize operational paradigms,

enhance economic viability, and foreground environmental sustainability,

making this study a pivotal addition to the ever-evolving discourse on port

operations and logistics.
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7.3 Limitations and Future Research Direc-

tions

While pushing the boundaries of existing knowledge, every research comes

with its own set of limitations and opens doors to potential avenues of

future exploration. Reflecting upon the journey undertaken in this thesis,

several limitations and prospective directions for future research can be

identified.

Limitations: Data Constraints: The machine learning methodologies im-

plemented in this study are contingent upon substantial and representative

data availability. While the models demonstrated effectiveness, their accu-

racy and adaptability are bound to the quality and comprehensiveness of

the data fed into them.

Generalizability: While tested in specific operational scenarios, the method-

ologies may not guarantee uniform performance across all ports globally.

Factors like regional regulations, varying levels of technological adoption,

and cultural differences in port operations might affect the applicability of

findings.

Algorithmic Complexity: Advanced machine learning techniques, particu-

larly Genetic Programming and Neural Networks, can introduce computa-

tional complexities. There might be operational scenarios where real-time

decision-making is crucial, and these complexities could introduce delays.

Interdisciplinary Challenges: While the interdisciplinary approach is a strength,

it also introduces challenges. The amalgamation of insights from multiple

disciplines means that not all nuances of each discipline may have been ex-

plored in-depth, potentially leaving some aspects superficially addressed.
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Future Research Directions: Expand Data Horizons: Future research could

focus on aggregating and analyzing a more diverse dataset, possibly incor-

porating real-time data streams from ports across different global regions.

This could help refine machine learning models further and enhance their

global applicability.

Hybrid Models: There’s potential in exploring hybrid machine learning

models, combining strengths of different algorithms to offset individual

limitations and ensuring faster and more accurate decision-making.

Operational Contexts: Extending the application of these methodologies

to different operational contexts within the port logistics domain, such

as warehousing, inventory management, or customs clearance, can be an

intriguing avenue.

Environmental Impact Analysis: Given the increasing emphasis on sus-

tainability, a more detailed exploration of the environmental impacts of

optimized dispatching and port operations would be invaluable.

Technological Integration: With the emergence of technologies like the In-

ternet of Things (Internet of Things (IoT)) and 5G connectivity, future

research could further explore how these can be integrated with machine

learning methodologies to enhance real-time data collection and decision-

making in port operations.

Human Factor Analysis: It would be enlightening to assess the impact

of these automated and optimized dispatching strategies on the human

workforce in ports regarding labor dynamics and training requirements.

Significance Analysis: In the experiments, the t-test was used for signifi-

cance testing without analyzing whether the results conform to a normal

distribution. The effectiveness of the t-test may be compromised with data
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that do not follow a normal distribution. Verifying the normality of the

data before selecting the appropriate method could enhance the persua-

siveness.

In summation, while this thesis has made significant strides in the domain

of container port logistics, the journey is by no means concluded. The lim-

itations acknowledged provide a grounding perspective, ensuring that the

research remains connected to practical realities. Simultaneously, the out-

lined future research directions illuminate the path forward, ensuring that

the momentum achieved herein propels the field toward further innovation

and excellence.
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Drake, J. H., Kheiri, A., Özcan, E., and Burke, E. K. (2020). Recent ad-

vances in selection hyper-heuristics. European Journal of Operational

Research, 285(2):405–428.

Ebner, M. (1999). On the search space of genetic programming and its rela-

tion to nature’s search space. In Proceedings of the 1999 Congress on

Evolutionary Computation-CEC99 (Cat. No. 99TH8406), volume 2,

pages 1357–1361. IEEE.

Ecer, F., Ardabili, S., Band, S. S., and Mosavi, A. (2020). Training multi-

layer perceptron with genetic algorithms and particle swarm optimiza-

tion for modeling stock price index prediction. Entropy, 22(11):1239.

213



Elhenawy, M., Chen, H., and Rakha, H. A. (2014). Dynamic travel time

prediction using data clustering and genetic programming. Transporta-

tion Research Part C: Emerging Technologies, 42:82–98.

Elshaikh, A., Salhi, S., Brimberg, J., Mladenović, N., Callaghan, B., and
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Juan, A. A., Faulin, J., Pérez-Bernabeu, E., and Domı́nguez, O. (2013).

Simulation-optimization methods in vehicle routing problems: a liter-

ature review and an example. In Modeling and Simulation in Engi-

216



neering, Economics, and Management: International Conference, MS

2013, Castellón de la Plana, Spain, June 6-7, 2013. Proceedings, pages

115–124. Springer.

Kaveshgar, N. and Huynh, N. (2015). A genetic algorithm heuristic for

solving the quay crane scheduling problem with time windows. Mar-

itime Economics & Logistics, 17(4):515–537.

Keceli, Y. (2016). A simulation model for gate operations in multi-purpose

cargo terminals. Maritime Policy & Management, 43(8):945–958.

Khayyam, H., Jamali, A., Assimi, H., and Jazar, R. N. (2020). Genetic

programming approaches in design and optimization of mechanical

engineering applications. Nonlinear Approaches in Engineering Ap-

plications: Automotive Applications of Engineering Problems, pages

367–402.

Khorasgani, H., Wang, H., and Gupta, C. (2020). Challenges of applying

deep reinforcement learning in dynamic dispatching. arXiv preprint

arXiv:2011.05570.

Kim, K. H. and Park, Y.-M. (2004). A crane scheduling method for

port container terminals. European Journal of operational research,

156(3):752–768.

Klug, N., Chauhan, A., V, V., and Ragala, R. (2019). k-rnn: Extending

nn-heuristics for the tsp. Mobile Networks and Applications, 24:1210–

1213.

Koza, J. R. (1994). Genetic programming ii: Automatic discovery of

reusable subprograms. Cambridge, MA, USA, 13(8):32.

Kumari, S. (2021). Interplay of ai-driven maritime logistics: An in-depth

research into port management, advanced operations automation, and

217



crm integration for optimized performance and efficiency. ESP Journal

of Engineering and Technology Advancements, 1(1):1–5.

Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algo-

rithms. John Wiley & Sons.

Kuzmicz, K. A. and Pesch, E. (2019). Approaches to empty container

repositioning problems in the context of eurasian intermodal trans-

portation. Omega, 85:194–213.

Lai, K. and Lam, K. (1994). A study of container yard equipment allo-

cation strategy in hong kong. International Journal of Modelling and

Simulation, 14(3):134–135.

Lai, K. and Leung, J. (2000). Analysis of gate house operations in a con-

tainer terminal. International Journal of Modelling and Simulation,

20(1):89–94.

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. (2021). Sunrise: A simple

unified framework for ensemble learning in deep reinforcement learn-

ing. In International Conference on Machine Learning, pages 6131–

6141. PMLR.

Li, K. X., Luo, M., and Yang, J. (2012). Container port systems in china

and the usa: a comparative study. Maritime Policy & Management,

39(5):461–478.

Liu, J., Bai, R., Lu, Z., Ge, P., Aickelin, U., and Liu, D. (2020). Data-

driven regular expressions evolution for medical text classification us-

ing genetic programming. In 2020 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8. IEEE.

Lu, H.-A. and Jeng, J.-Y. (2006). Modeling and solution for yard truck

218



dispatch planning at container terminal. In Operations Research Pro-

ceedings 2005, pages 117–122. Springer.

Ma, X., Li, X., Zhang, Q., Tang, K., Liang, Z., Xie, W., and Zhu, Z.

(2018). A survey on cooperative co-evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 23(3):421–441.

Maturana, J., Lardeux, F., and Saubion, F. (2010). Autonomous opera-

tor management for evolutionary algorithms. Journal of Heuristics,

16:881–909.

Mei, Y., Chen, Q., Lensen, A., Xue, B., and Zhang, M. (2022). Explain-

able artificial intelligence by genetic programming: A survey. IEEE

Transactions on Evolutionary Computation.

Mi, W. and Liu, Y. (2022). Smart port and artificial intelligence. In Smart

Ports, pages 81–98. Springer.

Mirzaei-Nasirabad, H., Mohtasham, M., Askari-Nasab, H., and Alizadeh,

B. (2023). An optimization model for the real-time truck dispatching

problem in open-pit mining operations. Optimization and Engineering,

pages 1–25.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-

stra, D., and Riedmiller, M. (2013). Playing atari with deep reinforce-

ment learning. arXiv preprint arXiv:1312.5602.

Montavon, G., Samek, W., and Müller, K.-R. (2018). Methods for interpret-

ing and understanding deep neural networks. Digital signal processing,

73:1–15.

Moros-Daza, A., Amaya-Mier, R., and Paternina-Arboleda, C. (2020). Port

community systems: A structured literature review. Transportation

Research Part A: Policy and Practice, 133:27–46.

219



Moyano, J. M. and Ventura, S. (2022). Auto-adaptive grammar-guided

genetic programming algorithm to build ensembles of multi-label clas-

sifiers. Information Fusion, 78:1–19.

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P., Fais-

sol, D. M., and Petersen, B. K. (2021). Symbolic regression via

neural-guided genetic programming population seeding. arXiv preprint

arXiv:2111.00053.

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., and Brown, S. D.

(2004). An introduction to decision tree modeling. Journal of Chemo-

metrics: A Journal of the Chemometrics Society, 18(6):275–285.

Nguyen, S., Mei, Y., and Zhang, M. (2017). Genetic programming for

production scheduling: a survey with a unified framework. Complex

& Intelligent Systems, 3(1):41–66.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2012). A com-

putational study of representations in genetic programming to evolve

dispatching rules for the job shop scheduling problem. IEEE Transac-

tions on Evolutionary Computation, 17(5):621–639.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2013). Automatic

design of scheduling policies for dynamic multi-objective job shop

scheduling via cooperative coevolution genetic programming. IEEE

Transactions on Evolutionary Computation, 18(2):193–208.

Nievergelt, J. (2000). Exhaustive search, combinatorial optimization and

enumeration: Exploring the potential of raw computing power. In

Sofsem, pages 18–35. Springer.

Pardalos, P. and Romeijn, E. (2002). Handbook of global optimization-

volume 2: Heuristic approaches.

220



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

et al. (2011). Scikit-learn: Machine learning in python. the Journal of

machine Learning research, 12:2825–2830.

Perkis, T. (1994). Stack-based genetic programming. In Proceedings of the

First IEEE Conference on Evolutionary Computation. IEEE World

Congress on Computational Intelligence, pages 148–153. IEEE.

Pillay, N. and Qu, R. (2018). Hyper-heuristics: theory and applications.

Springer.

Pluhacek, M., Senkerik, R., Viktorin, A., Kadavy, T., and Zelinka, I.

(2018). A review of real-world applications of particle swarm optimiza-

tion algorithm. AETA 2017-Recent Advances in Electrical Engineering

and Related Sciences: Theory and Application, pages 115–122.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE

Circuits and systems magazine, 6(3):21–45.

Potter, M. A. and Jong, K. A. D. (2000). Cooperative coevolution: An ar-

chitecture for evolving coadapted subcomponents. Evolutionary com-

putation, 8(1):1–29.

Qin, S., Pi, D., Shao, Z., and Xu, Y. (2022). A cluster-based cooperative

co-evolutionary algorithm for multiobjective workflow scheduling in a

cloud environment. IEEE Transactions on Automation Science and

Engineering.

Qin, W., Zhuang, Z., Huang, Z., and Huang, H. (2021). A novel reinforce-

ment learning-based hyper-heuristic for heterogeneous vehicle routing

problem. Computers & Industrial Engineering, 156:107252.

221



Rajendran, S. (2021). Real-time dispatching of air taxis in metropolitan

cities using a hybrid simulation goal programming algorithm. Expert

Systems with Applications, 178:115056.

Remde, S., Cowling, P., Dahal, K., Colledge, N., and Selensky, E. (2012).

An empirical study of hyperheuristics for managing very large sets

of low level heuristics. Journal of the operational research society,

63(3):392–405.

Rodrigue, J.-P. and Notteboom, T. (2009). The terminalization of supply

chains: reassessing the role of terminals in port/hinterland logistical

relationships. Maritime Policy & Management, 36(2):165–183.

Ryser-Welch, P. and Miller, J. F. (2014). A review of hyper-heuristic frame-

works. In Proceedings of the evo20 workshop, aisb, volume 2014.

Sarmiento, M. G. C., Epprecht, E. K., Oliveira, F. L. C., Rodrigues, A.

T. S., and Canchumuni, S. W. A. (2019). The use of simulation to

model the dispatch of inbound containers in port terminals. Pesquisa

Operacional, 39:155–175.

Schonfeld, P. and Sharafeldien, O. (1985). Optimal berth and crane com-

binations in containerports. Journal of waterway, port, coastal, and

ocean engineering, 111(6):1060–1072.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.

(2017). Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347.

Sha, M., Zhang, T., Lan, Y., Zhou, X., Qin, T., Yu, D., and Chen, K.

(2017). Scheduling optimization of yard cranes with minimal energy

consumption at container terminals. Computers & Industrial Engi-

neering, 113:704–713.

222



Sislioglu, M., Celik, M., and Ozkaynak, S. (2019). A simulation model

proposal to improve the productivity of container terminal operations

through investment alternatives. Maritime Policy & Management,

46(2):156–177.

Sobania, D. (2021). On the generalizability of programs synthesized by

grammar-guided genetic programming. In European Conference on

Genetic Programming (Part of EvoStar), pages 130–145. Springer.

Song, D. (2021). A literature review, container shipping supply chain:

Planning problems and research opportunities. Logistics, 5(2):41.

Song, D.-P., Li, D., and Drake, P. (2015). Multi-objective optimization for

planning liner shipping service with uncertain port times. Transporta-

tion Research Part E: Logistics and Transportation Review, 84:1–22.

Song, Y., Suganthan, P. N., Pedrycz, W., Ou, J., He, Y., Chen, Y., and

Wu, Y. (2023). Ensemble reinforcement learning: A survey. Applied

Soft Computing, page 110975.
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