

Regression Test Case Prioritization by Code

Combinations Coverage

Rubing Huang, Quanjun Zhang, Dave Towey,

Weifeng Sun, Jinfu Chen

Faculty of Science and Engineering, University of Nottingham Ningbo

China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.

First published 2020

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence-2.0.pdf

http://creativecommons.org/licenses/by/4.0

Regression Test Case Prioritization by Code Combinations Coverage

Rubing Huanga,∗, Quanjun Zhangb, Dave Toweyc, Weifeng Sunb, Jinfu Chenb

aSchool of Computer Science and Communication Engineering, and Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace,
Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China

bSchool of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
cSchool of Computer Science, The University of Nottingham Ningbo China, Ningbo, Zhejiang 315100, P.R. China.

Abstract

Regression test case prioritization (RTCP) aims to improve the rate of fault detection by executing more important test
cases as early as possible. Various RTCP techniques have been proposed based on different coverage criteria. Among
them, a majority of techniques leverage code coverage information to guide the prioritization process, with code units
being considered individually, and in isolation. In this paper, we propose a new coverage criterion, code combinations
coverage, that combines the concepts of code coverage and combination coverage. We apply this coverage criterion
to RTCP, as a new prioritization technique, code combinations coverage based prioritization (CCCP). We report on
empirical studies conducted to compare the testing effectiveness and efficiency of CCCP with four popular RTCP
techniques: total, additional, adaptive random, and search-based test prioritization. The experimental results show
that even when the lowest combination strength is assigned, overall, the CCCP fault detection rates are greater than
those of the other four prioritization techniques. The CCCP prioritization costs are also found to be comparable
to the additional test prioritization technique. Moreover, our results also show that when the combination strength
is increased, CCCP provides higher fault detection rates than the state-of-the-art, regardless of the levels of code
coverage.

Keywords: Software testing, regression testing, test case prioritization, code combinations coverage

1. Introduction

Modern software systems continuously evolve due to
the fixing of detected bugs, the adding of new function-
alities, and the refactoring of system architecture. Re-
gression testing is conducted to ensure that the changed
source code does not introduce new defects. However,
it can become expensive to run an entire regression test
suite because its size naturally increases during software
maintenance and evolution: In an industrial case report-
ed by Rothermel et al. [1], for example, the execution
time for running the entire test suite could become sev-
eral weeks.

Regression test case prioritization (RTCP) has be-
come one of the most effective approaches to reduce the
overheads in regression testing [2, 3, 4, 5, 6]. RTCP

∗Corresponding author.
Email addresses: rbhuang@ujs.edu.cn (Rubing Huang),

2211708038@stmail.ujs.edu.cn (Quanjun Zhang),
dave.towey@nottingham.edu.cn (Dave Towey),
2211808031@stmail.ujs.edu.cn (Weifeng Sun),
jinfuchen@ujs.edu.cn (Jinfu Chen)

techniques reorder the execution sequence of regression
test cases, aiming to execute those test cases more like-
ly to detect faults (according to some award function) as
early as possible [7, 8, 9].

Traditional RTCP techniques [1, 10, 11] usually use
code coverage criteria to guide the prioritization pro-
cess. Intuitively speaking, a code coverage criterion
indicates the percentage of some code units (e.g. s-
tatements) covered by a test case. The expectation is
that test cases with higher code coverage value have a
greater chance of detecting faults [12]. Because of this,
a goal of maximizing code coverage has been incorpo-
rated into various RTCP techniques, including greedy
strategies [1]. Given a coverage criterion (e.g., method,
branch, or statement coverage), the total strategy se-
lects the next test case with greatest absolute cover-
age, whereas the additional strategy selects the one with
greatest coverage of code units not already covered by
the prioritized test cases. Furthermore, Li et al. [2]
proposed two search-based RTCP techniques (a hill-
climbing strategy and a genetic strategy) to explore the

Preprint submitted to The Journal of Systems and Software June 21, 2020

*Manuscript
Click here to view linked References

search space (the set of all permutations of the test cas-
es) to find a sequence with a better fault detection rate.
Jiang et al. [3] investigated adaptive random techniques
[13] to prioritize test cases using code coverage criteria.
In an attempt to bridge the gap between the two greedy
strategies, Zhang et al. [10] proposed a unified approach
based on the fault detection probability for each test case
(referred to as a p value).

In this paper, we propose a new coverage criterion,
code combinations coverage, that combines the con-
cepts of code coverage [12] and combination cover-
age [14]: Given a set of regression test cases T , each
test case is first transferred to an equally-sized tuple.
Each position in this tuple is a binary value representing
whether the corresponding item (such as branch, state-
ment, or method) is covered by this test case. In other
words, T is represented by a set of abstract test cases
with binary values T ′. The code combinations coverage
of T is measured by the traditional combination cov-
erage of T ′. We apply this new coverage criterion to
RTCP, proposing a new prioritization technique: code
combinations coverage based prioritization (CCCP).

We conducted empirical studies on 14 versions of
four Java programs, and 30 versions of five real-world
Unix utility programs. Our goal was to investigate the
testing effectiveness and efficiency of CCCP compared
with four widely-used RTCP techniques — total, addi-
tional, adaptive random, and search-based test prioriti-
zation. The results show that when the lowest combina-
tion strength is assigned, overall, our approach has bet-
ter fault detection rates than the other four test prioritiza-
tion techniques. It not only achieves comparable testing
efficiency to additional, but also requires much less pri-
oritization time than the adaptive random and search-
based techniques. In addition, while the code coverage
granularity does not impact on the testing effectiveness
of CCCP, the test case granularity does significantly im-
pact on it. Furthermore, when the combination strength
is increased, CCCP provides better fault detection rates
than all other RTCP techniques, regardless of the level
of code coverage.

The main contributions of this paper are:

• We propose a new coverage criterion called code
combinations coverage that combines the concepts
of code coverage and combination coverage.

• We apply code combinations coverage to RTCP,
leading to a new prioritization technique called
code combinations coverage based prioritization
(CCCP).

• We report on empirical studies conducted to inves-

tigate the test effectiveness and efficiency of CCCP
compared to four widely-used prioritization tech-
niques, and also analyze the impact of code cov-
erage granularity and test case granularity on the
effectiveness of CCCP.

• We provide some guidelines for how to choose the
combination strength and code-coverage level for
CCCP, under different testing scenarios.

The rest of this paper is organized as follows: Sec-
tion 2 presents some background information. Section
3 introduces the proposed approach. Section 4 presents
the research questions, and explains details of the em-
pirical study. Section 5 provides the detailed results of
the study and answers the research questions. Section
6 discusses some related work, and Section 7 concludes
this paper, including highlighting some potential future
work.

2. Background

In this section, we provide some background infor-
mation about abstract test cases and test case prioritiza-
tion.

2.1. Abstract Test Cases

For the system under test (SUT), there are some pa-
rameters p1, p2, · · · , pk that may influence its perfor-
mance, such as configuration options, components, and
user inputs. Each parameter pi can take some discrete
values to form the set Vi, which is finite. By selecting
a value for each parameter, its combination becomes an
abstract test case [15].

Definition 1. Abstract Test Case: An abstract test case
is a discrete test case that can be represented by a k-
tuple (v1, v2, · · · , vk), where vi (1 ≤ i ≤ k) is a value of a
parameter pi from a finite set Vi (i.e., vi ∈ Vi).

Each abstract test case covers some λ-wise tuples
(called λ-wise parameter-value combinations [16] or λ-
wise schemas [14]), where 1 ≤ λ ≤ k. For exam-
ple, an abstract test case tc = (1, 3, 5, 7) covers the
six 2-wise parameter-value combinations (1, 3), (1, 5),
(1, 7), (3, 5), (3, 7), and (5, 7); and also covers the four
3-wise parameter-value combinations (1, 3, 5), (1, 3, 7),
(1, 5, 7), and (3, 5, 7). Intuitively speaking, when λ = k,
a λ-wise parameter-value combination becomes an ab-
stract test case.

For ease of description, we define a function
CombS et(tc, λ) that returns a set of all λ-wise

2

parameter-value combinations covered by an abstrac-
t test case tc = (v1, v2, · · · , vk), i.e.,

CombS et(tc, λ) =
{(

vi1 , vi2 , · · · , viλ
)∣∣∣1 ≤ i1 < i2 < · · · < vλ ≤ k

}

(1)
Obviously, the size of CombS et(tc, λ) is equal to C

(
k, λ
)

(the number of λ-combinations from k elements). To
calculate the λ-wise parameter-value combinations cov-
ered by the set T of abstract test cases, the function
CombS et(T, λ) is defined as:

CombS et(T, λ) =
⋃

tc∈T
CombS et(tc, λ) (2)

2.2. Test Case Prioritization
Regression test case prioritization (RTCP) [1] aims

to reorder the test cases to realize a certain goal, such as
exposing faults earlier. RTCP is formally defined as:

Definition 2. Regression Test Case Prioritization:
Given a regression test suite T , PT is the set of its all
possible permutations, and f is an object function from
PT to real numbers. The problem of RTCP [1] is to find
P′ ∈ PT, such that ∀P′′, P′′ ∈ PT (P′′ ! P′), f (P′) ≥
f (P′′).

RTCP is an effective means to reduce the cost of re-
gression testing, and has been widely investigated [1, 2,
3, 9], with a large number of studies focusing on the
coverage criterion and prioritization algorithms. Intu-
itively, code coverage criteria can be regarded as charac-
teristics of the test cases, and many prioritization algo-
rithms have used coverage criteria to guide the prioriti-
zation process (such as the greedy strategies [1], search-
based strategies [2], and adaptive random strategies [3]).

3. Approach

In this section, we introduce the details of test case
prioritization by code combinations coverage.

3.1. Greedy Techniques
There are two widely investigated RTCP strategies:

the total greedy strategy and the additional greedy s-
trategy. The total strategy selects test cases according
to a descending order of code units covered by the test
case. The additional strategy also selects test cases ac-
cording to a descending order, but uses the number of
code units not already covered by previously selected
test cases. According to previous studies [17, 18, 19],
although seemingly simple, the greedy strategies (espe-
cially additional) perform better than most other RTCP
techniques in terms of the fault detection rate. There-
fore, in our study, we used a simple greedy algorithm

to instantiate the CCCP prioritization function for state-
ment, branch, and method coverage criteria. As we just
want to evaluate the performance of code combinations
coverage against traditional code coverage (e.g. state-
ment) and the additional strategy has been widely ac-
cepted as the most effective prioritization strategy, we
thus implemented greedy strategies based on the work
of Rothermel et al. [1] as the control techniques for e-
valuation of our proposed approaches.

3.2. Code Combinations Coverage

Various RTCP approaches, based on different priori-
tization strategies, have been proposed to reduce regres-
sion testing overheads. Many of these approaches used
individual code unit coverage of a test case to guide
the prioritization process. For example, greedy strate-
gies only take the number of covered code units into
account, with the code units considered as parameter-
s, or individually, and in isolation. However, this may
lead to a loss of coverage information, and regression
testing has traditionally used historical testing informa-
tion to guide future testing. Thus, the degree to which
the information is used is significant for regression test-
ing, and if we consider the combination between code
units, it may be possible to devise strategies to take fur-
ther advantage of the code coverage information. In our
hypothesis, the code units are related, not isolated, and
faults may be triggered by combinations amongst them.
Based on this, we can make use of more accurate testing
information than traditional RTCP approaches to guide
the prioritization process.

In our work, a code unit is a general term describing
one structural code element — a statement, branch, or
method. Consider a program P that has m code units
(statements, branches, or methods) that form the code
unit set U = {u1, u2, · · · , um}, and a regression test set
T with n test cases (T = {tc1, tc2, · · · , tcn}). We define
a function isCovered(tc, u) to measure whether or not a
test case tc covers the code unit u, as follows:

isCovered(tc, u) =
{

1, if u is covered by tc,
0, otherwise (3)

As a result, each test case tc can be represented
by an m-wise binary array through the convertTest
function: convertTest(tc) = (isCovered(tc, u1),
isCovered(tc, u2), · · · , isCovered(tc, um)). For ease of
description, with the increase of i for each ui in U, we
make use of the incremental values to describe whether
or not tc covers the code unit ui: isCovered(tc, ui),
where 1 ≤ i ≤ m, defined as:

isCovered(tc, ui) =
{

2i − 1, if ui is covered by tc,
2i, otherwise (4)

3

In other words, an odd number represents the situation
where the code unit in question is covered by a giv-
en test case; and an even number means that it is not
covered. For example, using Equation (3), the values
(1, 1, 1, 0, 0) for a test case tc would mean that the first
three code units are covered by tc, but that the last two
are not. Equation (4) would allow this to be represented
as tc = (1, 3, 5, 8, 10). In effect, each code unit can be
considered a parameter that contains binary parameter
values (an odd number and an even number): the first
code unit takes the value 1 or 2; the second code unit
takes 3 or 4; and so on. In other words, each test case
becomes an abstract test case (as defined in Section 2.1).
The λ-wise code combinations coverage (CCC) value of
tc against the test set T is defined as the number of λ-
wise code-unit combinations covered by tc that are not
covered by T :

CCC(tc,T, λ) = |CombS et(convertTest(tc), λ) \CombS et(T ′, λ)|
(5)

where T ′ =
⋃

tc∈T {convertTest(tc)}.

3.3. Code Combinations Coverage based Prioritization
In our model, we view CCCP as a general strategy

that can be applied to different prioritization algorithm-
s using different coverage criteria. As greedy strategies
are among the most widely-adopted prioritization strate-
gies [1, 10], and the additional greedy strategy is con-
sidered to be one of the most effective RTCP approach-
es [3, 17, 18, 20], in terms of fault detection rate, we
adopted a simple greedy strategy to instantiate the func-
tion for the proposed code combinations coverage.

Generally speaking, the approach chooses an element
from candidates as the next test case such that it covers
the largest number of λ-wise code-unit-value combina-
tions that have not already been covered by previously
selected test cases. Accordingly, the test case with the
maximum number of uncovered code-unit-value com-
binations compared with the already selected test cases

Algorithm 1 calculateCombinations(temp cover, λ)
Input: temp cover: List of code unit values, λ: Combination strength
Output: Combinations: Set of λ-wise code-unit-value combinations
1: Combinations← ∅
2: if λ = 1 then
3: for each item ∈ temp cover do
4: Combinations← Combinations

⋃{item}
5: end for
6: return Combinations
7: end if
8: num← |temp cover| " The number of code units
9: for each i (0 ≤ i ≤ num − λ) do

10: for each item ∈ Calculate(temp cover.sublist(i + 1), λ − 1) do
11: Combinations← Combinations

⋃{temp cover.get(i) + item}
12: end for
13: end for
14: return Combinations

Algorithm 2 Pseudocode of CCCP
Input: T : {tc1, tc2, · · · , tcn} is a set of unordered test cases with size n, λ: Com-

bination strength, U: {u1, u2, · · · , um} is a set of m code units for the pro-
gram P

Output: S : Prioritized test cases
1: maximum← −1
2: k ← 1
3: for each i (1 ≤ i ≤ n) do
4: S elected[i]← false
5: num← 0
6: for each j (1 ≤ j ≤ m) do
7: Cover[i, j]← isCovered(tci, u j)
8: temp cover[j]← Cover[i, j]
9: if Cover[i, j]%2 == 1 then

10: num← num + 1
11: end if
12: end for
13: if num > maximum then
14: maximum← num
15: k ← i
16: end if
17: Combinations[i]← calculateCombinations(temp cover, λ) "

Calculate λ-wise code-unit-value combinations covered by tci
18: UncoverCombinations← UncoverCombinations

⋃
Combinations[i]

19: S elected[k]← true
20: end for
21: tempCombinations← UncoverCombinations
22: S ← S * 〈tck〉 " Choose a candidate covering the maximum number of

code units, and then append it to S
23: UncoverCombinations← UncoverCombinations \Combinations[k]
24: f lag← false
25: while |T | ! |S | do
26: if f lag then " Restart the process
27: UncoverCombinations← tempCombinations
28: end if
29: maximum← −1
30: k ← 1
31: for each i (1 ≤ i ≤ n) do
32: if not S elected[i] then
33: num← |UncoverCombinations

⋂
Combinations[i]|

34: if num > maximum then
35: maximum← num
36: k ← i
37: end if
38: end if
39: end for
40: if maximum == 0 then " No uncovered code-unit-value combinations
41: f lag← true
42: else
43: f lag← false
44: end if
45: S ← S * 〈tck〉 " Choose the best candidate, and then append it to S
46: UncoverCombinations← UncoverCombinations \Combinations[k]
47: S elected[k]← true
48: end while
49: return S

T will be selected: CCC(tc,T, λ), from Equation (5).
Algorithm 1 provides the detailed CombS et calculation
process. Furthermore, when there are no further new
code-unit-value combinations, then all remaining test
cases are prioritized according the previous process, in
a manner similar to the additional greedy strategy.

Algorithm 2 formally presents the pseudocode of C-
CCP. A Boolean array S elected[i] (1 ≤ i ≤ n) denotes
whether or not test case tci has been selected for priori-
tization; and another Boolean array Cover[i, j] (1 ≤ i ≤
n, 1 ≤ j ≤ m) identifies whether or not test case tci cov-
ers the code unit u j. Similarly, an array Combinations[i]

4

stores the λ-wise code-unit-value combinations covered
by tci; and a set UncoverCombinations stores all un-
covered λ-wise code-unit-value combinations. In addi-
tion, the variable f lag indicates whether or not all λ-
wise code-unit-value combinations have been covered.

In Algorithm 2, Lines 1–24 perform initialization,
and also choose the first test case from the candidates;
while Lines 25–49 prioritize the test cases. More specif-
ically, since each candidate test case covers the same
number of uncovered λ-wise code-unit-value combi-
nations before prioritization, our approach follows the
total and additional test prioritization techniques to
choose the first test case: the one covering the largest
number of units (Lines 9–16). Then, the number of
uncovered λ-wise code-unit-value combinations against
previously selected test cases (S) is calculated for each
remaining test case, and a candidate with the maximum
value is selected as the next test case is appended to
S (Lines 31–39). Before choosing the next test case,
our approach examines whether or not there are any λ-
wise code-unit-value combinations that are not covered
by the test cases in S : If there are not, the remaining
candidate test cases are prioritized by restarting the pre-
vious process (Lines 26–28). Once an element is select-
ed as the next test case, our approach updates the set of
uncovered λ-wise code-unit-value combinations (Lines
23 and 46). This process is repeated until all elements
from T have been added to S . Similar to additional
test prioritization, when facing a tie where more than
one test case has the largest number of uncovered code-
unit-value combinations, our approach randomly selects
one.

To further explain the details of the proposed ap-
proach, Figure 1 illustrates an example of the CCCP

6XSSRVH�WKDW�DQ�XQRUGHUHG�WHVW�VHW�ܶ ൌ ሼܿݐଵǡ ଶǡܿݐ ଵǡݑଷሽ��WKH�XQLW�VHW�ሼܿݐ ଶǡݑ ଷǡݑ �ସሽ��DQG�WKH�IROORZLQJݑ
PDWUL[�EDVHG�RQ�WKH�IXQFWLRQ�݅݀݁ݎ݁ݒ݋ܥݏሺܿݐ௜ǡ �௝ሻ��ZKHUHݑ ͳ ൑ ݅ ൑ ͵� DQG� ͳ ൑ ݆ ൑ Ͷ�

 ସݑ ଷݑ ଶݑ ଵݑ

 � � � � ଵܿݐ
 � � � � ଶܿݐ
 � � � � ଷܿݐ

&RQVLGHU�&&&3�ZLWKߣ� ൌ ͳ�� ݏ݊݋݅ݐܾܽ݊݅݉݋ܥݎ݁ݒ݋ܷܿ݊ ൌ ሼሺͳሻǡ ሺʹሻǡ ሺ͵ሻǡ ሺͶሻǡ ሺͷሻǡ ሺ͸ሻǡ ሺ͹ሻǡ ሺͺሻሽ�
6WHS����5DQGRPO\�FKRRVH�DQ�HOHPHQW�IURP�ሼܿݐଵǡ �ଶሽ�DV�WKH�ILUVW�WHVW�FDVH�LQܿݐ ܵ��EHFDXVH�HDFK�WHVW�

FDVH�FRYHUV�WKH�VDPH�QXPEHU�RI�XQLWV��IRU�H[DPSOH��ܵ ൌ�൏ ଵܿݐ ൐�
6WHS����8SGDWH� ݏ݊݋݅ݐܾܽ݊݅݉݋ܥݎ݁ݒ݋ܷܿ݊ ൌ ሼሺʹሻǡ ሺ͵ሻǡ ሺ͸ሻǡ ሺͺሻሽ��DQG�WKHQ�FDOFXODWH�

ଶǡܿݐሺݐܾ݁ܵ݉݋ܥ ͳሻ ൌ ሼሺʹሻǡ ሺ͵ሻǡ ሺͷሻǡ ሺ͹ሻሽ�
ଷǡܿݐሺݐܾ݁ܵ݉݋ܥ ͳሻ ൌ ሼሺͳሻǡ ሺ͵ሻǡ ሺ͸ሻǡ ሺͺሻሽ�

ଶǡܿݐሺܥܥܥ�������������� ܵǡ ͳሻ ൌ ȁܷ݊ܿݏ݊݋݅ݐܾܽ݊݅݉݋ܥݎ݁ݒ݋� ת ଶǡܿݐሺݐܾ݁ܵ݉݋ܥ� ͳሻȁ ൌ ȁሼሺʹሻǡ ሺ͵ሻሽȁ ൌ ʹ;
ଷǡܿݐሺܥܥܥ����������������� ܵǡ ͳሻ ൌ ȁܷ݊ܿݏ݊݋݅ݐܾܽ݊݅݉݋ܥݎ݁ݒ݋� ת ଷǡܿݐሺݐܾ݁ܵ݉݋ܥ� ͳሻȁ ൌ ȁሼሺ͵ሻǡ ሺ͸ሻǡ ሺͺሻሽȁ ൌ ͵.

$V�D�UHVXOWܿݐ��ଷ�LV�VHOHFWHG�DV�WKH�QH[W�WHVW�FDVH�IRU�ܵ��L�H���ܵ ൌ�൏ ଵǡܿݐ ଷܿݐ ൐�
6WHS����$GG�WKH�ODVW�WHVW�FDVHܿݐ�ଶ�IRU�ܵ��L�H��� ܵ ൌ�൏ ଵǡܿݐ ଷǡܿݐ ଶܿݐ ൐�

Fig. 1: An illustrative example of CCCP

process with λ = 1. Similar to the total and addi-
tional test prioritization techniques, CCCP chooses the
first test case that covers the largest number of code
units (the maximum amount of odd numbers). Since
there are two candidates with the maximum number
of code units, tc1 and tc2 (both covering three code
units), CCCP randomly chooses one of them (in this
case, tc1), and adds it to S . CCCP then updates
the set UncoverCombinations, and calculates the CC-
C value for each candidate: CCC(tc2, S , 1) = 2 and
CCC(tc3, S , 1) = 3. Since tc3 has the greater CCC
value, it is selected as the next test case, and added to
S . In contrast, the total prioritization technique would
choose tc2 as the second test case, because tc2 covers
more code units than tc3; and the additional technique
would randomly select one from tc2 and tc3 as the sec-
ond test case, because both candidates cover the same
number of uncovered code units. Finally, in our ap-
proach, the last candidate tc2 is added to S , resulting
in S = 〈tc1, tc3, tc2〉.

4. Empirical Study

In this section, we present our empirical study, in-
cluding the research questions underlying the study. We
also discuss some independent and dependent variables,
and explain the subject programs, test suites, and exper-
imental setup in detail.

4.1. Research Questions

Due to space limitations and practical performance
constraints (higher λ values may result in more substan-
tial running time), we present the evaluation of our pro-
posed approach’s performance when λ = 1 and 2. Un-
less explicitly stated, λ = 1 is used as the default value
for CCCP. The empirical study was conducted to answer
the following six research questions.

RQ1 How does CCCP compare with other RTCP ap-
proaches in terms of testing effectiveness measured
by the fault detection rates?

RQ2 How does CCCP compare with other RTCP ap-
proaches in terms of testing effectiveness measured
by the cost-cognizant fault detection rates?

RQ3 How does the granularity of code coverage im-
pact the comparative effectiveness of CCCP?

RQ4 How does the granularity of test cases impact on
the comparative effectiveness of CCCP?

5

RQ5 How does the efficiency of CCCP compare with
other RTCP approaches, in terms of execution
time?

RQ6 How does the use of code combinations coverage
with λ = 2 impact on the testing effectiveness of
CCCP?

4.2. Independent Variables

In this study, we consider the following three inde-
pendent variables.

4.2.1. Prioritization Techniques
Since our proposed CCCP technique takes advantage

of the information about dynamic coverage and test cas-
es as inputs, for a fair comparison, it is necessary to
choose other RTCP techniques that use similar informa-
tion to guide the test cases prioritization. In this study,
we selected four such RTCP techniques: total test pri-
oritization [1], additional test prioritization [1], adap-
tive random test prioritization [3], and search-based test
prioritization [2]. The total test prioritization technique
prioritizes test cases based on the descending number
of code units covered by those tests. The additional
technique, in contrast, greedily chooses each elemen-
t from candidates such that it covers the largest num-
ber of code units not yet covered by the previously s-
elected tests. The adaptive random technique greedily
selects each element from random candidates such that
it has the greatest maximum distance from the already
selected tests. Finally, the search-based technique con-
siders all permutations as candidate solutions, and uses
a meta-heuristic search algorithm to guide the search for
a better test execution order — a genetic algorithm was
adopted in this study, due to its effectiveness [2]. These
four test prioritization techniques, whose details are p-
resented in Table 1, have been widely used in RTCP
previous studies [17, 18, 20].

4.2.2. Code Coverage Granularity
When using code coverage information to support

RTCP, the coverage granularity can be considered a con-
stituent part of the prioritization techniques. To enable

Table 1: Studied RTCP techniques
Mnemonic Description Reference
TCPtot Greedy total test prioritization [1]
TCPadd Greedy additional test prioritization [1]
TCPart Adaptive random test prioritization [3]
TCPsearch Search-based test prioritization [2]
TCPccc Our proposed CCCP technique This study

sufficient evaluations, we used structural coverage cri-
teria at the statement-, branch-, and method-coverage
levels.

4.2.3. Test Case Granularity
For the subject programs written in Java, we consid-

ered an additional factor in the prioritization techniques,
the test-case granularity. Test-case granularity is at ei-
ther the test-class level, or the test-method level. For
the test-class level, each JUnit test-case class was a test
case; for the test-method level, each test method in a
JUnit test-case class was a test case. In other words, a
test case at the test-class level generally involves a num-
ber of test cases at the test-method level. For C subject
programs, however, the actual program inputs were the
test cases.

4.3. Dependent Variables
Because we were examining the fault detection ca-

pability, we adopted the widely-used APFD (average
percentage faults detected) as the evaluation metric for
fault detection rates [1]. Given a test suite T , with n test
cases. If T ′ is a permutation of T , in which T Fi is the
position of first test case that reveals the fault i, then the
APFD value for T ′ is given by the following equation:

APFD = 1 −
∑m

i=1 T Fi

n ∗ m
+

1
2n

(6)

Although APFD has often been used to evaluate
RTCP techniques, it assumes that each test case incurs
the same time cost, an assumption that may not hold
up in practice. Elbaum et al. [21], therefore, intro-
duced an APFD variant, APFDc, a cost-cognizant ver-
sion of APFD that considers both the fault severity and
the test case execution cost. Similar to APFD, APFDc
has also been applied to the evaluation of RTCP tech-
niques, resulting in a more comprehensive evaluation
[22]. APFDc is defined as:

APFDc =

∑m
i=1(αi × (

∑n
j=T Fi

β j − 1
2αi))

∑m
i=1 αi ×

∑n
i=1 βi

(7)

where α1,α2, · · · ,αm are the severities of the m detect-
ed faults, β1, β2, · · · , βn are the execution costs of n test
cases, and T Fi has the same meaning as in APFD. Be-
cause of the difficulty involved in estimating fault sever-
ity, following previous studies [22], we assumed that all
faults had the same severity level for this study. Accord-
ingly, the definition of APFDc can be described as:

APFDc =

∑m
i=1(
∑n

j=T Fi
β j − 1

2βT Fi)

m ×∑n
j=1 β j

(8)

Intuitively speaking, prioritized test suites that both find
faults faster and require less execution time, will have
higher APFDc values.

6

Table 2: Subject program details

Language Program Version KLoC #Branch #Method #Class #Test Case #Mutant #Subsuming Mutant
#T Class #T Method #All #Detected #SM Class #SM Method

Java

ant v1 v1 9 25.80 5,240 2,511 228 34 (34) 137 (135) 6,498 1,332 59 32
ant v2 1.4 39.70 8,797 3,836 342 52 (52) 219 (214) 11,027 2,677 90 47
ant v3 1.4.1 39.80 8,831 3,845 342 52 (52) 219 (213) 11,142 2,661 92 47

jmeter v1 v1 7 3 33.70 3,815 2,919 334 26 (21) 78 (61) 8,850 573 38 20
jmeter v2 v1 8 33.10 3,799 2,838 319 29 (24) 80 (74) 8,777 867 37 22
jmeter v3 v1 8 1 37.30 4,351 3,445 373 33 (27) 78 (77) 9,730 1,667 47 25
jmeter v4 v1 9 RC1 38.40 4,484 3,536 380 33 (27) 78 (77) 10,187 1,703 47 25
jmeter v5 v1 9 RC2 41.10 4,888 3,613 389 37 (30) 97 (83) 10,459 1,651 53 29
jtopas v1 0.4 1.89 519 284 19 10 (10) 126 (126) 704 399 29 9
jtopas v2 0.5.1 2.03 583 302 21 11 (11) 128 (128) 774 446 34 10
jtopas v3 0.6 5.36 1,491 748 50 18 (16) 209 (207) 1,906 1,024 57 16
xmlsec v1 v1 0 4 18.30 3,534 1,627 179 15 (15) 92 (91) 5,501 1,198 32 12
xmlsec v2 v1 0 5D2 19.00 3,789 1,629 180 15 (15) 94 (94) 5,725 1,204 33 12
xmlsec v3 v1 0 71 16.90 3,156 1,398 145 13 (13) 84 (84) 3,833 1,070 27 10

C

f lex v0 2.4.3 8.96 2,005 138 – 500 – – –
f lex v1 2.4.7 9.47 2,011 147 – 500 13,873 6,177 32
f lex v2 2.5.1 12.23 2,656 162 – 500 14,822 6,396 32
f lex v3 2.5.2 12.25 2,666 162 – 500 775 420 20
f lex v4 2.5.3 12.38 2,678 162 – 500 14,906 6,417 33
f lex v5 2.5.4 12.37 2,680 162 – 500 14,922 6,418 32
grep v0 2.0 8.16 3,420 119 – 144 – – –
grep v1 2.2 11.99 3,511 104 – 144 23,896 3,229 56
grep v2 2.3 12.72 3,631 109 – 144 24,518 3,319 58
grep v3 2.4 12.83 3,709 113 – 144 17,656 3,156 54
grep v4 2.5 20.84 2,531 102 – 144 17,738 3,445 58
grep v5 2.7 58.34 2,980 109 – 144 17,108 3492 59
gzip v0 1.0.7 4.32 1,468 81 – 156 – – –
gzip v1 1.1.2 4.52 1,490 81 – 156 7,429 639 8
gzip v2 1.2.2 5.05 1,752 98 – 156 7,599 659 8
gzip v3 1.2.3 5.06 1,610 93 – 156 7,678 547 7
gzip v4 1.2.4 5.18 1,663 93 – 156 7,838 548 7
gzip v5 1.3 5.68 1,733 97 – 156 8,809 210 7
make v0 3.75 17.46 4,397 181 – 111 – – –
make v1 3.76.1 18.57 4,585 181 – 111 36,262 5,800 37
make v2 3.77 19.66 4,784 190 – 111 38,183 5,965 29
make v3 3.78.1 20.46 4,845 216 – 111 42,281 6,244 28
make v4 3.79 23.13 5,413 239 – 111 48,546 6,958 29
make v5 3.80 23.40 5,032 268 – 111 47,310 7,049 28
sed v0 3.01 7.79 676 66 – 324 – – –
sed v1 3.02 7.79 712 65 – 324 2,506 1,009 16
sed v2 4.0.6 18.55 1,011 65 – 324 5,947 1,048 18
sed v3 4.0.8 18.69 1,017 66 – 324 5,970 450 18
sed v4 4.1.1 21.74 1,141 70 – 324 6,578 470 19
sed v5 4.2 26.47 1,412 98 – 324 7,761 628 22

4.4. Subject Programs, Test Suites and Faults

We conducted our study on 14 versions of four Ja-
va programs (three versions of ant; five versions of
jmeter; three versions of jtopas; and three versions of
xmlsec) downloaded from the Software-artifact Infras-
tructure Repository (SIR) [23, 24], and 30 versions of
five real-life Unix utility programs, from the GNU FTP
server [25]. Both the Java and C programs have been
widely used as benchmarks to evaluate RTCP problem-
s [3, 10, 19, 26]. Table 2 summarizes the subject pro-
gram details, with Columns 3 to 7 presenting the ver-
sion, size, number of branches, number of methods, and
number of classes (including interfaces), respectively.

Each version of the Java programs has a JUnit test
suite that was developed during the program’s evolu-
tion. These test suites have two levels of test-case gran-
ularity: the test-class and the test-method. The numbers

of JUnit test cases (including both test-class and test-
method levels) are shown in the #Test Case column, as
#T Class and #T Method: The data is presented as
x (y), where x is the total number of test cases; and y is
the number of test cases that can be successfully execut-
ed. The test suites for the C programs are available from
the SIR [23, 24]: The number of tests cases in each suite
is also shown in the #Test Case column of Table 2.

Because the seeded-in SIR faults were easily detect-
ed and small in size, for both C and Java programs,
we used mutation faults to evaluate the performance
of the different techniques. Mutation faults have pre-
viously been identified as suitable for simulating re-
al program faults [27, 28, 29], and have been wide-
ly applied to regression test prioritization evaluation-
s [1, 10, 17, 18, 19, 20, 30]. Eleven mutation operators
from the “NEW DEFAULTS” group of the PIT muta-
tion tool [31] were used to generate mutants for the Java

7

programs. These operators, whose detailed descriptions
can be found on the PIT website [32], were: condition-
als boundary, increments, invert negatives, math, negate
conditionals, void method calls, empty returns, false re-
turns, null returns, primitive returns, and true return-
s. We downloaded the mutants from previous RTCP
studies [19] for the C programs, which had been gen-
erated using seven mutation operators from Andrews et
al. [33]: statement deletion, unary insertion, constan-
t replacement, arithmetic operator replacement, logical
operator replacement, bitwise logical operator replace-
ment, and relational operator replacement.

Equivalent mutants [34, 35] are functionally equiva-
lent versions of the original program, and thus cannot
be killed: no test case applied to both the mutant and
the original program could result in different behavior.
In our study, therefore, all equivalent mutants were re-
moved, leaving only those mutants that could be detect-
ed by at least one test case. In Table 2, the #Mutant col-
umn gives the total number of all mutants (#All), and the
(#Detected) column gives the number of detected mu-
tants. Although all detected mutants were considered
in our study, some mutants, called duplicated mutants)
[35], were equivalent to other mutants (but not to the
original program). Similarly, some mutants, called sub-
sumed mutants [36, 37] were subsumed by others: If
a subsuming mutant [38]) is killed, then its subsumed
mutants are also killed. We used the Subsuming Mu-
tants Identification (SMI) algorithm [38] to remmove
the duplicate and subsuming mutants in our fault set.
SMI first removed duplicate mutants, and then greedi-
ly identified the most subsuming mutants — those mu-
tants which, when killed, result in the highest number
of other mutants being “collaterally” killed. The #Sub-
suming Mutant column gives the number of subsum-
ing mutants used in our study (the subsuming faults are
classified as either test-class level (#SM Class) or test-
method level (#SM Method) for the Java programs).

4.5. Experimental Setup
The experiments were conducted on a Linux 4.4.0-

170-generic server with two Intel(R) Xeon(R) Platinum
8163 CPUs (2.50 GHz, two cores) and 16 GBs of RAM.

The Java programs were compiled using Java 1.8
[39]. The coverage information for each program ver-
sion was obtained using the FaultTracer tool [40, 41],
which, based on the ASM bytecode manipulation and
analysis framework [42], uses on-the-fly bytecode in-
strumentation without any modification of the target
program.

There were six versions of each C program: PV0, PV1,
PV2, PV3, PV4, and PV5. Version PV0 was compiled us-

ing gcc 5.4.0 [43], and then the coverage information
was obtained using the gcov tool [44], which is one of
the gcc utilities.

After collecting the code coverage information, we
implemented all RTCP techniques in Java, and ap-
plied them to each program version under study, for
all coverage criteria. Because the approaches con-
tain randomness, each execution was repeated 1000
times. This resulted in, for each testing scenario,
1000 APFD or APFDc values (1000 orderings) for each
RTCP approach. To test whether there was a statisti-
cally significant difference between CCCP and the oth-
er RTCP approaches, we performed the unpaired two-
tailed Wilcoxon-Mann-Whitney test, at a significance
level of 5%, following previously reported guidelines
for inferential statistical analyses involving randomized
algorithms [45, 46]. To identify which approach was
better, we also calculated the effect size, measured by
the non-parametric Vargha and Delaney effect size mea-
sure [47], Â12, where Â12(X,Y) gives probability that
the technique X is better than technique Y . The statisti-
cal analyses were performed using R [48].

5. Results and Analysis

This section presents the experimental results to an-
swer the research questions.

To answer RQ1 to RQ4, Figures 2 to 8 present box
plots of the distribution of the APFD or APFDc values
(averaged over 1000 iterations). Each box plot shows
the mean (square in the box), median (line in the box),
and upper and lower quartiles (25th and 75th percentile)
for the APFD or APFDc values for the RTCP tech-
niques. Statistical analyses are also provided in Tables 3
to 11 for each pairwise APFD or APFDc comparison be-
tween CCCP and the other RTCP techniques. For exam-
ple, for a comparison between two methods TCPccc and
M, where M ∈ {TCPtot,TCPadd,TCPart,TCPsearch}, the
symbol ! means that TCPccc is better (p-value is less
than 0.05, and the effect size Â12(TCPccc,M) is greater
than 0.50); the symbol " means that M is better (the p-
value is less than 0.05, and Â12(TCPccc,M) is less than
0.50); and the symbol # means that there is no statis-
tically significant difference between them (the p-value
is greater than 0.05).

To answer RQ5, Table 12 provides comparisons of
the execution times for the different RTCP techniques.
To answer RQ6, Figure 9 shows the APFD and APFDc
results for CCCP with λ = 2, and Table 13 presents the
corresponding statistical analysis.

8

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

(a) ant-statement coverage

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

(b) ant-branch coverage

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

(c) ant-method coverage

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

V5V4V3V2V1

A
P

F
D

(d) jmeter-statement coverage

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

V5V4V3V2V1

A
P

F
D

(e) jmeter-branch coverage

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

V5V4V3V2V1

A
P

F
D

(f) jmeter-method coverage

0.44

0.46

0.48

0.50

0.52

0.54

0.56

V3V2V1

A
P

F
D

(g) jtopas-statement coverage

0.44

0.46

0.48

0.50

0.52

0.54

0.56

V3V2V1

A
P

F
D

(h) jtopas-branch coverage

0.44

0.46

0.48

0.50

0.52

0.54

0.56

V3V2V1

A
P

F
D

(i) jtopas-method coverage

0.36

0.39

0.42

0.45

0.48

0.51

0.54

0.57

0.60

V3V2V1

A
P

F
D

(j) xmlsec-statement coverage

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V3V2V1

A
P

F
D

(k) xmlsec-branch coverage

0.36

0.39

0.42

0.45

0.48

0.51

0.54

0.57

0.60

V3V2V1

A
P

F
D

(l) xmlsec-method coverage

Fig. 2: Effectiveness: APFD results for Java programs at the test-class level

5.1. RQ1: Effectiveness of CCCP Measured by APFD
Here, we provide the APFD results for CCCP for d-

ifferent code coverage and test case granularities. Fig-
ures 2 to 4 show the APFD results for the Java programs
at the test-class level; at the test-method level; and the
C programs, respectively. Each sub-figure in these fig-
ures has the program versions across the x-axis, and the
APFD values for the five RTCP techniques on the y-
axis. Tables 3 to 5 present the corresponding statistical
comparisons.

5.1.1. APFD Results: Java Programs (Test-Class Lev-
el)

Based on Figure 2 and Table 3, we have the following
observations:

(1) Compared with the total test prioritization tech-
nique, CCCP achieves better performances for the pro-
gram xmlsec, irrespective of code coverage granularity,
with differences between the mean and median APFD
values reaching about 3%. For the other programs (ant,
jmeter, and jtopas), however, they have very similar
APFD results.

(2) CCCP performs much better than adaptive ran-
dom test prioritization, regardless of subject program
and code coverage granularity, with the maximum mean
and median APFD differences reaching about 12%.

(3) CCCP has very similar performance to the ad-
ditional and search-based test prioritization techniques,
with the mean and median APFD differences approxi-
mately equal to 1%.

9

Table 3: Statistical effectiveness comparisons of APFD for Java programs at the test-class level. For a comparison between two methods TCPccc
and M, where M ∈ {TCPtot,TCPadd,TCPart,TCPsearch}, the symbol ! means that TCPccc is better (p-value is less than 0.05, and the effect size
Â12(TCPccc,M) is greater than 0.50); the symbol " means that M is better (the p-value is less than 0.05, and Â12(TCPccc,M) is less than 0.50);
and the symbol # means that there is no statistically significant difference between them (the p-value is greater than 0.05).

Program Name Statement Coverage Branch Coverage Method Coverage
TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

ant v1 "(0.00) #(0.49) !(1.00) #(0.50) !(0.76) #(0.51) !(1.00) #(0.49) !(1.00) #(0.49) !(1.00) "(0.36)
ant v2 !(1.00) #(0.51) !(1.00) !(0.57) !(1.00) #(0.49) !(1.00) #(0.52) !(1.00) #(0.49) !(1.00) "(0.47)
ant v3 !(1.00) #(0.50) !(1.00) !(0.59) !(1.00) #(0.50) !(1.00) !(0.54) !(1.00) #(0.49) !(1.00) "(0.46)

ant !(0.89) #(0.50) !(1.00) !(0.53) !(0.97) #(0.50) !(1.00) #(0.51) !(1.00) #(0.49) !(1.00) "(0.47)
jmeter v1 "(0.00) #(0.50) !(1.00) #(0.50) #(0.50) #(0.50) !(1.00) #(0.50) "(0.00) #(0.50) !(1.00) "(0.46)
jmeter v2 "(0.00) #(0.50) !(1.00) #(0.50) "(0.24) #(0.51) !(1.00) #(0.50) "(0.14) !(0.53) !(1.00) #(0.49)
jmeter v3 "(0.00) #(0.51) !(1.00) #(0.48) "(0.00) "(0.34) !(1.00) !(0.59) "(0.00) #(0.50) !(1.00) "(0.47)
jmeter v4 "(0.00) "(0.47) !(1.00) "(0.46) "(0.00) "(0.33) !(1.00) !(0.57) "(0.00) #(0.49) !(1.00) #(0.48)
jmeter v5 "(0.00) #(0.50) !(1.00) #(0.50) "(0.32) "(0.43) !(1.00) !(0.72) "(0.00) #(0.51) !(1.00) #(0.50)

jmeter "(0.36) #(0.50) !(1.00) #(0.50) "(0.40) "(0.47) !(1.00) !(0.52) "(0.32) #(0.50) !(1.00) #(0.49)
jtopas v1 #(0.50) #(0.50) !(1.00) #(0.50) #(0.50) #(0.50) !(1.00) #(0.50) "(0.00) #(0.50) !(1.00) #(0.50)
jtopas v2 #(0.50) #(0.50) !(1.00) #(0.50) #(0.50) #(0.50) !(1.00) #(0.50) #(0.50) #(0.50) !(1.00) #(0.50)
jtopas v3 #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50) #(0.50)

jtopas #(0.50) #(0.50) !(0.93) #(0.50) #(0.50) #(0.50) !(0.91) #(0.50) "(0.33) #(0.50) !(0.94) #(0.50)
xmlsec v1 !(1.00) #(0.50) !(1.00) #(0.50) !(1.00) "(0.31) !(1.00) #(0.52) !(1.00) #(0.51) !(1.00) !(0.54)
xmlsec v2 !(1.00) #(0.50) !(1.00) #(0.50) !(1.00) #(0.50) !(1.00) #(0.51) !(1.00) "(0.32) !(1.00) !(0.54)
xmlsec v3 !(1.00) #(0.50) !(1.00) #(0.50) !(1.00) #(0.52) !(1.00) #(0.51) !(1.00) "(0.16) !(1.00) "(0.18)

xmlsec !(1.00) #(0.50) !(1.00) #(0.50) !(0.97) "(0.48) !(1.00) #(0.50) !(1.00) "(0.31) !(1.00) "(0.40)
All Java Programs !(0.58) #(0.50) !(0.98) #(0.50) !(0.58) #(0.50) !(0.96) #(0.50) !(0.59) "(0.49) !(0.97) "(0.49)

Table 4: Statistical effectiveness comparisons of APFD for Java programs at the test-method level. For a comparison between two methods
TCPccc and M, where M ∈ {TCPtot,TCPadd,TCPart,TCPsearch}, the symbol ! means that TCPccc is better (p-value is less than 0.05, and the effect
size Â12(TCPccc,M) is greater than 0.50); the symbol " means that M is better (the p-value is less than 0.05, and Â12(TCPccc,M) is less than 0.50);
and the symbol # means that there is no statistically significant difference between them (the p-value is greater than 0.05).

Program Name Statement Coverage Branch Coverage Method Coverage
TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

ant v1 !(1.00) !(0.53) !(1.00) !(0.88) !(1.00) #(0.48) !(1.00) !(0.91) !(1.00) #(0.50) !(0.98) !(0.72)
ant v2 !(1.00) #(0.51) !(1.00) !(1.00) !(1.00) "(0.46) !(1.00) !(1.00) !(1.00) #(0.50) !(1.00) !(0.90)
ant v3 !(1.00) #(0.50) !(1.00) !(1.00) !(1.00) #(0.51) !(1.00) !(1.00) !(1.00) #(0.51) !(1.00) !(0.90)

ant !(1.00) #(0.51) !(1.00) !(0.98) !(1.00) #(0.49) !(1.00) !(0.97) !(1.00) #(0.50) !(1.00) !(0.84)
jmeter v1 !(1.00) #(0.50) !(1.00) !(0.62) !(1.00) "(0.30) !(1.00) !(0.84) !(0.56) #(0.50) !(0.98) "(0.47)
jmeter v2 !(1.00) !(0.96) !(1.00) !(0.68) !(1.00) #(0.49) !(1.00) !(0.82) !(0.90) #(0.51) !(0.98) #(0.48)
jmeter v3 !(1.00) !(0.55) !(1.00) !(0.82) !(1.00) #(0.48) !(1.00) !(0.64) !(1.00) "(0.26) !(1.00) !(0.55)
jmeter v4 !(1.00) !(0.60) !(1.00) !(0.84) !(1.00) #(0.49) !(1.00) !(0.64) !(1.00) "(0.25) !(1.00) !(0.56)
jmeter v5 !(1.00) #(0.51) !(1.00) !(0.89) !(1.00) "(0.45) !(1.00) !(0.76) !(1.00) "(0.32) !(1.00) !(0.64)

jmeter !(1.00) !(0.54) !(1.00) !(0.63) !(1.00) "(0.48) !(1.00) !(0.68) !(0.86) "(0.43) !(0.98) !(0.52)
jtopas v1 !(1.00) !(0.98) "(0.00) !(0.77) !(1.00) "(0.46) "(0.00) "(0.43) !(1.00) #(0.49) !(0.73) #(0.50)
jtopas v2 !(1.00) !(0.79) "(0.00) !(0.53) !(1.00) !(0.89) "(0.00) !(0.70) !(1.00) #(0.50) "(0.27) "(0.35)
jtopas v3 !(1.00) #(0.50) "(0.00) "(0.16) !(1.00) #(0.49) "(0.00) "(0.31) !(1.00) #(0.49) !(0.67) !(0.62)

jtopas !(1.00) !(0.59) "(0.00) #(0.51) !(1.00) !(0.54) "(0.00) "(0.47) !(1.00) #(0.50) !(0.55) "(0.48)
xmlsec v1 !(1.00) #(0.49) !(1.00) "(0.37) !(1.00) #(0.49) !(1.00) !(0.78) !(1.00) !(0.53) !(1.00) !(0.58)
xmlsec v2 !(1.00) #(0.49) !(1.00) #(0.50) !(1.00) #(0.50) !(1.00) !(0.77) !(1.00) #(0.51) !(1.00) !(0.60)
xmlsec v3 !(1.00) "(0.46) !(1.00) #(0.52) !(1.00) "(0.30) !(1.00) !(0.63) !(1.00) #(0.51) !(1.00) !(0.56)

xmlsec !(1.00) #(0.49) !(1.00) "(0.47) !(1.00) "(0.43) !(1.00) !(0.72) !(1.00) #(0.51) !(1.00) !(0.56)
All Java Programs !(0.97) !(0.51) !(0.70) !(0.57) !(0.90) "(0.49) !(0.59) !(0.59) !(0.96) "(0.49) !(0.76) !(0.54)

(4) There is a statistically significant difference be-
tween TCPccc and TCPart, which supports the above ob-
servations. However, none of the other three techniques
(TCPtot, TCPadd, or TCPsearch) is either always better
or always worse than TCPccc, with TCPccc sometimes
performing better for some programs, and sometimes
worse.

(5) Considering all Java programs: Overall, because
all p-values are less than 0.05, and the relevant effect
size Â12 ranges from 0.58 to 0.98, TCPccc performs bet-
ter than TCPtot and TCPart. However, CCCP has very
similar (or slightly worse) performance to TCPadd and

TCPsearch, with Â12 values of either 0.49 or 0.50.

5.1.2. APFD Results: Java Programs (Test-Method
Level)

Based on Figure 3 and Table 4, we have the following
observations:

(1) Our proposed method achieves much higher mean
and median APFD values than TCPtot for all programs
with all code coverage granularities, with the maximum
differences reaching approximately 30%.

(2) CCCP has very similar performance to TCPadd,
with their mean and median APFD differences at around

10

0.48

0.51

0.54

0.57

0.60

0.63

0.66

0.69

0.72

0.75

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

(a) ant-statement coverage

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

(b) ant-branch coverage

0.45

0.50

0.55

0.60

0.65

0.70

0.75

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

(c) ant-method coverage

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

V5V4V3V2V1

A
P

F
D

(d) jmeter-statement coverage

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

V5V4V3V2V1

A
P

F
D

(e) jmeter-branch coverage

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

V5V4V3V2V1

A
P

F
D

(f) jmeter-method coverage

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

V3V2V1

A
P

F
D

(g) jtopas-statement coverage

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

V3V2V1

A
P

F
D

(h) jtopas-branch coverage

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

V3V2V1

A
P

F
D

(i) jtopas-method coverage

0.45

0.50

0.55

0.60

0.65

0.70

0.75

V3V2V1

A
P

F
D

(j) xmlsec-statement coverage

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V3V2V1

A
P

F
D

(k) xmlsec-branch coverage

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

V3V2V1

A
P

F
D

(l) xmlsec-method coverage

Fig. 3: Effectiveness: APFD results for Java programs at the test-method level

1%.
(3) Other than for some versions of jtopas, CCCP

has much better performance than TCPart.
(4) Other than for a few cases (such as jtopas v2

with method coverage, and xmlsec v1 with statemen-
t coverage), CCCP usually has better performance than
TCPsearch.

(5) Overall, the statistical analysis supports the above
box plots observations. Looking at all Java program-
s together, CCCP is, on the whole, better than TCPtot,
TCPart, and TCPsearch: The p-values are all less than
0.05, indicating that their differences are significant; and
the effect size Â12 values range from 0.54 to 0.97, which
means that TCPccc is better than the other three RTCP
techniques. Finally, while the p-values for comparison-

s between TCPccc and TCPadd are less than 0.05 (which
means that the differences are significant), the Â12 val-
ues range from 0.49 to 0.51, indicating that they are very
similar.

5.1.3. APFD Results: C Subject Programs
Based on Figure 4 and Table 5, we have the following

observations:
(1) Our proposed CCCP approach has much better

performance than TCPtot and TCPadd, for all programs
and code coverage granularities, except for gzip with
method coverage (for which TCPccc has very similar, or
better performance). The maximum difference in mean
and median APFD values between TCPccc and TCPtot is
more than 40%; while between TCPccc and TCPadd, it is

11

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V5V4V3V2V1

A
P

F
D

(a) f lex-statement coverage

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V5V4V3V2V1

A
P

F
D

(b) f lex-branch coverage

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V5V4V3V2V1

A
P

F
D

(c) f lex-method coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

(d) grep-statement coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

(e) grep-branch coverage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

(f) grep-method coverage

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(g) gzip-statement coverage

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(h) gzip-branch coverage

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(i) gzip-method coverage

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

(j) make-statement coverage

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

(k) make-branch coverage

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(l) make-method coverage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(m) sed-statement coverage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(n) sed-branch coverage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

(o) sed-method coverage

Fig. 4: Effectiveness: APFD results for C programs

about 10%.

(2) TCPccc has similar or better APFD performance
than TCPart and TCPsearch for some subject programs
(such as f lex and gzip, with all code coverage granular-
ities), but also has slightly worse performance for some
others (such as grep with method coverage and sed with
statement coverage). However, the difference in mean

and median APFD values between TCPccc and TCPart
or TCPsearch is less than 5%.

(3) Overall, the statistical results support the box plot
observations. All p values for the comparisons between
TCPccc and TCPtot or TCPadd are less than 0.05, indi-
cating that their APFD scores are significantly different.
The Â12 values are also much greater than 0.50, rang-

12

Table 5: Statistical effectiveness comparisons of APFD for C programs. For a comparison between two methods TCPccc and M, where M ∈
{TCPtot,TCPadd,TCPart,TCPsearch}, the symbol ! means that TCPccc is better (p-value is less than 0.05, and the effect size Â12(TCPccc,M) is
greater than 0.50); the symbol " means that M is better (the p-value is less than 0.05, and Â12(TCPccc,M) is less than 0.50); and the symbol #
means that there is no statistically significant difference between them (the p-value is greater than 0.05).

Program Name Statement Coverage Branch Coverage Method Coverage
TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

f lex v1 !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(0.83) !(0.96)
f lex v2 !(1.00) !(0.98) !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(0.99) !(1.00) !(1.00) !(0.78) !(0.93)
f lex v3 !(1.00) !(0.74) !(1.00) !(0.88) !(1.00) !(0.70) !(1.00) !(0.94) !(1.00) !(0.99) !(0.99) !(0.96)
f lex v4 !(1.00) !(0.98) !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(0.77) !(0.92)
f lex v5 !(1.00) !(0.98) !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(0.99) !(1.00) !(1.00) !(0.77) !(0.92)

f lex !(1.00) !(0.89) !(1.00) !(0.94) !(1.00) !(0.86) !(1.00) !(0.95) !(1.00) !(0.86) !(0.80) !(0.88)
grep v1 !(1.00) !(0.94) #(0.49) !(0.70) !(1.00) !(0.75) "(0.23) !(0.57) !(1.00) !(0.86) "(0.10) "(0.15)
grep v2 !(1.00) !(0.89) !(0.55) !(0.82) !(1.00) !(0.70) "(0.21) !(0.70) !(1.00) !(0.96) "(0.14) "(0.28)
grep v3 !(1.00) !(0.82) !(0.56) "(0.44) !(1.00) !(0.72) "(0.45) "(0.43) !(1.00) !(0.86) "(0.20) "(0.27)
grep v4 !(1.00) !(0.79) !(0.81) !(0.90) !(1.00) !(0.61) !(0.89) !(0.91) !(1.00) !(0.84) "(0.21) "(0.25)
grep v5 !(1.00) !(0.65) !(0.91) !(0.95) !(1.00) !(0.54) !(0.93) !(0.93) !(1.00) !(0.63) "(0.18) "(0.21)

grep !(1.00) !(0.81) !(0.65) !(0.75) !(1.00) !(0.64) !(0.56) !(0.71) !(1.00) !(0.74) "(0.25) "(0.30)
gzip v1 !(1.00) !(1.00) !(0.85) !(0.89) !(1.00) !(1.00) !(0.89) !(0.90) !(0.88) !(0.88) #(0.48) #(0.48)
gzip v2 !(1.00) !(1.00) !(0.82) !(0.86) !(1.00) !(1.00) !(0.87) !(0.88) !(0.88) !(0.88) #(0.48) #(0.49)
gzip v3 !(1.00) !(0.80) !(0.60) "(0.39) !(1.00) !(0.95) !(0.53) "(0.36) "(0.46) "(0.46) #(0.50) #(0.49)
gzip v4 !(1.00) !(0.80) !(0.60) "(0.39) !(1.00) !(0.95) !(0.53) "(0.36) "(0.46) "(0.46) #(0.50) #(0.49)
gzip v5 !(1.00) !(0.80) !(0.60) "(0.39) !(1.00) !(0.95) !(0.53) "(0.36) "(0.46) "(0.46) #(0.50) #(0.49)

gzip !(1.00) !(0.79) !(0.62) !(0.52) !(1.00) !(0.95) !(0.61) !(0.52) !(0.55) !(0.56) #(0.50) #(0.49)
make v1 !(0.92) !(0.56) "(0.31) "(0.30) !(1.00) !(0.64) "(0.36) "(0.47) !(0.92) !(0.97) !(0.64) !(0.66)
make v2 !(1.00) !(0.81) "(0.40) "(0.40) !(1.00) !(0.61) "(0.35) #(0.52) !(0.99) !(0.99) !(0.62) !(0.65)
make v3 !(0.99) !(0.61) "(0.29) "(0.29) !(1.00) !(0.62) "(0.36) !(0.56) !(0.99) !(1.00) !(0.66) !(0.68)
make v4 !(0.89) !(0.60) "(0.26) "(0.26) !(1.00) !(0.58) "(0.32) #(0.51) !(0.99) !(1.00) !(0.68) !(0.69)
make v5 !(1.00) !(0.83) "(0.38) "(0.39) !(1.00) !(0.63) "(0.31) #(0.50) !(0.99) !(0.99) !(0.62) !(0.65)

make !(0.92) !(0.67) "(0.34) "(0.34) !(1.00) !(0.60) "(0.36) #(0.51) !(0.93) !(0.96) !(0.63) !(0.65)
sed v1 !(1.00) !(0.83) !(0.62) !(0.61) !(1.00) !(0.77) !(0.67) !(0.67) !(1.00) !(1.00) !(0.63) !(0.63)
sed v2 !(1.00) !(0.82) "(0.23) !(0.71) !(1.00) !(0.86) "(0.11) !(0.63) !(1.00) !(1.00) "(0.15) "(0.42)
sed v3 !(1.00) !(0.82) "(0.23) !(0.71) !(1.00) !(0.86) "(0.11) !(0.63) !(1.00) !(1.00) "(0.15) "(0.42)
sed v4 !(1.00) !(0.86) "(0.30) #(0.51) !(1.00) !(0.73) "(0.15) "(0.35) !(1.00) !(0.64) "(0.10) "(0.13)
sed v5 !(1.00) !(0.96) "(0.09) #(0.49) !(1.00) !(0.99) "(0.14) !(0.56) !(1.00) !(0.57) "(0.08) "(0.10)

sed !(1.00) !(0.78) "(0.33) !(0.60) !(1.00) !(0.78) "(0.28) !(0.57) !(1.00) !(0.89) "(0.25) "(0.35)
All C Programs !(0.93) !(0.64) !(0.54) !(0.56) !(0.95) !(0.65) !(0.53) !(0.56) !(0.84) !(0.70) "(0.48) !(0.52)

Table 6: An analysis of statistical effectiveness results of APFD. Each cell represents the total times of (!), worse ("), and (#) for corresponding
prioritization scenarios described in Tables 3 to 5.

Language Status Statement Coverage Branch Coverage Method Coverage Sum
∑

TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

Java (test-class)
! 5 0 13 2 6 0 13 4 6 1 13 2 17 1 39 8
" 6 1 0 1 4 4 0 0 6 2 0 6 16 7 0 7
3 13 1 11 4 10 1 10 2 11 1 6 9 34 3 27

Java (test-method)
! 14 6 11 10 14 1 11 12 14 1 13 10 42 8 35 32
" 0 1 3 2 0 5 3 2 0 3 1 2 0 9 7 6
0 7 0 2 0 8 0 0 0 10 0 2 0 25 0 4

C
! 25 25 15 14 25 25 13 16 22 22 11 11 72 72 39 41
" 0 0 9 9 0 0 12 6 3 3 9 9 3 3 30 24
0 0 1 2 0 0 0 3 0 0 5 5 0 0 6 10

Sum
∑ ! 44 31 39 26 45 26 37 32 42 24 37 23 131 81 113 81

" 6 2 12 12 4 9 15 13 9 8 10 17 19 19 37 42
3 20 2 15 4 18 1 8 2 21 6 13 9 59 9 36

ing from 0.56 to 1.00 (except for the programs gzip v3,
gzip v4, and gzip v5, with method coverage). Howev-
er, although all p values for the comparisons between
TCPccc and TCPart or TCPsearch are also less than 0.05,
their Â12 values are much greater than 0.50 in some
cases, but also much less than 0.50 in others. Never-
theless, considering all the C programs, not only does
TCPccc have significantly different APFD values to the
other four RTCP techniques, but it also has better per-
formances overall (except for TCPart with method cov-
erage).

Table 6 summarizes the statistical results, presenting
the total number of times TCPccc is better (!), worse
("), or not statistically different (#), compared to the
other RTCP techniques. Based on this table, we can
answer RQ1 as follows:

1. When prioritizing Java test suites at the test-class
level, TCPccc performs much better than TCPart;
similarly to TCPtot and TCPseaerch; and slightly
worse than TCPadd.

2. When prioritizing Java test suites at the test-
method level, TCPccc performs much better than

13

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

c

(a) ant-statement coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

c

(b) ant-branch coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

c

(c) ant-method coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

V5V4V3V2V1

A
P

F
D

c

(d) jmeter-statement coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V5V4V3V2V1

A
P

F
D

c

(e) jmeter-branch coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

V5V4V3V2V1

A
P

F
D

c

(f) jmeter-method coverage

0.20

0.30

0.40

0.50

0.60

0.70

0.80

V3V2V1

A
P

F
D

c

(g) jtopas-statement coverage

0.20

0.30

0.40

0.50

0.60

0.70

0.80

V3V2V1

A
P

F
D

c

(h) jtopas-branch coverage

0.20

0.30

0.40

0.50

0.60

0.70

0.80

V3V2V1

A
P

F
D

c

(i) jtopas-method coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

V3V2V1

A
P

F
D

c

(j) xmlsec-statement coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

V3V2V1

A
P

F
D

c

(k) xmlsec-branch coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

V3V2V1

A
P

F
D

c

(l) xmlsec-method coverage

Fig. 5: Effectiveness: APFDc results for Java programs at the test-class level

TCPtot, TCPart, and TCPsearch; and similarly to
TCPadd.

3. When prioritizing C test suites, TCPccc perform-
s much better than TCPtot, TCPadd, and TCPsearch;
and slightly better than TCPart.

In other words, as will be discussed in detail later (Sec-
tions 5.3 and 5.4), code coverage granularity and test
case granularity may impact on the effectiveness of C-
CCP, in terms of APFD. Nevertheless, the ratios of
TCPccc performing better (!) rather than worse (")
than TCPtot, TCPadd, TCPart, and TCPsearch, are: 6.89
(131/19), 4.26 (81/19), 3.05 (113/37), and 1.93 (81/42),
respectively. In conclusion, overall, the proposed CC-
CP approach is more effective than the other four RTCP
techniques, in terms of testing effectiveness, as mea-

sured by APFD.

5.2. RQ2: Effectiveness of CCCP Measured by
APFDc

Next, we provide the APFDc results for CCCP for dif-
ferent code coverage and test case granularities. Figures
5 to 7 show the APFDc results for the Java programs
at the test-class level; at the test-method level; and the
C programs, respectively. Each sub-figure in these fig-
ures has the program versions across the x-axis, and the
APFDc values for the five RTCP techniques on the y-
axis. Tables 7 to 9 present the corresponding statistical
comparisons.

14

Table 7: Statistical effectiveness comparisons of APFDc for Java programs at the test-class level. For a comparison between two methods TCPccc
and M, where M ∈ {TCPtot,TCPadd,TCPart,TCPsearch}, the symbol ! means that TCPccc is better (p-value is less than 0.05, and the effect size
Â12(TCPccc,M) is greater than 0.50); the symbol " means that M is better (the p-value is less than 0.05, and Â12(TCPccc,M) is less than 0.50);
and the symbol # means that there is no statistically significant difference between them (the p-value is greater than 0.05).

Program Name Statement Coverage Branch Coverage Method Coverage
TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

ant v1 !(1.00) !(1.00) !(1.00) !(0.97) !(1.00) !(0.59) !(1.00) !(0.58) !(1.00) !(0.59) !(1.00) !(0.56)
ant v2 !(1.00) !(0.75) !(0.59) !(0.70) !(1.00) !(1.00) "(0.21) !(0.96) !(1.00) #(0.50) "(0.32) !(0.53)
ant v3 !(1.00) !(0.65) !(0.98) !(0.66) !(1.00) !(1.00) "(0.45) !(0.85) !(1.00) #(0.50) "(0.44) !(0.53)

ant !(1.00) !(0.60) !(0.85) !(0.59) !(0.83) !(0.62) !(0.61) !(0.60) !(0.98) #(0.51) !(0.59) !(0.52)
jmeter v1 "(0.00) "(0.00) !(1.00) "(0.00) "(0.00) !(0.56) !(0.96) #(0.52) "(0.00) !(0.67) !(1.00) !(0.64)
jmeter v2 "(0.00) "(0.14) !(0.99) "(0.12) "(0.00) #(0.49) !(0.86) "(0.47) "(0.00) !(1.00) !(1.00) !(1.00)
jmeter v3 "(0.00) !(0.66) !(0.69) !(0.67) "(0.00) !(0.54) !(0.86) #(0.48) "(0.00) "(0.47) !(0.63) "(0.46)
jmeter v4 #(0.49) !(0.73) !(0.78) !(0.75) "(0.00) !(0.53) !(0.81) "(0.46) "(0.00) !(0.70) !(0.58) !(0.72)
jmeter v5 !(1.00) !(0.61) !(0.92) !(0.64) !(0.92) !(0.62) !(0.92) !(0.55) !(1.00) !(0.57) !(0.98) !(0.62)

jmeter "(0.33) #(0.49) !(0.90) #(0.50) "(0.18) #(0.51) !(0.86) #(0.50) "(0.36) !(0.54) !(0.84) !(0.54)
jtopas v1 !(1.00) !(1.00) !(0.69) !(1.00) !(1.00) !(1.00) !(0.62) !(1.00) !(1.00) !(0.74) !(1.00) !(0.74)
jtopas v2 !(1.00) !(1.00) #(0.49) !(1.00) !(1.00) !(1.00) "(0.44) !(1.00) !(1.00) !(0.76) !(0.88) !(0.74)
jtopas v3 !(1.00) #(0.50) "(0.12) #(0.50) !(1.00) #(0.50) "(0.10) #(0.50) !(1.00) #(0.50) "(0.40) #(0.49)

jtopas !(0.78) !(0.61) #(0.50) !(0.61) !(0.78) !(0.61) "(0.47) !(0.61) !(0.87) !(0.56) !(0.73) !(0.55)
xmlsec v1 "(0.00) #(0.50) !(0.87) #(0.50) "(0.00) "(0.36) !(0.72) #(0.52) "(0.00) "(0.00) !(0.76) "(0.00)
xmlsec v2 "(0.00) #(0.50) "(0.22) #(0.50) !(1.00) !(0.75) !(0.64) !(0.81) "(0.00) !(0.66) "(0.16) !(0.76)
xmlsec v3 "(0.00) "(0.00) "(0.27) "(0.00) "(0.00) "(0.27) "(0.28) "(0.27) "(0.00) "(0.20) "(0.19) "(0.20)

xmlsec "(0.22) "(0.44) "(0.48) "(0.44) "(0.28) #(0.49) !(0.54) #(0.51) "(0.00) "(0.41) "(0.35) "(0.44)
All Java Programs !(0.58) !(0.52) !(0.68) !(0.53) !(0.53) !(0.52) !(0.65) !(0.52) !(0.58) #(0.50) !(0.67) !(0.51)

Table 8: Statistical effectiveness comparisons of APFDc for Java programs at the test-method level. For a comparison between two methods
TCPccc and M, where M ∈ {TCPtot,TCPadd,TCPart,TCPsearch}, the symbol ! means that TCPccc is better (p-value is less than 0.05, and the effect
size Â12(TCPccc,M) is greater than 0.50); the symbol " means that M is better (the p-value is less than 0.05, and Â12(TCPccc,M) is less than 0.50);
and the symbol # means that there is no statistically significant difference between them (the p-value is greater than 0.05).

Program Name Statement Coverage Branch Coverage Method Coverage
TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

ant v1 "(0.00) !(0.54) !(1.00) "(0.45) "(0.00) #(0.50) !(1.00) !(0.68) "(0.00) "(0.42) !(1.00) #(0.48)
ant v2 !(0.99) #(0.50) !(1.00) !(0.56) !(1.00) #(0.52) !(1.00) !(0.87) "(0.44) #(0.52) !(0.99) !(0.64)
ant v3 "(0.00) #(0.49) !(1.00) !(0.63) !(1.00) #(0.48) !(1.00) !(0.77) "(0.17) #(0.47) !(0.99) !(0.64)

ant "(0.40) #(0.51) !(1.00) !(0.54) !(0.63) #(0.50) !(1.00) !(0.76) "(0.24) "(0.47) !(0.99) !(0.59)
jmeter v1 !(1.00) !(0.53) !(1.00) !(0.63) !(1.00) #(0.50) !(0.93) !(0.80) !(0.76) #(0.50) !(0.63) !(0.53)
jmeter v2 !(1.00) !(0.53) !(1.00) !(0.65) !(1.00) #(0.49) !(0.90) !(0.82) !(1.00) #(0.50) !(0.88) !(0.56)
jmeter v3 !(1.00) #(0.52) !(1.00) "(0.47) !(1.00) "(0.44) !(0.99) !(0.66) !(1.00) "(0.45) !(1.00) "(0.47)
jmeter v4 !(1.00) #(0.51) !(1.00) #(0.48) !(1.00) #(0.49) !(1.00) !(0.69) !(1.00) "(0.41) !(1.00) "(0.44)
jmeter v5 !(1.00) #(0.50) !(1.00) !(0.61) !(1.00) "(0.30) !(1.00) !(0.77) !(1.00) #(0.48) !(0.86) "(0.41)

jmeter !(1.00) #(0.51) !(1.00) !(0.57) !(1.00) "(0.46) !(0.97) !(0.69) !(0.95) "(0.48) !(0.85) #(0.49)
jtopas v1 !(1.00) !(1.00) "(0.00) !(0.81) !(1.00) "(0.37) "(0.00) "(0.36) !(1.00) !(0.53) "(0.31) "(0.47)
jtopas v2 !(1.00) !(0.95) "(0.00) #(0.51) !(1.00) !(0.64) "(0.00) #(0.50) !(1.00) !(0.53) "(0.04) "(0.33)
jtopas v3 !(1.00) #(0.51) "(0.00) "(0.18) !(1.00) #(0.50) "(0.00) "(0.28) !(1.00) #(0.49) "(0.05) #(0.51)

jtopas !(1.00) !(0.61) "(0.00) #(0.50) !(1.00) #(0.50) "(0.00) "(0.42) !(1.00) !(0.52) "(0.14) "(0.43)
xmlsec v1 !(1.00) "(0.27) "(0.38) "(0.38) !(1.00) !(0.53) "(0.36) #(0.52) !(1.00) !(0.53) !(0.69) !(0.56)
xmlsec v2 !(1.00) #(0.50) !(0.83) !(0.67) !(1.00) !(0.57) !(0.56) !(0.78) !(1.00) #(0.49) "(0.46) !(0.54)
xmlsec v3 !(1.00) #(0.50) "(0.12) !(0.61) !(1.00) "(0.45) "(0.01) "(0.14) !(1.00) #(0.50) #(0.48) !(0.55)

xmlsec !(1.00) "(0.47) "(0.46) !(0.54) !(0.83) #(0.51) "(0.34) !(0.53) !(1.00) #(0.50) !(0.53) !(0.54)
All Java Programs !(0.85) #(0.51) !(0.64) !(0.54) !(0.77) #(0.50) !(0.62) !(0.57) !(0.87) "(0.49) !(0.67) !(0.51)

5.2.1. APFDc Results: Java Programs (Test-Class Lev-
el)

Based on Figure 5 and Table 7, we have the following
observations:

(1) Compared with TCPtot, TCPccc has much better
APFDc results for the programs ant and jtopas, irre-
spective of program version and code coverage granu-
larity, with the maximum difference between the mean
and median values being up to about 30%. For the pro-
grams jmeter and xmlsec, however, TCPccc performs
worse than TCPtot, with a maximum APFDc difference
of about 15%.

(2) Although TCPccc performs better than TCPart in
many cases (for example, with jmeter, for all code cov-
erage granularities), it also sometimes performs worse
(including with ant v2 and ant v3 for the branch and
method coverage levels). Nevertheless, the TCPccc
APFDc values have much lower variation than TCPart.

(3) TCPccc has very similar performance to TCPadd
and TCPsearch, sometimes performing slightly better (for
example, with jtopas, using statement coverage) or
worse (such as with xmlsec v3, for method coverage).
The differences among the mean and median APFDc
values for the three RTCP techniques are very small, at

15

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

c

(a) ant-statement coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

c

(b) ant-branch coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V3V2V1

A
P

F
D

c

(c) ant-method coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V5V4V3V2V1

A
P

F
D

c

(d) jmeter-statement coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V5V4V3V2V1

A
P

F
D

c

(e) jmeter-branch coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V5V4V3V2V1

A
P

F
D

c

(f) jmeter-method coverage

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V3V2V1

A
P

F
D

c

(g) jtopas-statement coverage

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V3V2V1

A
P

F
D

c

(h) jtopas-branch coverage

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

V3V2V1

A
P

F
D

c

(i) jtopas-method coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

V3V2V1

A
P

F
D

c

(j) xmlsec-statement coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V3V2V1

A
P

F
D

c

(k) xmlsec-branch coverage

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V3V2V1

A
P

F
D

c

(l) xmlsec-method coverage

Fig. 6: Effectiveness: APFDc results for Java programs at the test-method level

most, about 5%.
(4) Overall, the statistical analyses support the box

plot observations. Looking at all Java programs togeth-
er, TCPccc is better than TCPtot and TCPart, for all code
coverage granularities: The p-values are much less than
0.05; and the Â12 values range from 0.53 to 0.68. Fur-
thermore, TCPccc performs similarly, or slightly better,
compared with TCPadd and TCPsearch, with the Â12 val-
ues ranging from 0.50 to 0.53.

5.2.2. APFDc Results: Java Programs (Test-Method
Level)

Based on Figure 6 and Table 8, we have the following
observations:

(1) Apart from some cases with the program ant (for

example, ant v1), TCPccc has much better APFDc per-
formance than TCPtot, with the maximum mean and me-
dian differences reaching about 50%.

(2) TCPccc performs much better than TCPart for the
programs ant and jmeter, with the maximum mean and
median APFDc differences being about 30%. In con-
trast, TCPart performs much better than TCPccc for the
program jtopas. For the program xmlsec, however, nei-
ther TCPart nor TCPccc is always better: At branch cov-
erage level, for example, TCPccc is better for version v2;
TCPart is better for version v3; and they have similar
performance for version v1.

(3) The TCPccc and TCPadd APFDc distributions are
very similar, in most cases, which means that, on the
whole both techniques have very similar effectiveness

16

Table 9: Statistical effectiveness comparisons of APFDc for C programs. For a comparison between two methods TCPccc and M, where M ∈
{TCPtot,TCPadd,TCPart,TCPsearch}, the symbol ! means that TCPccc is better (p-value is less than 0.05, and the effect size Â12(TCPccc,M) is
greater than 0.50); the symbol " means that M is better (the p-value is less than 0.05, and Â12(TCPccc,M) is less than 0.50); and the symbol #
means that there is no statistically significant difference between them (the p-value is greater than 0.05).

Program Name Statement Coverage Branch Coverage Method Coverage
TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

f lex v1 !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(0.82) !(0.96)
f lex v2 !(1.00) !(0.98) !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(0.99) !(1.00) !(1.00) !(0.76) !(0.93)
f lex v3 !(1.00) !(0.75) !(1.00) !(0.88) !(1.00) !(0.71) !(1.00) !(0.94) !(1.00) !(0.99) !(0.99) !(0.96)
f lex v4 !(1.00) !(0.99) !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(0.75) !(0.92)
f lex v5 !(1.00) !(0.98) !(1.00) !(0.99) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(1.00) !(0.75) !(0.92)

f lex !(1.00) !(0.89) !(1.00) !(0.94) !(1.00) !(0.86) !(1.00) !(0.95) !(1.00) !(0.86) !(0.79) !(0.87)
grep v1 !(1.00) !(0.97) "(0.34) !(0.57) !(1.00) !(0.84) "(0.17) #(0.49) !(1.00) !(0.79) "(0.06) "(0.08)
grep v2 !(1.00) !(0.93) "(0.39) !(0.71) !(1.00) !(0.80) "(0.14) !(0.61) !(1.00) !(0.92) "(0.09) "(0.18)
grep v3 !(1.00) !(0.90) "(0.42) "(0.33) !(1.00) !(0.82) "(0.37) "(0.36) !(1.00) !(0.79) "(0.13) "(0.17)
grep v4 !(1.00) !(0.87) !(0.70) !(0.82) !(1.00) !(0.73) !(0.85) !(0.88) !(1.00) !(0.75) "(0.14) "(0.16)
grep v5 !(1.00) !(0.75) !(0.84) !(0.91) !(1.00) !(0.67) !(0.90) !(0.91) !(1.00) #(0.51) "(0.13) "(0.13)

grep !(1.00) !(0.88) !(0.54) !(0.66) !(1.00) !(0.74) #(0.50) !(0.66) !(1.00) !(0.68) "(0.19) "(0.22)
gzip v1 !(1.00) !(1.00) !(0.86) !(0.89) !(1.00) !(1.00) !(0.89) !(0.90) !(0.88) !(0.88) #(0.48) #(0.48)
gzip v2 !(1.00) !(1.00) !(0.82) !(0.86) !(1.00) !(1.00) !(0.87) !(0.88) !(0.88) !(0.88) #(0.48) #(0.49)
gzip v3 !(1.00) !(0.80) !(0.61) "(0.40) !(1.00) !(0.95) !(0.53) "(0.36) "(0.46) "(0.46) #(0.50) #(0.49)
gzip v4 !(1.00) !(0.80) !(0.61) "(0.40) !(1.00) !(0.95) !(0.53) "(0.36) "(0.46) "(0.46) #(0.50) #(0.49)
gzip v5 !(1.00) !(0.80) !(0.61) "(0.40) !(1.00) !(0.95) !(0.53) "(0.36) "(0.46) "(0.46) #(0.50) #(0.49)

gzip !(0.76) !(0.69) !(0.59) !(0.52) !(0.76) !(0.74) !(0.57) !(0.51) !(0.55) !(0.55) #(0.50) #(0.49)
make v1 !(0.98) "(0.44) "(0.23) "(0.19) !(1.00) !(0.70) "(0.23) "(0.30) !(1.00) !(1.00) !(0.79) !(0.80)
make v2 !(1.00) !(0.71) "(0.31) "(0.27) !(1.00) !(0.67) "(0.21) "(0.34) !(1.00) !(1.00) !(0.76) !(0.79)
make v3 !(1.00) #(0.50) "(0.22) "(0.19) !(1.00) !(0.68) "(0.23) "(0.39) !(1.00) !(1.00) !(0.79) !(0.81)
make v4 !(0.94) #(0.49) "(0.19) "(0.16) !(1.00) !(0.64) "(0.20) "(0.35) !(1.00) !(1.00) !(0.79) !(0.81)
make v5 !(1.00) !(0.73) "(0.29) "(0.26) !(1.00) !(0.69) "(0.18) "(0.32) !(1.00) !(1.00) !(0.76) !(0.79)

make !(0.98) !(0.56) "(0.30) "(0.27) !(1.00) !(0.63) "(0.29) "(0.37) !(1.00) !(1.00) !(0.73) !(0.75)
sed v1 !(1.00) !(0.85) !(0.57) !(0.64) !(1.00) !(0.83) !(0.61) !(0.68) !(1.00) !(1.00) !(0.68) !(0.71)
sed v2 !(1.00) !(0.86) "(0.18) !(0.73) !(1.00) !(0.91) "(0.08) !(0.65) !(1.00) !(1.00) "(0.19) #(0.52)
sed v3 !(1.00) !(0.86) "(0.18) !(0.73) !(1.00) !(0.91) "(0.08) !(0.65) !(1.00) !(1.00) "(0.19) #(0.52)
sed v4 !(1.00) !(0.90) "(0.24) !(0.53) !(1.00) !(0.82) "(0.12) "(0.37) !(1.00) !(0.76) "(0.13) "(0.19)
sed v5 !(1.00) !(0.98) "(0.06) #(0.51) !(1.00) !(0.99) "(0.10) !(0.57) !(1.00) !(0.73) "(0.10) "(0.15)

sed !(1.00) !(0.82) "(0.29) !(0.63) !(1.00) !(0.82) "(0.24) !(0.59) !(1.00) !(0.94) "(0.29) "(0.43)
All C Programs !(0.79) !(0.58) !(0.52) !(0.54) !(0.80) !(0.59) !(0.51) !(0.53) !(0.75) !(0.61) "(0.49) !(0.51)

(according to APFDc).
(4) Although there are some large performance differ-

ences between TCPccc and TCPsearch (such as for ant v2
and xmlsec, with branch coverage), overall, they have
similar mean and median APFDc values. In most cas-
es, TCPccc has lower variation in APFDc values than
TCPsearch.

(5) Overall, the statistical analyses support the box
plot observations. Looking at all Java programs togeth-
er, TCPccc is better than TCPtot and TCPart, with p-
values much less than 0.05, and the Â12 values ranging
from 0.62 to 0.87. TCPccc is better than TCPsearch, with
the p-values less than 0.05, and the Â12 values rang-
ing from 0.51 to 0.57. Finally, TCPccc and TCPadd have
very similar performance: The Â12 values only range
between 0.49 and 0.51; and the p-values are greater than
0.05 for statement and branch coverage, but less than
0.05 for method coverage.

5.2.3. APFDc Results: C Programs
Based on Figure 7 and Table 9, we have the following

observations:
(1) Except for some very few cases (such as gzip v3,

gzip v4, and gzip v5, with method coverage), TCPccc

has much higher APFDc values than TCPtot and TCPadd,
with the maximum mean and median APFDc differ-
ences between TCPccc and TCPtot reaching more than
35%; and between TCPccc and TCPadd being about 15%.

(2) TCPccc performs differently compared with
TCPart and TCPsearch for different programs and dif-
ferent code coverage granularities: With the program
f lex, for example, for all versions and code coverage
granularities, TCPccc is more effective; however, with
make, for both statement and branch coverage, TCPart
and TCPsearch are more effective.

(3) Overall, the statistical results support the box plot
observations. Considering all C programs, the p val-
ues for all comparisons between TCPccc and TCPtot,
TCPadd, TCPart, and TCPsearch are less than 0.05, indi-
cating that the APFDc scores are all significantly dif-
ferent. According to the effect size Â12 values, TCPccc
outperforms TCPtot and TCPadd; and performs slightly
better than TCPsearch and TCPart (except at the method
coverage level).

Table 10 summarizes the statistical results, presenting
the total number of times TCPccc is better (!), worse
("), or not statistically different (#), compared to the
other RTCP techniques. Based on this table, we can

17

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V5V4V3V2V1

A
P

F
D

c

(a) f lex-statement coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V5V4V3V2V1

A
P

F
D

c

(b) f lex-branch coverage

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc

V5V4V3V2V1

A
P

F
D

c

(c) f lex-method coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

c

(d) grep-statement coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

c

(e) grep-branch coverage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

V5V4V3V2V1

A
P

F
D

c

(f) grep-method coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

c

(g) gzip-statement coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

c

(h) gzip-branch coverage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

c

(i) gzip-method coverage

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V5V4V3V2V1

A
P

F
D

c

(j) make-statement coverage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V5V4V3V2V1

A
P

F
D

c

(k) make-branch coverage

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

V5V4V3V2V1

A
P

F
D

c

(l) make-method coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

c

(m) sed-statement coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

c

(n) sed-branch coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V5V4V3V2V1

A
P

F
D

c

(o) sed-method coverage

Fig. 7: Effectiveness: APFDc results for C programs

answer RQ2 as follows:

1. When prioritizing Java test suites at the test-class
level, TCPccc performs much better than TCPadd,
TCPart and TCPsearch; and slightly better than
TCPtot.

2. When prioritizing Java test suites at the test-
method level, TCPccc performs much better than

TCPtot, TCPart, and TCPsearch; and slightly better
than TCPadd.

3. When prioritizing C test suites, TCPccc perform-
s much better than TCPtot, TCPadd, and TCPsearch;
and slightly better than TCPart.

Similar to the APFD results, the CCCP APFDc perfor-
mance is influenced by different factors, including the

18

Table 10: An analysis of statistical effectiveness results of APFDc. Each cell represents the total times of (!), worse ("), and (#) for corresponding
prioritization scenarios described in Tables 7 to 9.

Language Status Statement Coverage Branch Coverage Method Coverage Sum
∑

TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch TCPtot TCPadd TCPart TCPsearch

Java (test-class)
! 7 8 10 8 8 10 9 7 7 8 9 10 22 26 28 25
" 6 3 3 3 6 2 5 3 7 3 5 3 19 8 13 9
1 3 1 3 0 2 0 4 0 3 0 1 1 8 1 8

Java (test-method)
! 12 5 9 8 13 3 9 9 11 3 9 7 36 11 27 24
" 2 1 5 4 1 4 5 3 3 3 4 5 6 8 14 12
0 8 0 2 0 7 0 2 0 8 1 2 0 23 1 6

C
! 25 22 13 15 25 25 13 14 22 21 11 11 72 68 37 40
" 0 1 12 9 0 0 12 10 3 3 9 7 3 4 33 26
0 2 0 1 0 0 0 1 0 1 5 7 0 3 5 9

Sum
∑ ! 44 35 32 31 45 46 38 31 40 32 29 28 129 113 99 90

" 8 5 20 16 4 7 6 22 13 9 18 15 25 21 44 53
1 13 1 6 4 0 9 0 0 12 6 10 5 25 16 16

type of test suite, and the code coverage granularity —
both of which will be discussed in detail in the follow-
ing two sections (Sections 5.3 and 5.4). Nevertheless,
the ratios of TCPccc performing better (!) rather than
worse (") than TCPtot, TCPadd, TCPart, and TCPsearch,
are: 5.16 (129/25), 5.38 (113/21), 2.25 (99/44), and 1.70
(90/53), respectively. In conclusion, overall, the pro-
posed CCCP approach is more effective than the four
other RTCP techniques, in terms of testing effective-
ness, as measured by APFDc.

5.3. RQ3: Impact of Code Coverage Granularity
In this study, we examined three types of code cov-

erage (statement, branch, and method). According to
the APFD results (Figures 2 to 4) and APFDc results
(Figures 5 to 7), in spite of some cases where the three
types of code coverage provide very different APFD or
APFDc results for CCCP, they do, overall, deliver com-
parable performance. This means that the choice of
code coverage granularity may have little overall impact
on the effectiveness of CCCP.

Figure 8 presents the APFD and APFDc results for
the three types of code coverage, according to the sub-
ject programs’ language or test suites (the language or

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Statement coverage Branch coverage Method coverage

C
Java

(test-method)

Java

(test-class)

A
P

F
D

c

A
P

F
D

C
Java

(test-method)

Java

(test-class)

Fig. 8: Effectiveness: CCCP APFD and APFDc results with different
code coverage and test case granularities for all programs

test case granularity is shown on the x-axis; the APFD
scores on the left y-axis; and the APFDc on the right
y-axis). It can be observed that for C programs, state-
ment and branch coverage are very considerable, but
are more effective than method coverage. For Java pro-
grams, however, there is no best one among them, be-
cause they have similar APFD and APFDc values.

Table 11 presents a comparison of the mean and me-
dian APFD and APFDc values, and also shows the p-
values/effect size Â12 for the different code coverage
granularity comparisons. It can be seen from the ta-
ble that the APFD and APFDc values are similar, with
the maximum mean and median value differences being
less than 3%, and less than 8%, respectively. Accord-
ing to the statistical comparisons, there is no single best
code coverage type for CCCP, with each type sometimes
achieving the best results. Nevertheless, branch cover-
age appears slightly more effective than statement and
method coverage for CCCP.

In conclusion, the code coverage granularity may on-
ly provide a small impact on CCCP testing effective-
ness, with branch coverage possibly performing slightly
better than statement and method coverage.

5.4. RQ4: Impact of Test Case Granularity
To answer RQ4, we focus on the Java programs, each

of which had two levels of test cases (the test-class and
test-method levels). As can be seen in the comparisons
between Figures 2 and 3, and between Figures 5 and
6, CCCP usually has significantly lower average APFD
and APFDc values for prioritizing test cases at the test-
class level than at the test-method level.

Considering all the Java programs, as can be seen in
Table 11, the mean and median APFD and APFDc val-
ues at the test-method level are much higher than at the
test-class level, regardless of code coverage granularity.
One possible explanation for this is: Because a test case
at the test-class level consists of a number of test cases

19

Table 11: Statistical effectiveness comparisons of APFD and APFDc between different granularities for CCCP. Each cell in the Mean, Median,
and Comparison columns represents the mean APFD or APFDc value, the median value, and the p-values/effect size Â12 for the different code
coverage granularity comparisons, respectively.

Metric Language Mean Median Comparison
Statement Branch Method Statement Branch Method Statement vs Branch Statement vs Method Branch vs Method

APFD
Java (test-class) 0.5385 0.5430 0.5369 0.5342 0.5420 0.5379 2.5E-60/0.44 6.1E-07/0.52 9.9E-106/0.58

Java (test-method) 0.6542 0.6626 0.6664 0.6390 0.6339 0.6698 1.83E-40/0.45 1.4E-75/0.44 2.5E-07/0.48
C 0.9115 0.9156 0.8901 0.9076 0.9077 0.8842 4.4E-18/0.48 0/0.62 0/0.64

APFDc

Java (test-class) 0.6270 0.6002 0.6171 0.6679 0.5904 0.6336 2.3E-247/0.62 7.6E-08/0.52 1.1E-29/0.46
Java (test-method) 0.7130 0.6972 0.7227 0.7112 0.7651 0.7279 2.3E-08/0.48 4.9E-02/0.49 5.0E-25/0.54

C 0.7722 0.7758 0.7581 0.8909 0.8937 0.8565 1.1E-11/0.48 7.9E-222/0.58 1.4E-252/0.59

at the test-method level, prioritization at the test-method
level may be more flexible, giving better fault detection
effectiveness [10].

In conclusion, CCCP has better fault detection effec-
tiveness when prioritizing test cases at the test-method
level than at the test-class level.

5.5. RQ5: CCCP Efficiency

Table 12 presents the time overheads, in millisecond-
s, for the five RTCP techniques. The “Comp.” col-
umn presents the compilation times of the subject pro-
grams, and the “Instr.” column presents the instrumen-
tation time (to collect the information of statement,
branch, and method coverage). Apart from the first four
columns, each cell in the table shows the prioritization
time using each RTCP technique, for each program, p-
resented as µ/σ (where µ is the mean time and σ is the
standard deviation over the 1000 independent runs).

The Java programs had each version individually
adapted to collect the code coverage information, with
different versions using different test cases. Because of
this, the execution time was collected for each Java pro-
gram version. In contrast, each PV0 version of the C
programs was compiled and instrumented to collect the
code coverage information for each test case, and al-
l program versions used the same test cases. Because
of this, each C program version has the same compila-
tion and instrumentation time. Furthermore, because all
the studied RTCP techniques prioritized test cases after
the coverage information was collected, they were all
deemed to have the same compilation and instrumenta-
tion time for each version of each program.

Based on the time overheads, we have the following
observations:

(1) As expected, the time overheads for all RTCP
techniques (including CCCP) were lowest with method
coverage, followed by branch, and then statement cov-
erage, irrespective of test case type. The reason for this,
as shown in Table 2, is that the number of methods is
much lower than the number of branches, which in turn

is lower than the number of statements; the related con-
verted test cases are thus shorter, requiring less time to
prioritize.

(2) It was also expected that (for the Java programs)
prioritization at the test-method level would take longer
than at the test-class level, regardless of code coverage
granularity. The reason for this, again, relates to the
number of test cases to be prioritized at the test-method
level being more than at the test-class level.

(3) TCPccc requires much less time to prioritize test
cases than TCPart and TCPsearch, and very similar time
to TCPadd, irrespective of subject program, and code
coverage and test case granularities. Also, because
TCPtot does not use feedback information during the
prioritization process, it has much faster prioritization
speeds than TCPccc.

In conclusion, TCPccc prioritizes test cases faster than
TCPart and TCPsearch; has similar speed to TCPadd; but
performs slower than TCPtot.

5.6. RQ6: CCCP Effectiveness with λ = 2

To answer RQ6, this section briefly discusses the ef-
fectiveness of CCCP when λ = 2. Figure 9 shows the
detailed APFD and APFDc results for the C program-
s, with the code coverage granularity on the x-axis, and
the y-axis giving the APFD or APFDc scores. For ease
of presentation, TCPccc1 and TCPccc2 denote CCCP with
λ = 1 and λ = 2, respectively. Table 13 presents the sta-
tistical comparisons of the TCPccc2 APFD and APFDc
scores with those of the other five RTCP techniques:
Each data cell shows the p-value/effect size Â12 value.

Based on the experimental data, we have the follow-
ing observations:

(1) TCPccc2 has the higher mean and median APFD
and APFDc values than TCPtot and TCPadd, and better
or similar to TCPart, TCPsearch, and TCPccc1, regardless
of code coverage granularity.

(2) The statistical results confirm the box plot obser-
vations. All p-values are much less than 0.05, indi-
cating a statistically significant difference between the

20

Ta
bl

e
12

:
Effi

ci
en

cy
:

C
om

pa
ris

on
s

of
ex

ec
ut

io
n

co
st

s
in

m
ill

is
ec

on
ds

fo
r

di
ff

er
en

tR
TC

P
te

ch
ni

qu
es

.
Th

e
“C

om
p.

”
co

lu
m

n
pr

es
en

ts
th

e
co

m
pi

la
tio

n
tim

es
of

th
e

su
bj

ec
tp

ro
gr

am
s,

an
d

th
e

“I
ns

tr.
”

co
lu

m
n

pr
es

en
ts

th
e

in
st

ru
m

en
ta

tio
n

tim
e

(to
co

lle
ct

th
e

in
fo

rm
at

io
n

of
st

at
em

en
t,

br
an

ch
,a

nd
m

et
ho

d
co

ve
ra

ge
).

A
pa

rt
fr

om
th

e
fir

st
fo

ur
co

lu
m

ns
,e

ac
h

ce
ll

in
th

e
ta

bl
e

sh
ow

s
th

e
pr

io
rit

iz
at

io
n

tim
e

us
in

g
ea

ch
RT

C
P

te
ch

ni
qu

e,
fo

re
ac

h
pr

og
ra

m
,p

re
se

nt
ed

as
µ
/σ

(w
he

re
µ

is
th

e
m

ea
n

tim
e

an
d
σ

is
th

e
st

an
da

rd
de

vi
at

io
n

ov
er

th
e

10
00

in
de

pe
nd

en
tr

un
s)

.

La
ng

ua
ge

Pr
og

ra
m

Ti
m

e
St

at
em

en
tC

ov
er

ag
e

Br
an

ch
C

ov
er

ag
e

M
et

ho
d

C
ov

er
ag

e
Su

m
∑

C
om

p.
In

st
r.

TC
P t

ot
TC

P a
dd

TC
P a

rt
TC

P s
ea

rc
h

TC
P c

cc
TC

P t
ot

TC
P a

dd
TC

P a
rt

TC
P s

ea
rc

h
TC

P c
cc

TC
P t

ot
TC

P a
dd

TC
P a

rt
TC

P s
ea

rc
h

TC
P c

cc
TC

P t
ot

TC
P a

dd
TC

P a
rt

TC
P s

ea
rc

h
TC

P c
cc

an
t

v1
10

,3
86

62
,6

71
0.

3/
0.

5
6.

4/
0.

5
14

9.
6/

13
.2

8,
62

9.
9/

10
0.

4
5.

0/
0.

7
0.

1/
0.

3
1.

3/
0.

5
40

.9
/5

.2
1,

89
9.

6/
59

.1
1.

4/
0.

6
0.

0/
0.

2
1.

0/
0.

2
29

.1
/4

.3
1,

49
1.

3/
94

.5
0.

9/
0.

3
0.

4/
–

8.
7/

–
21

9.
6/

–
12

,0
20

.8
/–

7.
3/

–

an
t

v2
14

,1
23

11
5,

81
8

0.
8/

0.
9

19
.2
/1

.4
73

9.
9/

54
.0

21
,8

85
.1
/7

99
.4

19
.2
/2

.5
0.

2/
0.

7
4.

9/
1.

6
20

6.
7/

15
.9

5,
99

9.
2/

21
0.

5
5.

3/
1.

2
0.

1/
0.

3
3.

1/
0.

2
13

1.
9/

9.
7

3,
83

2.
8/

15
0.

5
3.

4/
0.

7
1.

1/
–

27
.2
/–

1,
07

8.
5/

–
31

,7
17

.1
/–

27
.9
/–

an
t

v3
36

,1
26

11
6,

40
4

0.
8/

0.
5

19
.2
/1

.9
74

0.
2/

52
.3

22
,0

76
.9
/2

,1
34

.4
19

.2
/2

.3
0.

2/
0.

4
4.

9/
1.

1
20

4.
3/

16
.4

6,
12

0.
5/

23
4.

1
5.

3/
0.

7
0.

1/
0.

4
3.

1/
0.

9
13

2.
5/

10
.4

3,
90

3.
5/

17
2.

4
3.

5/
0.

6
1.

1/
–

27
.2
/–

1,
07

7.
0/

–
32

,1
00

.9
/–

28
.0
/–

jm
et

er
v1

4,
21

2
38

,4
06

0.
1/

0.
3

0.
9/

0.
3

6.
6/

1.
1

7,
34

3.
6/

71
.2

0.
9/

1.
7

0.
1/

0.
3

0.
3/

0.
5

2.
5/

0.
6

1,
84

2.
0/

52
.1

0.
3/

0.
5

0.
0/

0.
1

0.
1/

0.
2

0.
6/

0.
5

27
6.

2/
11

.2
0.

1/
0.

2
0.

2/
–

1.
3/

–
9.

7/
–

9,
46

1.
8/

–
1.

3/
–

jm
et

er
v2

4,
73

7
40

,4
69

0.
2/

0.
7

1.
1/

0.
2

8.
8/

1.
4

7,
74

0.
5/

76
.5

1.
0/

0.
1

0.
1/

0.
2

0.
4/

0.
5

3.
3/

0.
8

1,
99

2.
8/

49
.5

0.
4/

0.
5

0.
0/

0.
1

0.
1/

0.
3

0.
8/

0.
5

31
6.

4/
7.

5
0.

1/
0.

2
0.

3/
–

1.
6/

–
12

.9
/–

10
,0

49
.7
/–

1.
5/

–

jm
et

er
v3

6,
29

0
45

,9
50

0.
3/

0.
5

2.
9/

0.
3

38
.2
/5

.7
17

,4
97

.2
/2

20
.2

3.
2/

0.
4

0.
1/

0.
3

1.
1/

0.
2

13
.8
/2

.0
6,

03
2.

3/
80

.6
1.

2/
0.

4
0.

0/
0.

1
0.

3/
0.

5
3.

4/
0.

8
76

3.
6/

25
.8

0.
2/

0.
4

0.
4/

–
4.

3/
–

55
.4
/–

24
,2

93
.1
/–

4.
6/

–

Ja
va

jm
et

er
v4

13
,3

95
41

,5
01

0.
1/

0.
3

1.
1/

0.
6

21
.0
/2

.6
4,

86
5.

3/
57

.4
1.

3/
0.

5
0.

0/
0.

1
0.

2/
0.

4
4.

5/
0.

7
61

3.
8/

20
.1

0.
3/

0.
8

0.
0/

0.
1

0.
2/

0.
4

4.
1/

0.
7

51
6.

8/
14

.7
0.

2/
0.

4
0.

1/
–

1.
5/

–
29

.6
/–

5,
99

5.
9/

–
1.

8/
–

(te
st

-c
la

ss
)

jm
et

er
v5

13
,0

70
41

,3
97

0.
2/

0.
4

2.
0/

1.
2

50
.0
/4

.8
7,

66
1.

5/
84

.7
3.

1/
1.

1
0.

0/
0.

2
0.

3/
0.

5
7.

7/
1.

2
78

4.
0/

22
.5

0.
4/

0.
5

0.
0/

0.
2

0.
4/

0.
5

8.
9/

1.
2

76
1.

4/
22

.7
0.

5/
0.

5
0.

2/
–

2.
7/

–
66

.6
/–

9,
20

6.
9/

–
4.

0/
–

jto
pa

s
v1

15
,3

27
22

,3
17

0.
2/

0.
5

3.
1/

1.
1

83
.5
/7

.2
9,

02
8.

7/
12

9.
9

4.
0/

0.
3

0.
0/

0.
2

0.
4/

0.
5

11
.9
/1

.5
86

7.
4/

25
.9

0.
6/

0.
7

0.
1/

0.
3

0.
7/

0.
5

17
.7
/1

.8
1,

05
0.

6/
33

.9
0.

8/
0.

4
0.

3/
–

4.
2/

–
11

3.
1/

–
10

,9
46

.7
/–

5.
4/

–

jto
pa

s
v2

15
,0

28
24

,5
71

0.
2/

0.
4

3.
1/

1.
3

85
.5
/7

.2
9,

15
6.

8/
14

1.
8

4.
2/

0.
6

0.
0/

0.
2

0.
4/

0.
5

12
.2
/1

.5
92

9.
8/

27
.3

0.
6/

0.
6

0.
0/

0.
2

0.
7/

0.
5

18
.3
/2

.0
1,

10
6.

2/
35

.4
0.

9/
1.

4
0.

2/
–

4.
2/

–
11

6.
0/

–
11

,1
92

.8
/–

5.
7/

–

jto
pa

s
v3

16
,8

79
35

,6
46

0.
2/

0.
4

4.
0/

0.
8

12
2.

3/
9.

9
9,

99
6.

7/
25

8.
5

5.
4/

2.
2

0.
0/

0.
2

0.
6/

0.
5

14
.9
/1

.7
1,

02
1.

1/
37

.7
0.

7/
0.

4
0.

1/
0.

2
0.

9/
0.

4
25

.4
/2

.4
1,

24
9.

2/
51

.8
1.

0/
0.

1
0.

3/
–

5.
5/

–
16

2.
6/

–
12

,2
67

.0
/–

7.
1/

–

xm
ls

ec
v1

9,
72

2
12

,5
70

0.
2/

0.
4

1.
6/

0.
5

21
.0
/2

.3
6,

78
1.

8/
74

.3
1.

3/
0.

5
0.

0/
0.

2
0.

5/
0.

5
4.

9/
1.

0
71

6.
8/

17
.3

0.
3/

0.
5

0.
0/

0.
2

0.
2/

0.
4

3.
2/

0.
7

53
6.

7/
12

.6
0.

2/
0.

4
0.

2/
–

2.
3/

–
29

.1
/–

8,
03

5.
3/

–
1.

8/
–

xm
ls

ec
v2

10
,3

52
25

,2
34

0.
2/

0.
4

1.
7/

0.
5

21
.8
/2

.7
6,

78
1.

6/
72

8.
6

1.
4/

0.
5

0.
1/

0.
2

0.
4/

0.
5

5.
0/

1.
2

80
8.

6/
18

.2
0.

3/
0.

5
0.

0/
0.

2
0.

2/
0.

4
3.

1/
0.

7
51

2.
6/

12
.6

0.
2/

0.
4

0.
3/

–
2.

3/
–

29
.9
/–

8,
10

2.
8/

–
1.

9/
–

xm
ls

ec
v3

10
,2

76
31

,7
00

0.
2/

0.
7

1.
3/

0.
4

14
.5
/1

.9
4,

92
6.

8/
98

6.
1

1.
1/

0.
8

0.
0/

0.
2

0.
4/

0.
5

3.
4/

0.
9

64
3.

7/
16

.3
0.

3/
0.

4
0.

0/
0.

2
0.

2/
0.

4
2.

0/
0.

5
40

9.
8/

10
.8

0.
1/

0.
4

0.
2/

–
1.

9/
–

19
.9
/–

5,
98

0.
3/

–
1.

5/
–

an
t

v1
–

–
1.

1/
0.

6
82

.7
/3

.2
7,

89
5.

2/
36

3.
0

25
,5

52
.6
/6

85
.0

67
.1
/4

.5
0.

4/
0.

8
17

.9
/2

.4
72

3.
8/

42
.6

5,
95

0.
3/

40
0.

1
19

.3
/3

.1
0.

3/
1.

0
15

.1
/1

.9
1,

45
6.

9/
70

.7
5,

05
5.

7/
33

9.
3

13
.0
/2

.0
1.

8/
–

11
5.

7/
–

10
,0

75
.9
/–

36
,5

58
.6
/–

99
.4
/–

an
t

v2
–

–
2.

7/
1.

3
30

8.
3/

5.
6

46
,9

43
.6
/2

,4
84

.2
56

,4
64

.7
/1

2,
83

4.
1

28
7.

1/
10

.0
0.

9/
1.

6
77

.3
/1

.5
2,

30
7.

4/
15

1.
0

17
,6

20
.8
/1

,0
07

.5
77

.9
/5

.9
0.

5/
1.

1
56

.6
/2

.5
8,

74
0.

3/
30

9.
3

13
,0

52
.6
/7

55
.0

52
.7
/3

.9
4.

1/
–

44
2.

2/
–

57
,9

91
.3
/–

87
,1

38
.1
/–

41
7.

7/
–

an
t

v3
–

–
2.

8/
1.

5
30

3.
8/

5.
2

46
,4

87
.4
/1

,9
50

.7
56

,0
55

.4
/1

2,
82

8.
2

28
4.

0/
8.

9
0.

8/
1.

0
77

.0
/1

.4
2,

28
4.

0/
14

6.
0

11
,4

63
.7
/2

,4
29

.0
76

.8
/2

.7
0.

5/
1.

0
55

.0
/0

.9
8,

59
1.

8/
30

8.
4

9,
45

6.
1/

1,
66

9.
7

52
.0
/2

.3
4.

1/
–

43
5.

8/
–

57
,3

63
.2
/–

76
,9

75
.2
/–

41
2.

8/
–

jm
et

er
v1

–
–

1.
0/

1.
0

63
.4
/1

.8
10

,9
45

.7
/3

,6
39

.1
48

,2
23

.8
/3

,0
45

.9
71

.9
/3

.3
0.

4/
0.

7
23

.7
/1

.1
2,

91
2.

9/
10

9.
8

16
,1

69
.4
/8

80
.2

26
.5
/1

.7
0.

1/
0.

3
6.

3/
0.

5
72

7.
7/

29
.2

2,
69

7.
8/

35
5.

8
5.

5/
0.

5
1.

5/
–

93
.4
/–

14
,5

86
.3
/–

67
,0

91
.0
/–

10
3.

9/
–

jm
et

er
v2

–
–

1.
0/

0.
5

66
.7
/1

.8
11

,8
00

.5
/3

,8
38

.7
50

,7
76

.5
/3

,5
64

.1
75

.3
/3

.0
0.

4/
0.

5
25

.0
/1

.5
3,

06
1.

5/
12

8.
3

17
,1

39
.4
/1

,0
03

.3
28

.2
/1

.6
0.

1/
0.

3
6.

6/
0.

5
79

2.
7/

31
.6

3,
12

2.
9/

34
1.

7
6.

0/
0.

3
1.

5/
–

98
.3
/–

15
,6

54
.7
/–

71
,0

38
.8
/–

10
9.

5/
–

jm
et

er
v3

–
–

2.
7/

2.
1

26
3.

0/
4.

6
67

,4
17

.5
/2

4,
85

6.
1

11
5,

58
7.

2/
31

,3
31

.9
36

0.
8/

10
.2

1.
0/

0.
6

98
.2
/2

.7
35

,0
13

.6
/7

,0
80

.4
47

,2
54

.9
/5

,4
75

.1
13

2.
7/

4.
4

0.
3/

0.
4

28
.6
/0

.7
9,

55
6.

6/
49

4.
8

15
,4

77
.5
/1

,0
17

.4
27

.9
/2

.0
4.

0/
–

38
9.

8/
–

11
1,

98
7.

7/
–

17
8,

31
9.

6/
–

52
1.

4/
–

Ja
va

jm
et

er
v4

–
–

0.
2/

0.
4

7.
8/

0.
4

85
4.

6/
94

.2
18

,9
56

.3
/3

,2
08

.7
9.

3/
1.

7
0.

1/
0.

2
1.

7/
0.

5
62

.3
/1

6.
8

3,
38

8.
9/

80
5.

1
2.

1/
0.

2
0.

0/
0.

2
1.

4/
0.

5
16

8.
0/

33
.4

4,
02

4.
7/

56
4.

2
1.

7/
0.

5
0.

3/
–

10
.9
/–

1,
08

4.
9/

–
26

,3
69

.9
/–

13
.1
/–

(te
st

-m
et

ho
d)

jm
et

er
v5

–
–

0.
5/

1.
3

18
.4
/1

.4
2,

63
1.

4/
20

0.
2

11
,4

59
.0
/2

,0
03

.0
22

.6
/1

.8
0.

1/
0.

3
2.

8/
0.

4
11

4.
2/

26
.7

5,
52

4.
5/

53
9.

1
3.

5/
0.

8
0.

1/
0.

3
3.

1/
0.

4
45

5.
9/

64
.2

1,
82

9.
2/

57
.9

3.
8/

1.
1

0.
7/

–
24

.3
/–

3,
20

1.
5/

–
18

,8
12

.7
/–

29
.9
/–

jto
pa

s
v1

–
–

0.
6/

0.
5

23
.5
/0

.6
3,

40
8.

0/
27

3.
4

17
,3

96
.6
/7

02
.3

27
.3
/2

.7
0.

1/
0.

3
3.

3/
0.

5
14

4.
5/

34
.2

1,
71

7.
5/

73
.2

4.
2/

0.
6

0.
1/

0.
4

4.
9/

0.
7

72
1.

3/
91

.1
2,

48
9.

7/
11

0.
4

5.
4/

1.
7

0.
8/

–
31

.7
/–

4,
27

3.
8/

–
21

,6
03

.8
/–

36
.9
/–

jto
pa

s
v2

–
–

0.
7/

0.
7

24
.4
/2

.2
3,

51
9.

3/
28

9.
1

17
,6

71
.1
/7

05
.3

27
.9
/2

.6
0.

1/
0.

3
3.

3/
0.

8
14

8.
8/

34
.6

1,
91

0.
7/

84
.7

4.
3/

1.
4

0.
2/

0.
4

4.
9/

0.
4

74
6.

8/
96

.4
2,

77
4.

4/
10

8.
2

5.
4/

0.
8

1.
0/

–
32

.6
/–

4,
41

4.
9/

–
22

,3
56

.2
/–

37
.6
/–

jto
pa

s
v3

–
–

0.
7/

1.
0

28
.9
/0

.7
4,

47
6.

6/
35

2.
7

20
,4

55
.8
/5

77
.5

34
.0
/3

.2
0.

1/
0.

3
3.

9/
1.

0
18

2.
5/

37
.9

2,
09

1.
8/

10
0.

0
5.

0/
0.

9
0.

2/
0.

9
5.

9/
0.

9
92

2.
1/

11
2.

4
3,

10
5.

3/
12

9.
6

6.
5/

0.
9

1.
0/

–
38

.7
/–

5,
58

1.
2/

–
25

,6
52

.9
/–

45
.5
/–

xm
ls

ec
v1

–
–

0.
9/

1.
0

36
.8
/2

.1
5,

62
3.

0/
41

3.
0

16
,0

75
.6
/4

68
.9

34
.5
/3

.3
0.

2/
0.

5
8.

8/
0.

7
28

2.
4/

55
.3

2,
17

2.
4/

11
1.

3
8.

4/
1.

4
0.

1/
0.

3
5.

6/
1.

2
82

8.
4/

10
2.

2
2,

23
5.

5/
78

.4
5.

3/
1.

0
1.

2/
–

51
.2
/–

6,
73

3.
8/

–
20

,4
83

.5
/–

48
.2
/–

xm
ls

ec
v2

–
–

0.
9/

0.
6

41
.2
/2

.3
6,

43
8.

4/
44

3.
9

13
,3

24
.8
/3

,1
48

.0
38

.1
/2

.9
0.

3/
0.

6
10

.9
/0

.6
35

6.
0/

60
.1

2,
58

1.
1/

12
2.

9
9.

8/
1.

6
0.

1/
0.

3
6.

1/
0.

9
90

3.
5/

10
5.

9
2,

14
9.

4/
73

.5
5.

8/
1.

5
1.

3/
–

58
.2
/–

7,
69

7.
9/

–
18

,0
55

.3
/–

53
.7
/–

xm
ls

ec
v3

–
–

0.
9/

1.
3

33
.7
/2

.2
4,

25
7.

9/
73

4.
8

10
,0

55
.2
/2

,3
34

.9
29

.7
/2

.2
0.

3/
0.

4
9.

0/
1.

3
26

5.
0/

50
.0

2,
11

3.
3/

10
7.

5
8.

0/
1.

6
0.

1/
0.

6
4.

5/
0.

5
62

6.
2/

78
.5

1,
32

2.
8/

20
2.

3
4.

2/
1.

1
1.

3/
–

47
.2
/–

5,
14

9.
1/

–
13

,4
91

.3
/–

41
.9
/–

C

fl
ex

40
1

10
,0

75
7.

8/
4.

0
48

2.
9/

14
.4

6,
74

6.
2/

16
6.

5
4,

30
8.

3/
15

5.
7

50
3.

6/
11

.4
4.

6/
3.

7
30

4.
7/

12
.4

5,
80

5.
9/

16
5.

7
3,

85
5.

0/
16

0.
9

26
0.

2/
8.

0
1.

2/
3.

4
72

.9
/2

.8
40

2.
0/

23
.9

2,
87

1.
9/

63
.9

28
.9
/2

.6
13

.6
/–

86
0.

5/
–

12
,9

54
.1
/–

11
,0

35
.2
/–

79
2.

7/
–

gr
ep

1,
83

3
8,

55
5

4.
4/

3.
6

23
5.

3/
6.

7
3,

54
7.

3/
12

3.
2

2,
87

4.
9/

63
.0

21
6.

2/
7.

5
3.

7/
3.

6
21

7.
0/

6.
7

4,
52

7.
4/

12
2.

5
2,

96
6.

2/
78

.3
17

2.
6/

6.
8

0.
8/

0.
8

48
.8
/1

.1
22

6.
6/

9.
1

2,
25

5.
3/

37
.9

17
.6
/1

.9
8.

9/
–

50
1.

1/
–

8,
30

1.
3/

–
8,

09
6.

4/
–

40
6.

4/
–

gz
ip

30
8

1,
88

2
0.

9/
0.

7
13

.6
/0

.6
70

.2
/4

.4
51

7.
1/

10
.0

16
.5
/1

.9
0.

6/
0.

7
9.

4/
0.

5
50

.2
/3

.6
46

0.
9/

10
.1

10
.2
/1

.4
0.

3/
0.

7
3.

5/
0.

5
7.

4/
1.

2
36

8.
5/

9.
5

2.
3/

0.
8

1.
8/

–
26

.5
/–

12
7.

8/
–

1,
34

6.
5/

–
29

.0
/–

m
ak

e
1,

48
3

8,
52

0
1.

8/
0.

9
21

.8
/0

.7
11

6.
3/

8.
1

78
3.

3/
16

.8
28

.9
/2

.2
1.

3/
1.

0
14

.9
/0

.3
12

0.
2/

7.
9

60
4.

9/
12

.6
18

.5
/1

.9
0.

3/
0.

8
2.

2/
0.

4
5.

9/
1.

1
22

8.
6/

6.
5

2.
5/

0.
6

3.
4/

–
38

.9
/–

24
2.

4/
–

1,
61

6.
8/

–
49

.9
/–

se
d

83
7

2,
95

6
1.

7/
1.

1
68

.2
/1

.2
1,

04
9.

5/
36

.5
1,

59
7.

8/
32

.0
60

.8
/3

.7
1.

1/
1.

0
48

.7
/1

.6
84

9.
0/

32
.7

1,
49

9.
7/

28
.5

31
.6
/2

.6
0.

5/
0.

9
20

.6
/0

.6
87

.8
/4

.4
1,

32
4.

7/
27

.5
7.

3/
1.

1
3.

3/
–

13
7.

5/
–

1,
98

6.
3/

–
4,

42
2.

2/
–

99
.7
/–

Su
m
∑

37
.3
/–

2,
19

2.
0/

–
23

6,
33

1.
5/

–
63

2,
50

8.
4/

–
2,

26
5.

9/
–

17
.4
/–

97
3.

6/
–

59
,7

47
.6
/–

17
6,

75
7.

0/
–

91
7.

2/
–

6.
2/

–
36

3.
8/

–
36

,3
48

.9
/–

92
,5

69
.7
/–

26
5.

9/
–

60
.9
/–

3,
52

9.
4
/–

33
2,

42
8.

0
/–

90
1,

83
5.

1
/–

3,
44

9.
0
/–

21

Table 13: Statistical effectiveness comparisons of APFD and APFDc
between CCCP with λ = 2 and the other five RTCP techniques for all
C programs

Metric Comparison Statement Branch Method

APFD

vs TCPtot 0/0.94 0/0.97 0/0.85
vs TCPadd 0/0.66 0/0.71 0/0.77
vs TCPart 2.3E-149/0.57 0/0.60 6.3E-55/0.54
vs TCPsearch 8.4E-262/0.58 0/0.62 2.2E-253/0.59
vs TCPccc1 3.0E-262/0.53 2.0E-80/0.55 4.8E-103/0.56

APFDc

vs TCPtot 0/0.79 0/0.82 0/0.74
vs TCPadd 0/0.60 0/0.65 0/0.62
vs TCPart 5.0E-68/0.55 4.0E-158/0.57 1.4E-10/0.52
vs TCPsearch 2.5E-135/0.56 4.8E-237/0.58 1.4E-59/0.54
vs TCPccc1 1.4E-40/0.53 1.5E-66/0.54 1.4E-22/0.53

TCPccc2 and each of other five RTCP techniques, regard-
less of APFD and APFDc values. The Â12 results al-
so show TCPccc2 to outperform TCPtot, TCPadd, TCPart,
TCPsearch, and TCPccc1, with probabilities ranging from
74% to 97%, 62% to 77%, 52% to 60%, 54% to 62%,
and 53% to 56%, respectively.

These observations partly confirm our hypothesis
about the performance of CCCP: As the λ for unit com-
bination increases, the testing information for guiding
prioritization is greater, which may will result in im-
proved performance.

Finally, regarding the prioritization time: TCPccc2 re-
quires about 351073.3, 159881.4, and 501.8 millisec-

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TCP
tot

TCP
add

TCP
art

TCP
search

TCP
ccc1

TCP
ccc2

Method coverageBranch coverageStatement coverage

A
P

F
D

(a) APFD

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Method coverageBranch coverageStatement coverage

A
P

F
D

c

(b) APFDc

Fig. 9: Effectiveness: APFD and APFDc results for all C programs

onds for the C programs when using statement, branch
and method coverage, respectively. This low priori-
tization time of 501.8 milliseconds for TCPccc2 with
method coverage is less than the prioritization time for
TCPadd using statement or branch coverage (2192.0 and
973.6 milliseconds, respectively). As shown in Fig-
ure 9, TCPccc2 with method coverage has comparable
fault detection effectiveness to TCPadd with statement or
branch coverage. Because method coverage is usually
much less expensive to achieve than statement or branch
coverage, TCPccc2 with method coverage should be a
better choice than TCPadd with statement or branch cov-
erage. Furthermore, method-level coverage — which
is the most natural for projects that are large in scale
and high in complexity — has greater potential practi-
cal application than statement and branch criteria, mak-
ing TCPccc2 with method coverage more feasible (2-
wise code combinations coverage may incur much more
complex calculations for statement and branch coverage
than for method coverage).

5.7. Practical Guidelines

Here, we present some practical guidelines for how
to choose the combination strength and code-coverage
level for CCCP, under different testing scenarios:

(1) When testing resources are limited, it is (obvious-
ly) recommended that the lowest combination strength
(λ = 1) be chosen for CCCP. This not only achieves
better testing effectiveness than other prioritization tech-
niques, but also has comparable testing speed to the ad-
ditional test prioritization technique.

(2) When there are sufficient testing resources avail-
able, λ = 2 is recommended for CCCP, because of the
higher fault detection rates it can deliver.

(3) If the system under test is large in scale and high
in complexity, method coverage is recommended to be
used for CCCP.

5.8. Threats to Validity

To facilitate the investigation of potential threat-
s and to support the replication of experiments,
we have made the relevant materials (includ-
ing source code, subject programs, test suites,
and mutants) available on our project website:
https://github.com/huangrubing/CCCP/. Despite that,
our study still face some threats to validity, listed as
follows.

5.8.1. Internal Validity
The main threat to internal validity lies in the im-

plementation of our experiment. First, the randomized

22

computations may affect the performance of CCCP: To
address this, we repeated the prioritization process 1000
times and used statistical tests to assess the strategies.
Second, the data structures used in the prioritization al-
gorithms, and the faults in the source code, may intro-
duce noise when evaluating the effectiveness and effi-
ciency: To minimize these threats, we used data struc-
tures that were as similar as possible, and carefully re-
viewed all source code before conducting the experi-
ment. Third, although we used the APFD and APFDc
metrics, which have been extensively adopted to assess
the performance of RTCP techniques, APFD only re-
flects the rate at which faults are detected, ignoring the
time and space costs, and APFDc assumes that all fault-
s have the same fault severity. To address this threat,
our future work will involve additional metrics that can
measure other practical performance aspects of prioriti-
zation strategies.

5.8.2. External Validity
All the programs used in the experiment were

medium-sized, and written in C or Java, which mean-
s that the results may not be generalizable to programs
written in other languages (such as C++ and C#) and
of different sizes. To reduce this threat, other relevan-
t programs will be adopted to evaluate the CCCP per-
formance. Mutation testing has been argued to be an
appropriate approach for assessing fault detection per-
formance [27, 28, 29]. Mutation testing has also been
used in recent RTCP research studies [17, 18, 19, 20].
However, Luo et al. [49] has highlighted the differences
between real faults and mutants, explaining that the rela-
tive performances of RTCP techniques on mutants may
not translate to similar relative performances with real
faults. To address this threat, additional studies will be
conducted to investigate the performance of RTCP on
programs with real regression faults in the future.

6. Related Work

A considerable amount of research has been con-
ducted into regression testing techniques with a goal of
improving the testing performance. This includes test
case prioritization [1, 50], reduction [51, 52] and selec-
tion [53, 54]. This Related Work section focuses on test
case prioritization, which aims to detect faults as ear-
ly as possible through the reordering of regression test
cases [55, 56].

Prioritization Strategies. The most widely investi-
gated prioritization strategies are the total and addition-
al techniques [1]. Because existing greedy strategies

may produce suboptimal results, Li et al. [2] translat-
ed the RTCP problem into a search problem and pro-
posed several search-based algorithms, including a hill-
climbing and genetic one. Motivated by random tie-
breaking, Jiang et al. [3] applied adaptive random test-
ing to RTCP and proposed a family of adaptive random
test cases prioritization techniques that aim to select a
test case with the greatest distance from already select-
ed ones.

More recently, as the total strategy and the additional
strategy can be seen as two extreme instances, Zhang et
al. [10] proposed a basic and an extended model to unify
the two strategies. Saha et al. [5] proposed an RTCP ap-
proach based on information retrieval without dynamic
profiling or static analysis. Many existing RTCP ap-
proaches use code coverage to schedule the test cases,
but do not consider the likely distribution of faults. To
address this limitation, instead of traditional code cov-
erage, Wang et al. [11] used the quality-aware code cov-
erage calculated by code inspection techniques to guide
prioritization process.

Coverage criteria. In terms of coverage crite-
ria, structural coverage has been widely adopted in
test case prioritization. In addition to statemen-
t [1], branch [3], method [10, 11], block [2] and
modified condition/decision coverage [57], Elbaum et
al. [30] proposed a fault-exposing-potential (FEP) crite-
rion based on the probability of the test case detecting
a fault. Recently, Chi et al. [58] used function call se-
quences, arguing that basic structural coverage may not
be optimal for dynamic prioritization.

Empirical studies. A large number of empirical s-
tudies have been performed aiming to offer practical
guidelines for using RTCP techniques.

In addition to studies on traditional dynamic test pri-
oritization [1, 30, 59, 60], recently, Lu et al. [20] were
the first to investigate how real-world software evolu-
tion impacts on the performance of prioritization strate-
gies: They reported that source code changes have a low
impact on the effectiveness of traditional dynamic tech-
niques, but that the opposite was true when considering
new tests in the process of evolution.

Citing a lack of comprehensive studies comparing
static and dynamic test prioritization techniques, Luo et
al. [17, 18] compared static RTCP techniques with dy-
namic ones. Henard et al. [19] compared white-box and
back-box RTCP techniques.

7. Conclusions and Future work

In this paper, we have introduced a new coverage cri-
terion that combines the concepts of code and combina-

23

tion coverage. Based on this, we proposed a new prior-
itization technique, code combinations coverage based
prioritization (CCCP). Results from our empirical stud-
ies have demonstrated that CCCP with the lowest com-
bination strength (λ = 1) can achieve better fault de-
tection rates than four well-known, popular prioritiza-
tion techniques (total, additional, adaptive random, and
search-based test prioritization). CCCP was also found
to have comparable testing efficiency to the additional
test prioritization technique, while requiring much less
time to prioritize test cases than the adaptive random
and search-based techniques. The results also show
that CCCP with a higher combination strength (λ = 2)
can be more effective than all other prioritization tech-
niques, in terms of both APFD and APFDc.

Our future work will include examining more real-
life programs to further investigate the performance of
CCCP, including the impact of combination strengths.
In this paper, we have only applied the concept of code
combinations coverage to the traditional greedy prior-
itization strategy. It will be very interesting to exam-
ine new prioritization techniques based on code combi-
nations coverage adopting other prioritization strategies
such as search-based strategy.

Acknowledgements

We would like to thank the anonymous reviewers
for their many constructive comments. We would al-
so like to thank Christopher Henard for providing us the
fault data for the five C subject programs. This work
is supported by the National Natural Science Founda-
tion of China under grant nos. 61502205, 61872167,
and U1836116, the project funded by China Postdoctor-
al Science Foundation under grant no. 2019T120396,
and the Senior Personnel Scientific Research Founda-
tion of Jiangsu University under grant no. 14JDG039.
This work is also in part supported by the Young Back-
bone Teacher Cultivation Project of Jiangsu Universi-
ty, and the Postgraduate Research & Practice Innova-
tion Program of Jiangsu Province under grant no. KY-
CX19 1614.

References

[1] G. Rothermel, R. H. Untch, , M. J. Harrold, Test case prior-
itization: An empirical study, in: Proceedings the 15th IEEE
International Conference on Software Maintenance (ICSM’99),
1999, pp. 179–188.

[2] Z. Li, M. Harman, R. M. Hierons, Search algorithms for re-
gression test case prioritization, IEEE Transactions on Software
Engineering 33 (4) (2007) 225–237.

[3] B. Jiang, Z. Zhang, W. K. Chan, T. Tse, Adaptive random
test case prioritization, in: Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering
(ASE’09), 2009, pp. 233–244.

[4] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, G. Rothermel, A
static approach to prioritizing junit test cases, IEEE Transactions
on Software Engineering 38 (6) (2012) 1258–1275.

[5] R. K. Saha, L. Zhang, S. Khurshid, D. E. Perry, An informa-
tion retrieval approach for regression test prioritization based on
program changes, in: Proceedings of the 37th IEEE/ACM IEEE
International Conference on Software Engineering (ICSE’15),
2015, pp. 268–279.

[6] Y. Ledru, A. Petrenko, S. Boroday, Using string distances for
test case prioritisation, in: Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering
(ASE’09), 2009, pp. 510–514.

[7] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, T. Xie, To be
optimal or not in test-case prioritization, IEEE Transactions on
Software Engineering 42 (5) (2016) 490–505.

[8] D. Hao, L. Zhang, L. Zhang, G. Rothermel, H. Mei, A unified
test case prioritization approach, ACM Transactions on Soft-
ware Engineering and Methodology 24 (2) (2014) 10:1–10:31.

[9] L. Zhang, J. Zhou, D. Hao, L. Zhang, H. Mei, Prioritizing JUnit
test cases in absence of coverage information, in: Proceedings
of the 25th IEEE International Conference on Software Mainte-
nance (ICSM’09), 2009, pp. 19–28.

[10] L. Zhang, D. Hao, L. Zhang, G. Rothermel, H. Mei, Bridging
the gap between the total and additional test-case prioritization
strategies, in: Proceedings of the 2013 International Conference
on Software Engineering (ICSE’13), 2013, pp. 192–201.

[11] S. Wang, J. Nam, L. Tan, QTEP: Quality-aware test case prior-
itization, in: Proceedings of the 11th Joint Meeting on Founda-
tions of Software Engineering (ESEC/FSE’17), 2017, pp. 523–
534.

[12] H. Zhu, P. A. V. Hall, J. H. R. May, Software unit test coverage
and adequacy, ACM Computing Surveys 29 (4) (1997) 366–427.

[13] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, X. Xia, A sur-
vey on adaptive random testing, IEEE Transactions on Software
Engineering (2019). doi:10.1109/TSE.2019.2942921.

[14] C. Nie, H. Leung, A survey of combinatorial testing, ACM
Computer Surveys 43 (2) (2011) 11:1–11:29.

[15] M. Grindal, B. Lindström, J. Offutt, S. F. Andler, An evalua-
tion of combination strategies for test case selection, Empirical
Software Engineering 11 (4) (2006) 583–611.

[16] Z. Zhang, J. Zhang, Characterizing failure-causing parameter
interactions by adaptive testing, in: Proceedings of the 20th In-
ternational Symposium on Software Testing and Analysis (ISS-
TA’11), 2011, pp. 331–341.

[17] Q. Luo, K. Moran, D. Poshyvanyk, A large-scale empirical
comparison of static and dynamic test case prioritization tech-
niques, in: Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(FSE’16), 2016, pp. 559–570.

[18] Q. Luo, K. Moran, L. Zhang, D. Poshyvanyk, How do static and
dynamic test case prioritization techniques perform on modern
software systems? An extensive study on GitHub projects, IEEE
Transactions on Software Engineering 45 (11) (2019) 1054–
1080.

[19] C. Henard, M. Papadakis, M. Harman, Y. Jia, Y. Le Traon, Com-
paring white-box and black-box test prioritization, in: Proceed-
ings of the 38th IEEE/ACM International Conference on Soft-
ware Engineering (ICSE’16), 2016, pp. 523–534.

[20] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, L. Zhang,
How does regression test prioritization perform in real-world
software evolution?, in: Proceedings of the 38th International

24

Conference on Software Engineering (ICSE’16), 2016, pp. 535–
546.

[21] S. Elbaum, A. Malishevsky, G. Rothermel, Incorporating vary-
ing test costs and fault severities into test case prioritization, in:
Proceedings of the 23rd International Conference on Software
Engineering (ICSE’01), 2001, pp. 329–338.

[22] M. G. Epitropakis, S. Yoo, M. Harman, E. K. Burke, Empirical
evaluation of pareto efficient multi-objective regression test case
prioritisation, in: Proceedings of the 23rd International Sympo-
sium on Software Testing and Analysis (ISSTA’15), 2015, pp.
234–245.

[23] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experi-
mentation with testing techniques: An infrastructure and its po-
tential impact, Empirical Software Engineering 10 (4) (2005)
405–435.

[24] Software-artifact Infrastructure Repository (SIR),
https://sir.csc.ncsu.edu/portal/index.php.

[25] GNU FTP Server, http://ftp.gnu.org/.
[26] S. Eghbali, L. Tahvildari, Test case prioritization using lexico-

graphical ordering, IEEE Transactions on Software Engineering
42 (12) (2016) 1178–1195.

[27] J. H. Andrews, L. C. Briand, Y. Labiche, Is mutation an appro-
priate tool for testing experiments?, in: Proceedings of the 27th
International Conference on Software Engineering, (ICSE’05),
2005, pp. 402–411.

[28] H. Do, G. Rothermel, A controlled experiment assessing test
case prioritization techniques via mutation faults, in: Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance (ICSM’05), 2005, pp. 411–420.

[29] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes,
G. Fraser, Are mutants a valid substitute for real faults in soft-
ware testing?, in: Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering
(FSE’14), 2014, pp. 654–665.

[30] S. Elbaum, A. G. Malishevsky, G. Rothermel, Prioritizing test
cases for regression testing, in: Proceedings of the 8th ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’00), 2000, pp. 102–112.

[31] PIT, http://pitest.org/.
[32] PIT operators, http://pitest.org/quickstart/mutators/.
[33] J. H. Andrews, L. C. Briand, Y. Labiche, A. S. Namin, Using

mutation analysis for assessing and comparing testing cover-
age criteria, IEEE Transactions on Software Engineering 32 (8)
(2006) 608–624.

[34] D. Schuler, V. Dallmeier, A. Zeller, Efficient mutation testing
by checking invariant violations, in: Proceedings of the 18th
International Symposium on Software Testing and Analysis (IS-
STA’09), 2009, pp. 69–80.

[35] M. Papadakis, Y. Jia, M. Harman, Y. Le Traon, Trivial compiler
equivalence: A large scale empirical study of a simple, fast and
effective equivalent mutant detection technique, in: Proceedings
of the IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering (ICSE’15), 2015, pp. 936–946.

[36] R. Just, G. M. Kapfhammer, F. Schweiggert, Do redundant mu-
tants affect the effectiveness and efficiency of mutation analy-
sis?, in: Proceedings of the IEEE 5th International Conference
on Software Testing, Verification and Validation (ICST’12),
2012, pp. 720–725.

[37] G. Kaminski, P. Ammann, J. Offutt, Improving logic-based test-
ing, Journal of Systems and Software 86 (8) (2013) 2002–2012.

[38] M. Papadakis, C. Henard, M. Harman, Y. Jia, Y. Le Traon,
Threats to the validity of mutation-based test assessment, in:
Proceedings of the 25th International Symposium on Software
Testing and Analysis (ISSTA’16), 2016, pp. 355–365.

[39] Java: A general-purpose programming language,

https://www.oracle.com/java/.
[40] L. Zhang, M. Kim, S. Khurshid, FaultTracer: A change impact

and regression fault analysis tool for evolving Java programs,
in: Proceedings of the 20th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE’12), 2012, p. 40.

[41] L. Zhang, M. Kim, S. Khurshid, FaultTracer: A spectrum-based
approach to localizing failure-inducing program edits, Journal
of Software: Evolution and Process 25 (12) (2013) 1357–1383.

[42] ASM: An all purpose Java bytecode manipulation and analysis
framework, http://asm.ow2.org/.

[43] gcc: The GNU Compiler Collection,
https://gcc.gnu.org/.

[44] gcov: A Test coverage program,
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[45] A. Arcuri, L. Briand, A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering, Soft-
ware Testing, Verification and Reliability 24 (3) (2014) 219–
250.

[46] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour,
D. Marinov, Guidelines for coverage-based comparisons of non-
adequate test suites, ACM Transactions on Software Engineer-
ing and Methodology 24 (4) (2015) 22:1–22:33.

[47] A. Vargha, H. D. Delaney, A critique and improvment of the CL
common language effect size statistics of mcgraw and wong,
Journal of Education and Behavioral Statistics 25 (2) (2000)
101–132.

[48] R: The R project for statistical computing,
https://www.r-project.org/.

[49] Q. Luo, K. Moran, D. Poshyvanyk, M. Di Penta, Assessing test
case prioritization on real faults and mutants, in: Proceedings
of the 34th IEEE International Conference on Software Mainte-
nance and Evolution (ICSME’18), 2018, pp. 240–251.

[50] B. Miranda, E. Cruciani, R. Verdecchia, A. Bertolino, Fast ap-
proaches to scalable similarity-based test case prioritization, in:
Proceedings of the 40th International Conference on Software
Engineering (ICSE’18), 2018, pp. 222–232.

[51] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, B. Xie, How do
assertions impact coverage-based test-suite reduction?, in: Pro-
ceedings of the 10th IEEE International Conference on Software
Testing, Verification and Validation (ICST’17), 2017, pp. 418–
423.

[52] A. Shi, T. Yung, A. Gyori, D. Marinov, Comparing and com-
bining test-suite reduction and regression test selection, in: Pro-
ceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE’15), 2015, pp. 237–247.

[53] L. Zhang, Hybrid regression test selection, in: Proceedings
of the 40th International Conference on Software Engineering
(ICSE’18), 2018, pp. 199–209.

[54] M. Gligoric, L. Eloussi, D. Marinov, Practical regression test s-
election with dynamic file dependencies, in: Proceedings of the
24th International Symposium on Software Testing and Analy-
sis (ISSTA’15), 2015, pp. 211–222.

[55] S. Yoo, M. Harman, Regression testing minimization, selection
and prioritization: a survey, Software Testing, Verification and
Reliability 22 (2) (2012) 67–120.

[56] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, R. Tumeng, Test
case prioritization approaches in regression testing: A system-
atic literature review, Information and Software Technology 93
(2018) 74–93.

[57] J. A. Jones, M. J. Harrold, Test-suite reduction and prioritization
for modified condition/decision coverage, IEEE Transactions on
Software Engineering 29 (3) (2003) 195–209.

[58] J. Chi, Y. Qu, Q. Zheng, Z. Yang, W. Jin, D. Cui, T. Liu, Test
case prioritization based on method call sequences, in: Proceed-
ings of the 42nd IEEEAnnual Computer Software and Applica-

25

tions Conference (COMPSAC’18), Vol. 01, 2018, pp. 251–256.
[59] H. Do, G. Rothermel, A. Kinneer, Prioritizing JUnit test cases:

An empirical assessment and cost-benefits analysis, Empirical
Software Engineering 11 (1) (2006) 33–70.

[60] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, The effects of
time constraints on test case prioritization: A series of controlled
experiments, IEEE Transactions on Software Engineering 36 (5)
(2010) 593–617.

Rubing Huang received the Ph.D. degree in computer science and technology
from the Huazhong University of Science and Technology, Wuhan, China, in
2013. From 2016 to 2018, he was a visiting scholar at Swinburne University of
Technology and at Monash University, Australia. He is an associate professor
in the Department of Software Engineering, School of Computer Science and
Communication Engineering, Jiangsu University, Zhenjiang, China. His current
research interests include software testing (including adaptive random testing,
random testing, combinatorial testing, and regression testing), debugging, and
maintenance. He has more than 50 publications in journals and proceedings, in-
cluding in IEEE Transactions on Software Engineering, IEEE Transactions on
Reliability, Journal of Systems and Software, Information and Software Tech-
nology, IET Software, The Computer Journal, International Journal of Soft-
ware Engineering and Knowledge Engineering, ICSE, ICST, COMPSAC, QRS,
SEKE, and SAC. He is a senior member of the China Computer Federation, and
a member of the IEEE and the ACM. More about him and his work is available
online at https://huangrubing.github.io/.

Quanjun Zhang received the B.Eng. degree in computer science and technol-
ogy in 2017 from Jiangsu University, Zhenjiang, China, where he is currently
working toward the M.Eng. degree with the School of Computer Science and
Communication Engineering. His current research interests include software
testing and software maintenance.

Dave Towey received the B.A. and M.A. degrees in computer science, linguis-
tics, and languages from the University of Dublin, Trinity College, Ireland; the
M.Ed. degree in education leadership from the University of Bristol, U.K.; and
the Ph.D. degree in computer science from The University of Hong Kong, Chi-
na. He is an associate professor at University of Nottingham Ningbo China
(UNNC), in Zhejiang, China, where he serves as the director of teaching and
learning, and deputy head of school, for the School of Computer Science. He
is also the deputy director of the International Doctoral Innovation Centre at
UNNC. He is a member of the UNNC Artificial Intelligence and Optimization
research group. His current research interests include software testing (especial-
ly adaptive random testing, for which he was amongst the earliest researcher-
s who established the field, and metamorphic testing), computer security, and
technology-enhanced education. He co-founded the ICSE International Work-
shop on Metamorphic Testing in 2016. He is a member of both the IEEE and
the ACM.

Weifeng Sun received the B.Eng. degree in computer science and technology in
2018 from Jiangsu University, Zhenjiang, China, where he is currently working
toward the M.Eng. degree with the School of Computer Science and Communi-
cation Engineering. His current research interests include software testing and
software debugging. His work has been published in journals and proceedings,
including in IEEE Transactions on Software Engineering, IEEE Transactions on
Reliability, and the IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST). He is a student member of the China Computer
Federation and the ACM.

Jinfu Chen received the BE degree in 2004 from Nanchang Hangkong Univer-
sity, Nanchang, China and the PhD degree in 2009 from Huazhong University
of Science and Technology, Wuhan, China, both in computer science. He is cur-
rently a full professor in the School of Computer Science and Communication
Engineering, Jiangsu University, Zhenjiang, China. His major research interests
include software testing, software analysis, and trusted software.

26

