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‘We must ascribe to all cells an independent vitality.’ 

Theodor Schwann, 1810 - 1882. 
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ABSTRACT 

This thesis presents our research on single cell classification with single cell transcriptomics (SCT) 

data and purely supervised machine learning (ML) method artificial neural network (ANN). 

SCT sequencing technology can accurately capture the instantaneous gene expression of every 

single cell. The 10x SCT technology has realized SCT profiling in a high-throughput and cost-

efficient manner. It can produce over 109 transcripts of over 105 individual cells with ~33,000 gene 

features, for profiling a targeted sample in a single study. However, the classification of single 

cells with SCT data has met challenges. These include: the lack of supervised ML methods in 

single cell classification, the lack of reference datasets for SCT gene expression profiles, the lack 

of a specific cell ontology for single cell classification, the characteristic of SCT data - large data 

size, high-dimensional, the sparsity (a large proportion of zero-counts), and the presence of 

variables (biological and technical). The currently used unsupervised ML methods have shown the 

limitation on generalization and manual inspection to annotation. 

In addressing the needs and challenges, considering the capability of generalization and the 

suitability to large data size, high-dimensional, sparse, and high-variety SCT data, we made the 

hypothesis that single cell classification can be done with the supervised ML method ANN and 

SCT data. We selected peripheral blood mononuclear cells (PBMC) as the SCT data sample for 

this study. PBMC is a conventionally used predictive health indicator, it has five main cell types 

that are naturally isolated. The accurate classification of SCT data of the five cell types can be used 

in early disease diagnosis and the realization of accurate blood testing based on SCT analysis. 

We prepared standardized 56 reference datasets for PBMC SCT classification and described a 

multi-dimensional cell ontology with over 163 dimensions for single cell classification, with 

PBMC as an example.  

In the initial study, the proof of concept that using the supervised ML method ANN and 

standardized SCT data to realize single cell classification has been demonstrated, with an overall 

accuracy of 89.4%. Follow-up, we deployed holdout internal cross-validation, external validation, 

added data validation, together with cyclical incremental learning method, and newly collected 

independent SCT datasets from four sources, to investigate the baseline for highly accurate PBMC 

SCT classification. The overall accuracy of the 4-class classification was 93.0%, and the 5-class 

classification achieved 94.6%. The classification results have been analyzed with PBMC SCT cell 

ontology and basic statistics. B cells, monocytes, and T cells had classification accuracy that was 

greater than 95%. Due to similarities between NK cells and T cell subsets, the classification 

accuracy of NK cells was maintained at roughly 75%. The accuracy of dendritic cells was limited 
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due to the small proportion of numbers in the training sets. 

Based on these, we studied the effect of various processing protocols of SCT data on single cell 

classification. The findings indicated that datasets from samples with minimally processing 

protocols (PBMC separation only) helped in the identification of SCT gene expression patterns.  

Further, we explored the vulnerability of ANN-SCT-PBMC classifiers, using 17 non-

representative datasets of five different confounding factor groups, and 17 rounds of cyclical four-

supersets-swapping external validation experiments. The results revealed that when trained with 

sufficient reference datasets, the ANN-SCT-PBMC model was robust and could survive a small 

number of non-representative instances hidden in the training set. The model can recognize and 

assess the representativeness of SCT data once it has been trained on purified high-quality 

reference data. The proportions of reference and non-representative datasets, the distribution of 

classes in training and testing sets, the similarity of gene expression between cell types and 

subtypes, the characteristics of non-representative datasets, etc. are variables that had an impact 

on model vulnerability. 

This research gives a solution to the current “eleven grand challenges” of SCT data analysis. It 

demonstrates that purely supervised ML ANN is a viable option for classifying cell types from 

single cell expression data, with generalization capability and robustness on various upcoming 

data sets. This research reveals that sufficient reference SCT data, generated with precise and strict 

protocols and labeled with a complete and detailed multi-dimensional cell ontology, is required 

for highly accurate single cell classification, that can contribute to future predictive health 

development and hematology development. 

 

KEY WORDS: single cell classification, single cell transcriptomics (SCT) data, supervised 

machine learning (ML), artificial neural network (ANN), peripheral blood mononuclear cells 

(PBMC), multi-dimensional cell ontology, proof of concept, incremental learning, model 

vulnerability, data representativeness, model robustness. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

The bulk transcriptomics sequencing technology measures average gene expression value of mixed 

biological samples. The unique heterogeneity of individual single cell cannot be characterized, that 

leads to the loss of important genetic information. Currently, single cell transcriptomics (SCT) 

sequencing technology has been developed, it can capture and reveal unique gene expression of 

individual single cell, that detects cell heterogeneity and refines existing cell ontology. It can be 

used in predictive health and early disease diagnosis. The 10x Genomics high-throughput SCT 

sequencing platform has clear and standardized experimental procedures that produce reliable and 

consistent SCT data in batches.  

SCT data has great value to human health and life science. However, the high-dimensionality, high 

sparseness, dropouts, biological variables and technical variables of SCT data make the 

classification of SCT data a challenge [1]. Currently, unsupervised machine learning methods such 

as principal component analysis (PCA) and clustering have been used to classify cells with SCT 

data, but it has demonstrated weak robustness, accuracy, and sensitivity when it comes to multi-

source data from different independent studies [2]. The value of SCT data cannot be used fully by 

unsupervised machine learning methods, that cannot generalize on various SCT data sets of 

different independent sources. We consider to use supervised machine learning method artificial 

neural network (ANN) to solve the challenges of single cell classification with high dimensional 

SCT data. 

Peripheral blood mononuclear cells (PBMC) is the significant research objective for human health 

status detection, disease diagnosis, the development of immunology research, cancer research and 

toxicology applications. The cell type, cell status and cell number of PBMC in an individual body 

indicate the selective responses of immune system.  

This study has made the hypothesis and tried to prove the concept that single cell classification 

can be done with SCT data and supervised machine learning method ANN, with satisfied and 

practically applicable accuracy. To build, prove, and study the prototype of supervised ANN 

classification model in PBMC SCT pattern recognition, can make efficient use of exponentially 

growing SCT data, and demonstrate the concept of data-based predictive health with PBMC SCT 

gene expression profiles. 
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1.2 Motivation & Hypothesis 

1.2.1 The importance of SCT technology 

Single cell transcriptomics sequencing (SCT or scRNA-seq) technology detects gene 

expression profiles of individual single cells in a biological sample. Gene expression by bulk 

sequencing from mixed samples provides only average gene expression across all cells in the 

sample. SCT preserves information about the heterogeneity of gene expression within cell types 

and subtypes and their various states [3]. Data sets from SCT studies are in form of sparse matrices 

having >30,000 genes (features) in rows, and up to 100,000 cells in matrix columns. These data 

sets are growing at an exponential rate both in the number of cells per matrix, and in the number 

of data sets that are available for analysis [4, 5].  

Classification of single cells is essential for analyzing the composition of tissues and the cellular 

basis of health and disease status. Accurate classification of cell types and subtypes, along with 

the identification of their gene and protein expression patterns, enable understanding to cellular 

and molecular basis of biological processes [6]. The differences between healthy and disease states 

are reflected in differential gene expression, it allows for medical applications of single cell 

technologies: diagnostic and prognostic applications, and disease treatment selection [7] in cancer, 

infectious disease, autoimmunity, and other pathological states [8]. 

The first report of single cell gene expression was published in 2009 [9]. Major breakthroughs in 

microfluidics and cell labeling methods have enabled high-throughput of single cells, rapid 

standardized SCT gene expression measurement, and analysis [4, 5, 10]. The conventional 

classification rules applied to cell populations are mainly qualitative and are based on lineage, 

phenotypic markers, and simple, functional properties [11]. The SCT uses gene expression and 

quantitative methods to define cell types and precisely describe their lineage, phenotype, function, 

and various states [11]. Such cellular gene expression profiles and their variants (due to different 

sample processing methods) are cataloged in single cell atlases [12, 13]. Bulk-sequencing methods 

produce mean gene expression values of millions of cells. In contrast, SCT produces gene 

expression profiles characteristic of cell sets defined by a much finer grouping of cells that share 

origin, function, subtype, and biological status [3].  
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1.2.2 The 10x Genomics platform 

The 10x Genomics SCT sequencing platform scaled up to enable routine measurements of 

expression count over 105 cells with ~33,000 gene features in a single study that produces over 109 

transcript counts values profiling a targeted sample [10, 14].  

It combines high throughput (up to 40,000 cells in a single experiment), high cost-efficiency, and 

rapid turnaround (1-2 days from sample collection to results) [15]. When the cell viability is greater 

than 90%, the cell capture rate of one single sample can reach 65% (10x protocol). The 10x SCT 

data is represented by a high-dimensional sparse matrix. A single cleaned 10x SCT data set (sparse 

matrix) can have 109-1010 data points because it has up to 105 columns representing individual 

cells and >30,000 rows representing features (gene counts). It has observed that 90-99% of the 

values are zero [16].  

The 10x SCT has formed strict standard experimental procedures that can produce highly 

reproducible measurements, even in samples from different individuals. The available capture 

probes provide high coverage of the genome. 10x was benchmarked against several alternative 

methods [17, 18] and it is emerging as a popular SCT platform.  

High throughput SCT is a prototypic big data technology. Since 2017, with the emergence of the 

10x Genomics platform, the large-scale unified 10x scRNA-seq data sets have been generated and 

have grown exponentially with more than 52,500 10x data sets available in GEO data repository 

[19] (www.ncbi.nlm.nih.gov/geo), as of May 2023.  

Currently, the analysis of 10x SCT data focuses on single cell annotation and classification aimed 

at understanding biological mechanisms, such as cellular differentiation, tissue distribution of cells, 

the discovery of new biomarkers, detection of rare cell types, assessment of tumor heterogeneity, 

detecting gene activation pathways related to pathology, and detecting molecular and cellular 

responses to therapeutic interventions [20-22].  

 

1.2.3 The challenges and difficulties in SCT data analysis 

The single cell classification and adequate utilization of SCT data has been a challenge to 

researchers for a long time [1]. First, high sparsity. 10x SCT generates large but sparse matrices 

(over 95-99% of values are typically zeros, that depends on the depth of sequencing implemented 

and the internal expression level of gene features. It can perplex and obstacle the following 
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downstream analysis. The zero value is attributed to true zero value (the gene is not expressed in 

the cell at this transient moment) or “dropout” phenomenon (the transcript is not captured). Second, 

high variety. In 10x SCT profiles, there can be errors and noises, such as multiplets (doublets or 

triplets, when two or three single cells are wrapped in one oil droplets), and bias values resulting 

from biological (sample conditions – fresh/ frozen thawed, activated status, stimulated status) or 

technical (chemical reagent, machine version, batch effect, etc.) confounding factors.  

Third, high dimensionality. There are >30,000 dimensions in the gene list. Efficiently preserving 

valuable information during analyzing high dimensional (>30,000 features) SCT expression data 

matrix with >105 cell numbers has not formed an acknowledged approach so far. Forth, multiple 

sources and integration. The current-in-use SCT data analysis pipelines meet difficulties to 

integrate and generalize the stylized analysis protocols to SCT data that has been sequenced with 

multi sample preparing procedures and diverse experimental measurement conditions. It is 

difficult to analyze SCT data collected from various sources (different studies and labs). It involves 

batch effect and various features in gene list (features are various in data set of different study and 

different source). Fifth, lack of reference data sets and single cell ontology. The classification 

of single cells lacks precise expression profile definitions and sufficient reliable standard 

references [1]. There is currently no available standardized reference dataset for single cell 

classification. Also, there is an urgent requirement for a single cell ontology as reference to 

categorize single cells from multiple dimensions [23]. 

 

1.2.4 The importance of PBMC classification 

Peripheral blood mononuclear cells (PBMC) are circulating immune cells with a single round 

nucleus in the blood and are common diagnostic and prognostic targets [24]. PBMC are composed 

of mixed cell populations. There are five main subtypes of PBMC: B cells (BC), monocytes (MC), 

dendritic cells (DC), T cells (TC) and natural killer cells (NK) [25]. Frequencies of PBMC 

subtypes can vary widely from individual to individual, but also over time within the same 

individual [26]. A rough consensus over multiple antibody catalogue estimates is that B cells make 

5-15%, monocytes make 10-30%, DC make 1-2%, NK cells make 5-10%, and T cells make 40-

70% of PBMC in humans [25]. Normal ranges (reference values) of the numbers of specific cell 

types or subtypes in PBMC vary by 5 to 20 folds in healthy individuals [27]. Their transcriptome 

profiles show high variation, primarily resulting from sample processing steps [28] and the 

health/disease status of the tissue [24, 26, 29]. Gene expression profiles in PBMC that circulate in 

blood were shown to be different from the tissue resident PBMC [16]. This suggests that gene 
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expression differences can also be used to identify the tissue of origin of resident PBMC [30]. 

PBMC has been extensively used in the study of infectious disease, immunology and 

autoimmunity, transplantation,  oncology, and vaccine development. PBMC are important targets 

of single-cell studies because they are indicators of immune status and are studied in cell function, 

transcriptional regulation, identification of biomarkers, and disease modeling [31-33], 

pharmacogenomics [31, 34], hematological malignancies, among others [35-37]. PBMC are 

routinely used for monitoring health and for the diagnosis of infection and blood disease [38-40].  

PBMC cell type has characteristic patterns of gene expression that is determined by multiple 

factors. These factors include the cell differentiation stage, tissue and organ localization, 

developmental stage, epigenetic modification, activation status, age, health/disease status, and 

other factors [26, 41]. Final differentiated cell types emerge through molecular changes of 

developmental pathways characterized by recognizable patterns of gene-expression and protein 

markers [42].  

There is a need in a single cell ontology for PBMC classification. Hundreds of subtypes have been 

described in literature, but unified ontology of PBMC does not exist [43]. Subsets of PBMC are 

identified through analysis of their surface receptors by flow cytometry [44] or by analyzing their 

transcriptomics profiles [45]. More than 120 cell subsets of PBMC have been described [46], but 

current descriptions of PBMC subsets are incomplete and the efforts to define them are ongoing 

[47, 48]. 

In addition to the inherent biological differences, each step in the process of peripheral blood 

sampling, storage, preparation, and measurement as well as their duration will change gene 

expression in single cells [49-51]. At present, uniform and strict standards have been established 

for sample collection, preparation, and storage of PBMC [49, 52], to ensure yield, viability and 

preservation of function [53, 54]. Also, PBMC is naturally isolated, that minimizes external stimuli 

during tissue isolation and cell sorting procedure. These largely preserves specific gene expression 

profiles of PBMC under individual circumstance [53]. Standard operating procedures (SOP) have 

been defined and established for the latest single cell transcriptomics (SCT) technologies [55], 

enabling the improved reproducibility of SCT studies. The combination of advanced SCT 

technologies and the rapidly increasing availability of data sets provide a basis for defining cell 

types and subtypes by SCT gene expression profiles from diverse datasets. 

Specific PBMC profile done with 10x SCT sequencing can represent the differences in gene 

expression of immune cells referring to each individual body [38]. Regular monitoring and 

comparative analysis of PBMC components and the frequency of each component can realize the 

understanding of human health and disease prevention and diagnosis [39, 40]. The cell 



Page | 6  

 

classification and cell counting of PBMC sample can be completed by fluorescence-activated cell 

sorting (FACS). However, the realization of low cost and high efficiency blood monitoring and 

analysis requires the establishment of a computerized PBMC sample cell classification system 

through single cell sequencing technology and machine learning technology. 

 

1.2.5 The limitation of unsupervised ML methods 

The characteristics of SCT data – large size, sparseness, sensitivity to sample processing and 

experimental conditions, biases and random errors in data, and lack of reference data sets – require 

advanced statistical and machine learning (ML) techniques essential for the analysis of sparse 

matrices (downstream analysis).  

SCT data sets are produced using various sample processing conditions and they represent many 

different biological states, making SCT data highly heterogeneous. The lack of reference data sets 

mandates the use of unsupervised ML approaches [22], predominantly unsupervised clustering 

[22]. Unsupervised ML methods are broadly used for labeling and classification of single cells 

either alone [56] or in combination with supervised ML methods [57]. Unsupervised ML methods 

deploy a combination of clustering algorithms to group single cells together, with semi-automated 

labeling and manual annotation [22, 58] based on marker genes.  

 

Figure 1. A typical SCT analysis workflow using unsupervised ML for one study at a time. After data pre-

processing, single cells with SCT profiles are grouped with unsupervised clustering methods and annotated 

with significant marker genes, manually and empirically. 
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However, the number of classes in unsupervised methods is unknown – it is estimated by identified 

clusters and biological interpretation [2]. Also, the marker genes used are manually defined. These 

both introduce subjective judgments and different expert opinions (knowledge bias). Further, 

unsupervised ML methods do not scale up well, and the workflows lack generalization – solely 

typically applied to some specific dataset of mixed-class cells – a workflow that performs well on 

a specific dataset does not perform well on datasets produced from different studies [22, 56, 57] 

(insufficient robustness, reproducibility and sensitivity for multi-source data sets).  

Several bottlenecks currently limit the analysis to the tools of unsupervised ML, including the lack 

of standardized formats for data sets, lack of reference gene expression profiles, high-dimensional 

nature of data, the sparsity of data (large proportion of zero-counts), and presence of noise in data 

(errors and biases). On the other hand, the SCT gene expression of the same sample, when sample 

processing procedure and experimental conditions are standardized, are highly reproducible [18, 

59]. A semi-supervised method that used variational autoencoder neural network architecture was 

reported to outperform unsupervised methods, that demonstrates the trend of applying supervised 

learning method for cell classification of SCT data [60].  

 

1.2.6 The hypothesis of using supervised ML method ANN 

Supervised ML method can support as a solution to solve the challenges of studying and 

analyzing SCT data. It is expected to have superior generalization ability and performance on 

single cell classification across different studies, making accumulated SCT data comparable and 

valuable. Supervised ML classification systems use algorithms that are logic-based (such as 

decision trees, rule-based classifiers), network-based (such as artificial neural networks, support 

vector machines), statistic-based (Bayesian algorithms), or instance-based (such as distance-based 

or pattern recognition methods) [6]. Supervised ML can perform classification using single-cell 

gene expression profiles across various studies representing diverse sample processing conditions 

and experimental settings. 

Supervised learning method artificial neural networks (ANN) [61] can be used for advanced 

SCT cell classification. Compared to other supervised ML methods, ANN is efficiently suitable 

for task with a large scale of complex training data [62].  

ANN fits to deal with the complexity of SCT data: large data size (>10,000 observations in one 

dataset); high-dimensional features (>30,000); full of variables (biological/technical); sparse 

matrix (>90% zeros); multiple sources (data collected from different studies).  
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It is convenient to implement, especially with high-dimensional noisy data that has unknown 

mathematical relationships in features. It has the capability in capturing nonlinear and complex 

underlying characteristics in SCT profiles, with high degree of accuracy [63].  

ANN can address complexity, and it is regularly among the most performing [63]. ANN allows to 

solve the problem with incomplete knowledge [64], it can be used as the first approach to prototype. 

It is data-driven, adaptive learning and self-organization, that learns tasks based on given data for 

training and creates its own representation of the information [63]. 

ANN can learn the full features of each instance and make prediction decision. In SCT data, each 

feature can be important to single cell pattern recognition, ANN can ensure the integrity of training 

information and ensure full-dimensional learning (rather than dimensionality reduction). It learns 

to recognize the full internal patterns that exist in the data [63].  

Further, ANN can be sensitive and flexible to changing environment [63] (e.g. tiny gene expression 

pattern changes in over 30,000 features [65]). ANN is adaptive to constantly changing input for 

complex and exponentially growing SCT data – where the relationships are quite dynamic and 

non-linear. It is convenient to observe the behavior of model on data effect. This project tries to 

study and understand the influence of SCT data to model behavior. The factors include data sources, 

data generation conditions, and other dimensions in a multi-dimensional cell ontology. 

Thus, from the above aspects, we have the motivation and hypothesize to use ANN for the SCT 

classification task. In principle, all tasks can be solved with various supervised ML methods, 

including support vector machine (SVM), random forest (RF), etc. While SVM is suitable for tasks 

with a small amount of training information and regular binary classification, and RF can take 

risks in overfitting. For the SCT classification task – with large-scale, high dimensional, high 

sparsity, complex, and variable data, and it requires satisfied robustness, we consider ANN is the 

first choice to perform the prototype verification. 

 



Page | 9  

 

 

 

Figure 2. This project’s single-cell RNA-seq analysis workflow using supervised ML method ANN. 

 

Computerized SCT cell classification using ANN can bring purely supervised, specific labeled 

learning and classification procedure to each individual single cell gene count expression profile, 

where is improved to unsupervised ML clustering and biological manual cell sorting FACS. ANN 

algorithms extract original features from large annotated SCT data sets and use them to create a 

prediction tool based on hidden patterns. Once the training is completed, the algorithm can apply 

this training to analyze other data, that generalizes the learning and classification procedure to 

multi source data sets with diverse experimental conditions. Exact, specific, clean annotation of 

SCT data sets is required for ANN model training and cell type prediction.  

Currently, there is no purely supervised ML method implemented, because there is no reference 

data available. The main aim of the project is to demonstrate and prove the concept that single cell 

classification can be done with SCT data and supervised ML method ANN. It aims to build and 

demonstrate a prototype and a protocol to use supervised ML to handle high-dimensional, noisy, 

large size SCT data, solving the difficulties in Eleven Grand Challenges [22] – correctly classifying 

and labeling single cells in SCT data with prepared reference data sets. PBMC classification with 

SCT data and ANN aims to build purely supervised classification prototype of SCT, observe data 

effects from multi-dimensional PBMC-SCT cell ontology, and be potentially useful in early 

diseases diagnosis and predictive health. 
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1.3 Goal & Objectives  

1.3.1 Overall goal 

The overall goal is to prove a concept that we can do highly accurate classification of blood cells 

using SCT data and supervised ML method ANN, this method must be highly accurate, must 

generalize well across different studies, it must be applicable in practice and in real life. The 

analysis of SCT data with supervised ML method can help to solve several questions in the “eleven 

grant challenges” of SCT data analysis that have been listed in an article of 2020 [22]. The 

classification model should take good use of SCT data and reveal the specific gene expression 

profile of individual cell type, with observation of data quality and data effects (multiple 

dimensions in PBMC-SCT cell ontology) to ANN model behavior. 

1.3.2 Specific objectives 

1. Organize the data  

a. Select relevant data sets, convert them into standardized format ready to analyze, 

and perform quality control. 

b. Update the common list of genes (“gene common list”) for comparative analysis.  

Gene common list should be prepared for standardization conversion process.  

c. Establish experimental and statistical metadata for data sets that have study 

description information and summary basic statistical information.  

d. Cell ontology preparation for involved 10x SCT data sets.  

 

2. Prove the concept 

a. Prove the concept that computerized simulation of PBMC classification can be 

accomplished with SCT data and purely supervised ML method ANN.  

 

3. Data accumulation incremental learning 

a. Prepare a certain amount of clean and standardized SCT data sets to train ANN 

model using incremental learning method (data accumulation), trying to study the 

accuracy, sensitivity, and specificity of ANN classification model simulating real 

life situation. 

b. ANN should perform robustness across different data sets with different sources, 

different experimental platforms, and different experimental conditions.  
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4. Data representativeness and data effect 

a. Observe the data representativeness and data effects (multiple dimensions in 

PBMC-SCT cell ontology) to ANN model behavior, analyzing the importance of 

data effects to single cell classification. 

 

1.4 Overall Study Design 

The overall design of this project is to use PBMC SCT datasets generated from 10x technology and 

supervised ML method ANN to demonstrate purely supervised SCT single cell classification (as shown in  

Figure 3). 

 

 

 

Figure 3. The technology roadmap for overall design of this project. 

 

The datasets are collected, standardized, and stored clearly with metadata. The statistical analysis 

has been done with specific gene expression profiles. The data structure and distribution have been 

visualized to support classification procedure. Multi-dimensional PBMC-SCT cell ontology has 
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been developed based on PBMC prior knowledge and involved metadata. Supervised ML model 

ANN has been trained with quality-controlled training sets. Model validation has been done with 

internal cross-validation and external validation. Model testing has been done with expert-

annotated, qualified testing sets. Performance assessment metrics have been used to evaluate the 

classification results. During incremental learning process, ANN model performance in each 

cyclical experiment has been recorded and assessed with certain metrics. The result of ANN 

classification can reflect data representativeness, data effect, PBMC-SCT ontology, and biological 

explanation. The system demonstrates to have good accuracy and good robustness on the 

generalization across multisource SCT datasets for further practical utilization. 

 

1.5 Contribution of Thesis  

CONTRIBUTION 
 

DATA 

a) Collected and filtered independent 10x SCT data files from multiple 

sources. 

b) Made the reference gene list based on different genome versions. 

c) Standardized SCT data files with the reference gene list. 

d) Converted SCT data into different formats for various uses. 

e) Demonstrated a workflow of collecting, cleaning, standardizing, and 

converting SCT data.  

METADATA 

a) Made metadata for standardized SCT data files. 

b) The experimental information and descriptive statistical properties 

have been analyzed for each data set. 

c) Made a template for building metadata and statistical analysis. 

CELL 

ONTOLOGY 

a) Designed multi-dimensional ontology for single cell classification. 

b) Described PBMC-SCT cell ontology. 

c) Described properties of each dimension/subdimension in the 

ontology. 
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EXPERIMENT 

DESIGN AND 

MACHINE 

LEARNING 

a) Designed training and testing experiments based on standardized 

SCT data. 

b) Proved the concept of single cell classification using SCT data and 

supervised ML ANN models (with overall accuracy 89.4%). 

c) Demonstrated internal cross-validation and external validation (with 

qualified testing sets). 

d) Performed analysis of results with determined metrics. 

e) Explorative experiments with datasets from different sources and 

different quality. 

f) Designed incremental learning study with ANN classification 

model.  

g) Observed the effect of data source and generating protocols to 

PBMC SCT classification with incremental learning (accuracy 

93.0%). 

h) Added newly collected SCT datasets into the classification system. 

i) Studied 5-class classification of PBMC with 56 reference datasets 

and incremental learning (BC, DC, MC, NK, and TC) (94.6% of 

overall accuracy). 

j) Demonstrated external cross-validation (four-supersets-swapping 

training and testing, evaluating performance with datasets of 

different sources). 

k) Studied the vulnerability of ANN-SCT-PBMC classification 

models, using 17 non-representative datasets of five groups and 17 

rounds of cyclical external cross-validation experiments. 

SOFTWARE 

a) Mapped data files to the genome list. Data standardization. 

Conversion with different formats.  

b) Measured statistical properties for individual dataset. 

c) Classifier (ANN models). 

d) Classifier with detailed results outputs (five scores). 

e) Results visualization and demonstration. Performance assessment 

with determined metrics. 
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1.6 Outline of Subsequent Chapters 

The first chapter (Chapter 1) introduces the research background, motivation, hypothesis, 

research objectives, overall study design of this thesis, as well as the main contributions of this 

work. Chapter 2 is a systematic literature review of SCT analysis for PBMC classification, the 

review has described the significance and challenges of supervised ML vs unsupervised ML 

methods in SCT single-cell classification. In Chapter 3, it describes the general methodology 

used in this project, from data & data processing (including data collection and quality control, 

data standardization, metadata construction, and data statistical analysis), multi-dimensional SCT 

cell ontology (with PBMC as an example when demonstrates the cell properties dimension), to the 

structure of ANN model, and the performance assessment metrics. Specific research questions, 

involved data sets, and study design are described separately in the chapter of each study 

(‘Materials and Methods’ of Chapters 4, 5, 6, and 7). In Chapter 4, single cell classification with 

SCT data and ANN has been demonstrated and has been proved as a concept. This is the first time 

demonstrating single cell classification can be done by SCT data and purely supervised ML 

method, the overall accuracy of PBMC classification has reached 89.4%. In Chapter 5, an 

incremental learning study design has been implemented to simulate real-life situations – the effect 

of data accumulation, data quality, and multiple dimensions in cell ontology, to ANN classifiers. 

The results have shown the generalization performance of ANN on data accumulation process by 

time clue, involving different data sources, sampling conditions, generation protocols, and data 

preprocessing methods. This chapter involves a 4-class classification of PBMC, including BC, MC, 

NK, and TC. Chapter 6 is an expanded verification of SCT classification using incremental 

learning, newly collected datasets, and external cross-validation. The BroadS2 datasets have 

brought the dendritic cell class into training sets. The overall accuracy of the 5-class classification 

has been 94.6%. This Chapter has analyzed the effect of different SCT data protocols on model 

performance. In Chapter 7, the study on the vulnerability of ANN-SCT-PBMC classifiers has 

been done. It explored the model’s robustness, using non-representative datasets of different 

properties, and cyclical external cross-validation among four data sources. The results of each 

study have been written and discussed within the context of each chapter (Chapters 4, 5, 6, and 

7). Chapter 8, summarizes the entire work and looks forward to possible future work directions. 

Finally, references and appendices have been put at the end of the thesis. 
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CHAPTER 2 LITERATURE REVIEW - SCT Analysis for PBMC 

Classification 

2.1 Introduction 

As the key component of the immune system, peripheral blood mononuclear cells (PBMC) has 

been used as important research model to understand immune regulation mechanism [66-70] and 

as crucial clinical indicators to reflect individual’s health status [35, 71-74]. With technological 

innovations in methodology (as shown in Figure 4), human understanding of PBMC has ranged 

from the cell level (with microscope), protein level (with flow cytometry), to the transcriptome 

level (with transcriptome technology); from the mixture of cell populations or cell groups (with 

bulk RNA-seq) to individual single cells (with single-cell RNA-seq). Single-cell transcriptome 

(SCT) sequencing technology has made it become fact to observe the instantaneous transcription 

profile of each individual single cell. 
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Figure 4. Illustration of technology and PBMC cell type recognition and classification strategy by time. 
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2.2 SCT for PBMC Study 

Mainly, SCT technology in blood research has four types of applications: on medicine [75], on 

hematopoiesis (developmental biology), on immune cell heterogeneity (immunology), and on cell 

type definition (cell biology).  

In medicine, SCT can help establish a transcriptome-based drug treatment monitoring for time-

dependent immunotherapy (e.g. Ibrutinib - chronic lymphocytic leukemia (CLL)) [71, 76]; SCT 

can decipher human cellular immune responses (also antibody memory response) in highly detail 

in prophylactic vaccine development [77-79]; SCT for peripheral immune activity can help 

interpret the immune dynamics of severe disease processes, such as in hematological cancers [80], 

in infectious diseases (e.g. COVID-19) [81-86], and in immunodeficiency diseases (e.g. HIV) [87].  

In hematopoiesis, SCT has challenged the classic tree model of hematopoietic lineage [88] and has 

provided new insights into the development model of the hematopoietic system [89, 90] and also 

the mechanism of blood cell differentiation in hematopoietic ageing process [91, 92].  

In immune cell heterogeneity, SCT has recognized new rare cell types or intermediate cell types 

beyond classic well-known immune cell types. New types of dendritic cells (DC) [48, 93], 

monocytes (MC) [48], and CD4+ T cells (TC) [94] have been detected and profiled by SCT. In 

specific physiological environment or disease, the diversity of immune cell subpopulations 

observed by SCT can increase understanding in immune system [12, 67, 71, 75, 95].  

In cell biology, the definition of “cell type” is a significant proposition [96]. After the definition 

by location, morphology and molecular markers [97, 98], currently SCT has redefined “cell type” 

on single cell transcriptome level, using SCT data – data-driven definition - SCT expression 

profiles [11]. With this deeper viewing angle to observe single cells’ momentary states, SCT has 

also raised up questions on defining new PBMC cell ontology [99] and setting detailed 

nomenclature authentication [100] for PBMC subtypes.  

2.3 Currently Used Unsupervised ML Methods and Its Limitations 

The core issue for SCT in PBMC analysis is to recognize/classify/annotate PBMC cell types with 

SCT data. The challenges of this task stay in the natural properties of SCT data itself (zero-inflated, 

high-dimensional, large data volume, high variable sensitivity, transcriptional noise, too 
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informative), the lack of generalized analysis tools, the lack of reference data set (i.e., 

annotated highly reproducible SCT profiles for each PBMC subset under different sampling 

conditions), and the lack of uniformed experimental protocols for data integration.  

Till now, there are more than 1,000 SCT analysis tools have been developed and stored in online 

tools database (www.scRNA-tools.org) [101]. Many process-oriented tools and software packages 

have been developed, such as CellRanger [10], Seurat [102], etc. However, there is still a lack of 

universal tools with high repeatability in SCT analysis.  

In the early stage, with the background of lacking adequate reference data sets and accurate 

annotations to train classifiers, unsupervised clustering methods and followed with empirical 

manual annotations have been in a dominant position in SCT data analysis. In this kind of 

workflow, an unsupervised algorithm is usually used to cluster a certain batch of data obtained in 

one study at a time, and cells with similar gene expression profiles are aggregated into discrete cell 

clusters. After that, algorithms (SCDE [103], DEsingle [104], SigEMD [105], SC2P [106], CRE 

[107], DECENT [108]) are used to recognize differentially expressed genes across cell clusters 

and visualization tools are deployed to check the dispersion of clusters in two-dimensional or 

three-dimensional data space. Significant cell identification markers are collected from literature 

and gene marker database to manually label cell type tags to cell clusters [48]. Automated cell 

label annotation tools such as, singleR [109], scmap [110], CellAssign [111], SCSA [112], 

scMatch [113], scCATCH [114], p-DCS [115], CellFishing.jl [116], etc. have been gradually 

developed to help correct the subjectivity caused by manual annotation to a certain extent. 

Unsupervised clustering methods can learn single cell expression patterns and structures and 

classify them without annotation. In the absence of highly reproducible reference data sets and 

reference labels, unsupervised clustering algorithms can analyze cell heterogeneity and annotate 

cell types within a certain interpretable level. Also, it has made contribution to discover new 

heterogeneity in known cell types, to label transient cell states with featured genes, and to build 

hierarchical structure in single cell relationships with statistical distance.  

 

 

 

 

http://www.scrna-tools.org/
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Table 1. Unsupervised, semi-supervised, and supervised tools and packages enumerations for single cell type 

clustering and classification. 

TYPES METHODS PACKAGES 

UNSUPERVISED 

METHODS 

Hierarchical clustering 

ascend [117], CIDR [118], scran [119], 

pcaReduce [120], SCENIC [121], 

SINCERA [122] 

Graph-based clustering Cell Ranger [10] 

Louvain Seurat 1.0 [123], SCANPY [124] 

Spectral clustering SIMLR [125] 

Density-based clustering Monocle [126], Monocle2 [127] 

Grade of membership models countClust [128] 

k-Medoids clustering RaceID2 [129], RaceID3 [130] 

k-Means clustering 
RaceID [131], SAIC [132], scVDMC 

[133] 

Consensus clustering (k-Means + 

Hierarchical clustering) 
SC3 [56] 

Model-based clustering TSCAN [134] 

Aggregated clustering methods SAFE [135] 

SEMI-

SUPERVISED 

METHODS 

Weighted feature genes 
SCINA [136], LAmbDA [137], 

scANVI [138], scNym [139] 

Graph convolutional networks scGCN [140] 

SUPERVISED 

METHODS 

Supervised hierarchical clustering RCA [141] 

Generalized linear model classifier Garnett [142] 
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Artificial neural network (ANN) 
ACTINN [143], CHETAH [144], 

SuperCT [145], Zhong, et al. [146] 

Support vector machine (SVM) scPred [147], scHPL [148] 

Random Forest (RF) SingleCellNet [149], HieRFIT [150] 

k-nearest neighbors (KNN) 
SNN-Cliq [151], scClassify [152], 

GapClust [153] 

 

However, unsupervised clustering methods have met its challenges and limitations in SCT analysis. 

a) Lose genetic information in data preprocessing for clustering. 

Clustering methods usually require proper dimension reduction methods to “project” SCT data 

from high dimension to lower dimension, in this process, large amount of genetic information on 

heterogeneity might be lost. Also, the related quality control, normalization, data correction, and 

feature selection methods along with this process do not benefit to preserve the integrity of genetic 

information. These methods have made efforts on eliminate technical variables or noises in SCT 

data, but they have also taken risk to remove the real biological heterogeneity information. The 

parameters and cutoff thresholds in these data preprocessing steps can affect the further clustering 

and classification performance. 

b) The reusability of unsupervised clustering methods is not satisfied. 

Unsupervised clustering methods for SCT analysis is one study at a time. The model developed 

for one data set does not generalize to other data sets. Different clustering algorithms and working 

flows have been applied for different independent SCT studies. The clustering results and labeling 

results of one same clustering tool can be various across different SCT data with diverse data 

sources. This is caused by the high variable sensitivity of SCT data itself and the limitations of 

unsupervised clustering tools. There are many reviews and testing studies for tools in clustering 

methods in SCT [154, 155], but so far, there is barely a unified conclusion on a generalized analysis 

protocol and solid widely accepted parameter settings. Most of the time, conclusions on clustering 

tools’ accuracy, robustness, efficiency and the thresholds, parameters thereof can be made only on 

specific SCT data sets [4]. The lack of universality makes unsupervised clustering algorithms 

unable to fully integrate and utilize massive SCT data. 
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c) The interpretability of unsupervised clustering methods is usually not adequate. 

In unsupervised learning, data instances are not labeled, and the number of classes is unknown. 

Unsupervised clustering methods can group single cells in visualized clusters. However, the 

number of clusters is artificially determined according to the degree of dispersion of cell clusters. 

It often happens that the number of clusters cannot be decided because the cell clusters are merged 

or overlapped. Clustering algorithm has challenges in interpretability and customization – 

clustering results might be not easy to interpret – Are cell clusters and annotations not determined 

arbitrarily, empirically, or in biased, in high subjectivity? 

Different clustering methods and screening threshold ranges will incline to different numbers of 

clusters and different compositions of cell types for the same data set. At the same time, small cell 

clusters may not be recognized due to the limitation of the algorithm's pattern recognition 

resolution. Those may contain more detailed, rare, or specific cell subtypes in a deeper 

classification level. 

Second, clustering analysis tools require that the distribution of analyzed data conform to the 

established statistical hypothesis. As known, SCT data is not in a typical normal distribution. After 

dimensionality reduction projection, it is necessary to determine whether SCT data meets the 

reasonableness of the hypothesis of the clustering algorithm. This helps the interpretability of 

unsupervised clustering analysis tools. 

Third, unsupervised clustering has low sensitivity to high-dimensional SCT data. Even after 

dimensionality reduction and other preprocessing steps, technical errors/variables/noises caused 

by batch effects may affect the clustering of cell sample points more than true differences in cell 

transcriptome levels (i.e., cells from the same experimental source may be more likely to aggregate 

than cells of the same type). In addition, cell subtypes that are similar in developmental lineages 

cannot be accurately separated, as they have similar gene expression profiles. 

These factors above can confuse the analysis and interpretation of clustering results, leading to 

low classification accuracy of unsupervised clustering methods. 

d) The cell type marker information used in the annotation is not comprehensive. 

The annotation of cell types in unsupervised clustering analysis is labor-intensive in nature and 

relies heavily on the analyst's knowledge and perception of cell markers, which may lead to 

inconsistent analysis results. At the same time, manual annotation is not suitable for large data sets. 

In the actual operation, the specific expression genes of the cell cluster may not match the typical 

marker genes of the typical cell type. At this time, the cell cluster cannot be assigned to the known 
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cell type. Similar cell types can share same typical markers, and some cell types may not have 

known typical markers. 

2.4 PBMC SCT Analysis with Cell Marker 

Currently, online database such as CellMarker [156], CellMatch [114], DICE [157, 158], Human 

Protein Atlas (http://www.proteinatlas.org) [159, 160] can support with peripheral immune cell 

markers in PBMC SCT analysis. Most of the cell marker information used comes from bulk-

RNAseq analysis results, and many marker databases focus on the use of CD marker (cluster of 

differentiation marker) to type peripheral blood immune cells. It is undeniable that this type of 

classification criterion has formed a mature, detailed and quite accurate classification system that 

can be used as an authoritative reference for PBMC classification. However, it should be noted 

that CD marker is a cell typing standard focusing on cell surface molecules based on technologies 

such as flow cytometry and FACS. The transcription profile observed by SCT technology is the 

transient transcription level inside the cell. Deduction, identification, and determination of SCT 

cell types (that are based on cell transcript expression profiles) through molecules expressed on 

the cell surface [97], it has a certain interpretability, but there is also a huge risk of rationality. 

In the current stage, at the subcellular level, endogenous cell markers (molecular markers within 

the cell structure, such as microRNA (miRNA) and protein) has been considered as promising 

SCT cell type markers. The combined use of cell surface molecular markers and endogenous 

markers has not been effectively deployed in the classification of SCT data. 

Latest, the collection of currently known high-quality and repeatable SCT data set annotation 

results and the construction of a more comprehensive, unified, integrated cell annotation platform 

(http://celltype.info) has been carried out in multiple global single-cell research projects [161, 162]. 

2.5 Supervised ML in SCT Classification and Its Challenges 

As a result of the constant generation of a significant number of high-quality SCT data and the 

rapid development of commercial single-cell sequencing platforms (e.g. 10x Genomics [10]), the 

number of reference data sets for single-cell classification has continued to expand. The semi-

supervised and supervised learning analysis tools for SCT have been gradually developed (as 

shown in Table 1). The increase in publications in SCT and PBMC-SCT research fields has been 

demonstrated with the line chart in Figure 5. 

http://www.proteinatlas.org/
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Figure 5. The increase of publications in SCT and PBMC-SCT research area by years. Data source from 

PubMed (pubmed.ncbi.nlm.nih.gov, NIH) with search query: for PBMC-SCT: “(single-cell transcriptomics 

OR single-cell RNA sequencing OR scRNA-seq) AND (peripheral blood or PBMC or circulating immune 

cell)”; for SCT: “(single-cell transcriptomics OR single-cell RNA sequencing OR scRNA-seq)”. (The time 

point of data collection for this figure is 2021/09/12.) 

 

Supervised learning classification techniques have been impressively applied to data classification, 

examples are network-based learning algorithms (artificial neural sanetwork (ANN), support 

vector machine (SVM)), and instance-based learning algorithm (k-nearest neighbor (kNN)), etc. 

Supervised machine learning uses reference data sets and reference cell type labels as training data. 

Through learning, the supervised machine learning algorithm can accurately and effectively 

classify the cells of testing set, and score the confidence of the given label. Supervised machine 

learning is expected to effectively learn, recognize and classify SCT data expression patterns with 

high dimensions (~20,000 to ~30,000 feature dimensions). 

a) Can handle and classify SCT data pattern. 

Supervised classification methods can effectively make up for the deficiencies of unsupervised 

machine learning. Its advantage exists in that it can directly learn the expression pattern of the cell 

type from the large amount of reference data (training set) and perform reliable pattern recognition 

on the testing set through statistical inference algorithms. Supervised classification models such 
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as artificial neural networks are capable of coping with the complexity of SCT data (high-

dimensional, sparse, high variable sensitivity, transcriptional noise). It can identify the unique 

expression patterns of specific cell types from highly variable and highly complex SCT data, and 

define and classify a certain cell group with the distribution of transcripts with ~20,000 to ~30,000 

feature dimensions.  

b) Generalization. 

Supervised learning can generalize on multi-source SCT data. For SCT in PBMC classification 

[146], it can generalize both on sorting and non-sorting PBMC sample conditions, it can eliminate 

batch effect and technical variables in SCT data to a certain extent. A well-trained supervised 

classification model has the ability to handle with newly upcoming SCT data with various data 

sources. 

c) Fit to large amount of SCT data. 

At the same time, the huge amount of SCT data is a reasonable application of supervised learning, 

and the huge training set base can increase the classification accuracy of supervised learning. 

Supervised learning can cooperate and integrate the existing SCT data sets to maximize the 

utilization of SCT data resources. 

 

However, the convinced performance of supervised classification methods has a strong 

dependence on the reference data set. 

a) The quality of reference data. 

It requires high-quality example data as training set for classification algorithm learning and 

building a satisfied classification model, and fitting the model to new testing set with interpretable 

classification results. This strictly requires a high degree of accuracy and repeatability of the 

training data set and its annotation labels. Low quality and contaminated training set can bring 

irrelevant confounding information to classification model and lead to unreliable classification 

results.  

b) The lack of reference data on specific research samples. 

The number of SCT data sets has continued to grow exponentially, but the source of its sample 

tissues has become scattered for different research purposes. So far, there are SCT data sets on 

tissues such as liver, heart, kidney, brain, whole blood, etc., but there are few SCT reference data 
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sets for a specific studied cell population. That leads to a shortage of training and forming an 

effective classification model for a specific aim.  

Moreover, due to the limitation of cell separation technology, most of the sample collection is a 

mixture of a certain organ and tissue, rather than a specific single cell type or cell group. This leads 

to a lack of sufficient training sets for a single cell type for supervised learning. For example, as 

far as a classification study of PBMC [146] is concerned, for healthy human peripheral blood, a 

total of 58 high-quality, effective and reproducible SCT data sets of PBMC subtypes has been 

collected from January 2017 to April 2020. In the process of collecting data sets, we have found 

that a large number of sample sources are whole blood or PBMC mixture, but few samples are of 

a single cell type with cell separation (such as pure T cells, Monocytes, or B cells samples). Among 

the few purified PBMC samples, most of them come from research focusing on a specific disease. 

Their samples are collected from patient donors with disease. There are very few data sets on 

PBMC of healthy human donors.  

Reference data sets on certain research samples need to be generated and integrated for building 

satisfied SCT classification model. The following (Figure 6) is a dendrogram for PBMC ontology. 

It generally represents the relationships among significant PBMC cell types and subtypes. 

However, only those cell types highlighted in bold have accordingly SCT profiles, other cell types 

they are still waiting for upcoming profiles in SCT resolution. In fact, there are over hundreds of 

PBMC subtypes [163] have been found by previous bulk-RNAseq for a complete PBMC ontology. 

However, there is still no standardized SCT profiles for these subtypes. The classes and 

relationships among these subtypes are not clarified yet. To build a detailed SCT-PBMC ontology, 

the SCT profiles and hierarchical relationships for these subtypes need to be determined using SCT 

technology and SCT data analysis tools. 

Without detailed SCT-PBMC ontology and specific SCT-PBMC subtype data, a detailed 

classification model with PBMC subtypes cannot be fully constructed. Currently, only five-class 

classification models have been constructed for PBMC SCT classification [146]. 
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Figure 6. Organized PBMC ontology taxonomy. 
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c) The lack of understanding to new cell sub-class/sub-state found with SCT. 

The other limitation of supervised machine learning in SCT analysis, currently, is from the 

incompleteness of existing cell ontology/taxonomy in multi-dimensions. Other than subtypes 

found in previous bulk-studies, SCT has found new intermediate/sub-subtypes along with different 

cell states. Supervised classification model needs more SCT data in sub-sub class (intermediates 

or subtypes) and in different sample conditions (as for healthy PBMC, e.g. activated, memory, or 

effector memory cell states) to interpret the classification results. 

For example, the above PBMC ontology is mainly built based on knowledge from literature and 

bulk-RNAseq database. It has missed hundreds of PBMC subtype classes, those new sub-

subtypes/cell states decoded by SCT technology [163].  

The lack in well-defined classes for newly found sub-subtypes/cell states, that can lead to the 

misclassification between the two subtypes/cell states that are very close to each other on similarity 

(e.g. Classical CD14++CD16- Monocytes, Nonclassical CD14+CD16++ Monocytes, and 

Intermediate CD14++CD16+ Monocytes).  

Classification model requires to learn sub-subtypes’ SCT expression profiles – those are in the 

next/deeper classification level. These sub-subtypes have not been found in previous technologies, 

but they have been observed in SCT resolution [48]. The shortage in profiles and class definition 

(forming an entity in current PBMC ontology) for these subtypes have made 2%~3% 

misclassification in PBMC SCT classification [146]. 

Latest, the SCT project Human Cell Atlas (HCA) has been making efforts on clarifying cell types 

and ontologies for SCT analysis [164, 165].  

At the same time, as the PBMC ontology has being amended, revised, and updated, the 

confirmation and clarification of the cell type nomenclature should comply with unified standards. 

This helps to eliminate the confusion or ambiguity of cell types, and helps to establish a more 

precise and rigorous classification system for cell types. 

 

d) Supervised learning requires strict standardized operation protocols (SOPs) in SCT data 

generation. 

Supervised learning methods can deal with the batch effect brought by different experimental 

protocols, different chemical agencies, and different data pre-processing protocols to a certain 

degree, but it still has around a 1%~2% misclassification rate [146] coming from lack of unified, 
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strict SOPs. It has been found that with the increase in the number of highly reproducible training 

sets, the classification accuracy of the supervised learning model can come over the batch effect 

and converge to a certain level.  

SCT data with strict SOPs is helpful in performance of supervised machine learning in detailed 

SCT classification. Unified SOPs for SCT data generation is expected to promote real SCT 

application in clinical precision medicine in the future. 

 

2.6 Combination of Supervised and Unsupervised ML in SCT 

The latest SCT data classification should consider the combination of unsupervised clustering and 

supervised classification methods - that can better improve the accuracy of cell classification and 

recognition. The analysis results of the two types of methods can be referred to each other.  

Supervised classification can verify the results of unsupervised analysis of cell clusters. Supervised 

classification uses high-quality reference data sets and high-accuracy reference labels to ensure 

the classification results more reliable and interpretable. This can make up for the subjectivity in 

unsupervised clustering analysis. 

While at the same time, for new, unknown intermediate cell types or rare cell types found in 

supervised classification (those have not been successfully classified), unsupervised analysis can 

be used to help annotate new cell subtypes and identify their specific differential expression genes. 

This helps to update and refine the existing cell ontology and enrich the classification layers of 

supervised classification.  

Supervised and unsupervised learning can help each other, promote each other, and help enrich 

and deepen the understanding of existing cell types. 

2.7 Current Challenges in SCT Classification Analysis 

So far, the enormous efforts have been made both in supervised and unsupervised learning tools 

for SCT analysis. Currently, there are some challenges that still hinder the large-scale integrated 

application analysis of SCT data. 
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a) Technique deficiency. 

The first essential challenge comes from the technique deficiency hiding in SCT technology itself. 

As known, SCT technology can capture the most ~70% transcriptome information in a single cell, 

still ~30% genetic information can be missed in SCT profiles.  

This leads to the confusion understanding of “zero” value in SCT profiles. There are two possible 

reasons for the inference of zero value, one is the real zero expression of the transcript (i.e., the 

transcript does not exist), and the other is that the transcript is not captured (i.e. dropout event) due 

to the shallow sequencing depth. About 90% of the values in the SCT expression profile matrices 

are zero values. Too many zero values cause raw SCT data to present an irregular zero-inflated 

negative binomial distribution instead of a normal distribution in statistics. The reasonable 

judgment and understanding of the zero value have always been one of the main challenges of 

SCT data quality control and classification analysis. 

Another example of the noise caused by technical factors is doublets and triplets. In the single cell 

capture process, two or three cells and one gel bead are wrapped together by one oil droplet, that 

will cause "the cell" (a collection of two or three cells) to show an exceptionally specific high-

level RNA expression. The understanding and processing of doublets and triplets also brings 

challenges to SCT analysis. 

Next generation technology is expected to solve these technical confounding factors and decode 

SCT profiles of single cells in more comprehensive and more accurate level. 

 

b) Challenges from the understanding of single cell biology. 

Due to technological advancement, SCT has given humans an unprecedented opportunity to 

observe the transcriptional profile of a transient snapshot of a single cell. However, even if the 

interference of all technical factors is hypothetically ignored (assuming that there is no dropout, 

no batch effect, SCT data sets are all high-quality, reproducible, generated with a strictly unified 

protocol), the super microscopic level of SCT observation also makes humans lack sufficient 

existing knowledge to explain the captured biological phenomenon of single cells.  

The transient expression state of single PBMCs is coordinated by a variety of factors, including 

cell differentiation state (from naïve, immature, to mature), cell proliferation state (different cell 

cycle stages - G1, S, G2, M - circulating immune cells keep the ability of mitogenesis and 

proliferation [166, 167]), cell activation state (antibody activated or cytokine activated, memory 
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or effector memory state), and cell transcriptional bursting state [168] (The transcription activity 

in the cell is not continuous, but pulsed. At a certain stage or moment, the high-intensity expression 

will be ushered in. SCT will capture a snapshot of transient expression, that may be at the peak 

period or the trough period of expression.). At these moments of different states, the same "type" 

of cells will have a great difference in expression, and this will bring great influence and confusion 

to distinguish different cell types with SCT data. 

This has also triggered a redefinition of cell types in the single-cell era: Should cells be classified 

according to all the observable transient states of cells? Or just focus on the stable cell state over 

a period of time? How should we clarify and define "a type" of cells [11, 96]? If consider all the 

SCT transient states of cells, the PBMC ontology can add hundreds of new subtypes. How should 

the single-cell PBMC ontology be reconstructed using multiple dimensions? 

 

c) Establishing global unified, standardized, strict SOPs and systematic workflows for SCT. 

SCT profiles to a same cell type can be influenced by the protocols both in experimental 

sequencing, data preprocessing, and data computational analysis. 

For example, in PBMC single cell sequencing process, with the difference in cell separation 

methods, sampling conditions (fresh PBMC or frozen-thawed PBMC), sampling temperatures, 

storage time, sequencing protocols (10x, smart-seq2, smart-seq3), chemical reagents (chemical v2, 

v3 for 10x); the PBMC frequency, cell viability, cell transcription level can be affected, and digital 

SCT profiles can show different results. 

The similar in SCT data preprocessing and computational analysis processes, different parameter 

and thresholds selection will make differences in final SCT profiles. 

Formulating and establishing global unified, standardized SOPs (from SCT sequencing to raw data 

standardization, data analysis) for SCT benefits to global SCT data concordance, integration, and 

comprehensive utilization. Many experts have put forward opinions and suggestions [169-171] on 

the formation of a standardized and unified strict SOPs for PBMC SCT sampling, storage, 

sequencing, and data analysis workflow. 

Globalized SCT projects such as HCA [42] and other single-cell genomics consortiums have raised 

strict standardization requirements [172] and systematic workflow models [13] for SCT data 

generation. 

Large-scale global integrated generation and analysis of SCT data is the only way to go, that not 
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only meets its requirements as biomedical Big Data, but also meets the needs of supervised 

machine learning. A large number of highly standardized reference data sets help to achieve the 

repeatability and comparability of SCT data. That can maximize the elimination of the influence 

of technical factors, help set the quality control threshold used to limit technical noise, help 

determine individual differences, and help determine the possibility of a certain disease risk. 

 

d) Lack of reference data and reference annotation for detailed cell subtypes. 

As has been discussed above, the lack of reference data sets and detailed labels for specific aims 

has largely limited the current PBMC SCT analysis. There is currently a huge demand gap for 

high-quality annotation and high reproducibility SCT data of PBMC subtypes under different 

sampling conditions. 

It should be noted that it may not be possible to generate authentic and reliable labels for all cell 

subtypes [97]. Due to the inherent defects of SCT technology, the comprehensive multi-

dimensional information of several dynamic cell subtypes may not be captured. The lack of true 

labels and reference data sets for all cell subtypes [173] is an essential obstacle for machine 

learning in SCT analysis. 

 

e) Lack of generalized analysis tools. 

There is still a need for generalized analysis tools with high robustness, accuracy, and scalability, 

to respond to the massive exponential growth of single-cell data. 

At the same time, there is a need for uniformity in the programming language and input data format 

of the analysis software. The current analysis software is mainly written in R language and Python, 

and the input formats are various across different software. Achieving flexible conversion between 

different analysis software and input objects is the key to user-friendliness. 

 

f) Establishing unified SCT data storage and transfer platform. 

The big data [19] nature of single-cell data requires it to form a global data storage and 

coordination platform. High-quality, repeatable and standardized SCT cell profiles should be 

stored in integrated data platform.  
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Bulk-RNAseq has made examples in blood /immune cell reference databases, such as 

NovershternHematopoieticData [174], DatabaseImmuneCellExpressionData (DICE) [157], and 

MonacoImmuneData [175]. 

In SCT, the HCA project has formed a data coordination model (data.humancellatlas.org) [162, 

165] for reference data sets. The Atlas of Blood Cells (ABC) project has made reference data sets 

for 7551 human blood cells of 21 healthy donors with SCT [176]. A global systematic data 

platform is required to be designed for these treasurable PBMC-SCT data sets. 

2.8 Future Prospects for PBMC-SCT Classification 

Despite the enormous challenges of biological cognition and computational analysis, we can see 

the broad prospects of PBMC-SCT data for clinical precision medicine. 

With the exponential growth of PBMC-SCT data, and the continuous expansion and combined use 

of unsupervised clustering and supervised machine learning in the SCT field, accurate and robust 

recognition of the expression patterns of PBMC-SCT profiles will become a reality. 

The complexity and diversity of the massive PBMC-SCT profiles implies the judgment of 

individual health, disease, age, or clinical drug treatment effects. A sufficient number of 

standardized PBMC-SCT data sets with accurate class labels, can be used as the basis for 

predicting genetic phenotypes and decision making of clinical diseases.  

Large-scale integrated PBMC-SCT data analysis is expected to become an essential category in 

electronic health record (EHR) [173] system, and hopes to become an information-based disease 

prevention and monitoring method, for blood diseases, cancer [177], immune diseases, and 

infectious diseases in the future. 
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CHAPTER 3 GENERAL METHODOLOGY 

3.1 Data 

3.1.1 Data collection & data processing 

The 10x SCT data sets collected for this project study mainly have four sources, these are 10x 

Genomics Demonstration Data, GEO database, BroadS1 study and BroadS2 study. 

The 10x Genomics Demonstration Data is the database supported and maintained by 10x 

Genomics company, that represents the high-quality PBMC data sets generated with standardized 

10x experimental protocol. BroadS1 and BroadS2 studies are accomplished by Broad Institute 

with specific and clear cell type annotation for PBMC sample data sets. They are considered as 

precisely high-quality data sets and can be used as training and testing data sets for the supervised 

machine learning PBMC classification system. 

For GEO database, the 10x SCT sequencing data of relevant articles published by 13th July 2019 

were searched using keywords - “single cell” AND “10x” in GEO (Gene Expression Omnibus) 

Database of NCBI (National Center of Biotechnology Information, 

https://www.ncbi.nlm.nih.gov/). In total, 595 10x SCT data sets of Homo Sapiens in GEO database 

have been collected. Among these collected 595 GEO 10x SCT data sets, specific data sets using 

PBMC as experimental samples have been selected, stored, and annotated one by one. 

Raw data (matrix.mtx, barcodes.tsv, genes.tsv) of Study BroadS1, Study BroadS2, GEO data sets, 

and 10x Genomics Demonstration data have been downloaded, collected, filtered, and stored. Data 

sets with specific annotation of one cell type of PBMC and generated by PBMC sampling from 

healthy donors have been selected as the training sets with specific classes for building the 

classification system initially. The data sets annotated with PBMC mixture sample have been 

stored and prepared to use for the following experiment purpose to test the robustness of the 

classification model system. 

Collected data sets involves different publication date, different sample source, and different 

experimental condition in collected data sets. Raw data usually contains one gene list file, one 

barcode sequence file and one gene expression matrix file for each study. Data files corresponding 

to their data source and study source have been organized and stored in local data repository and 

the backup files have been made in different local storage terminals. Data backup is also uploaded 
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to the cloud data storage server. 

3.1.2 General metadata construction 

Metadata contains useful traceability information of involved data sets, that consists of two main 

parts, one is experimental metadata, one is statistical metadata. The experimental metadata 

includes the study description, study number, sample name, experimental condition, cell type, 

technology platform of each data set collected, that gives background experimental information of 

each study. The statistical metadata includes data distribution and basic statistical properties of 

each data set, that helps to understand the difference and data structure in each count matrix.  

 

Figure 7. The components of metadata involving over 600 10x SCT files. 

The above figure is the structure of the metadata of this project involving over 600 data sets, that 

shows the component and modality of the designed metadata chart form. The aggregated data 

annotation of the 10x SCT studies has been arrayed into the metadata chart form, that is designed 

with “INDEX”, “SERIES”, “ACCESSION”, “GENOME”, “ORGANISM”, “DESCRIPTION”, 

“SAMPLE TYPE” etc. as the captions of each column in metadata. The metadata is sorted by 

“ACCESSION”, that is the number name of series (e.g. GSE119561). ACCESSION is arranged 

in order from small to large, from top to bottom. This is very important to the follow-up work, 

because it has been found that many related data sets have very similar series numbers.  

Only 10x SCT technology relevant research is included in metadata, other research with other 

single cell transcriptomics technologies (e.g. Drop-seq, SMART-seq, inDrop, etc.) of the same 

super series is not involved in. Sample number (e.g. GSM3377671) is unique for each 10x study 
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in GEO database. Data sets collected from other sources, such as 10x Genomics Demonstration, 

BroadS1 study, BroadS2 study, they have their own unique sample indexes. In this study, data sets 

from different sources have been renamed and reorganized based on the research purpose.  

The comprehensive metadata has over 600 data sets mapped with their own studies, the description 

of each study is involved in the metadata and some of them has specific additional comments. The 

metadata has detailed annotation for each specific data set. It has described the sample cell type, 

health status of the donors, experimental conditions, experimental protocols, data upstream 

analysis protocols, and other important information of each 10x SCT data set for the further 

experimental design of the supervised machine learning PBMC classification system construction. 

3.1.3 Data selection and study quality control  

During 10x SCT data collection process, the good quality of collected data sets has been checked 

and ensured for the further following pre-processing steps and classification steps. For example, 

in GEO SCT data sets collecting process, the studies which are not related but filtered out by GEO 

database browser with the key words are excluded (e.g. 10X Hank’s salt solution). Another 

example is that series with inconsistent study description are excluded out as well. 

3.1.4 Common genome assembly built 

Genome assembly is the gene name database comprises the names and IDs of all known genes so 

far, it is used as available annotation tracks. Different genome version is used in different studies. 

The alteration of genomic versions and the lack of uniform naming standards have led to complex 

confusion. One gene name can have several different probes name, it is not comparable between 

two different genomes of one same organism. Quality control has been done to exclude studies 

only supply gene name list without probes or only have probes list without gene name list. One 

probe can correspond to different gene names (synonym or alias). NCBI, ENSEMBL and UCSC 

are genome databases and genome browsers retrieving genomic information. The number of 

probes in genome assembly are regularly updated. Genome assembly has Ensembl Gene ID (e.g. 

ENSG00000210049) and Gene Name (e.g. MT-TF).  
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Figure 8. An example of genome assembly (GSM3937878). 

We used the current version (.tsv) in ENSEMBL genome browser as reference. In our study, 

genome builds have been selected of different samples in different series from collected data. They 

have been compared and merged to a dictionary of reference genome assembly, it is named as 

“common list”, with probes mapping to genes. 

 

Figure 9. Comparison across different genome version. 

Correction has been made when the genomes adopted in several studies show the wrong data 

format, the decimal point in probe, the space keys, confused/mixed genome version and the 

incorrect naming. Corrected and cleaned genome file is saved with format “.txt” or “.tsv” instead 

of “.csv”, in case of Excel date format confusion. Genome files supplied in “.H5” file format are 

converted to “.csv” format. The cleaned and merged version of genome assembly is used as 

reference for follow-up machine learning section. 
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Table 2. Components and the number of gene probes in common list and full list of Homo Sapiens. 

Organism Component Common 

list 

probes 

number 

Full list 

probes 

number 

Note 

Homo 

Sapiens 

“grch37_1_GSM3073089_GSE112570.tsv” 

“grch38_1_GSE117403.tsv” 

“grch38_2_GSM3375767_GSE119506.tsv” 

“grch38_3_GSM3478791_GSE122703.tsv” 

“grch38_4_GSM3543618_GSE124703.tsv” 

“grch38_5_GSM3813936_GSE131685.tsv” 

“hg19_2_GSM3430548_GSE121267.tsv” 

“hg19_3_GSM3635372_GSE127471.tsv” 

“hg19_4_GSM2897333_GSE108394.tsv” 

... ... (special genome) 

 

30698 60570 “hg19_1_GSM2867931_GSE106245

.tsv” 

“hg19_5_GSM3143601_GSE114530

.tsv” Deleted. (Decimal point, date 

format error, version error.) 

In this study, a common gene list across collected SCT data of Homo Sapiens has been prepared 

as a mapping library for count matrix standardization. In human common gene list, there are totally 

30698 gene names with corresponding gene probes, they are features in PBMC SCT classification. 

3.1.5 Data filtering, conversion, and standardization 

Raw data sets have been filtered, decompressed, converted into standardized file formats. Data 

files of super series studies have been split up.  

 

Figure 10. Data files collected and cleaned. 

Data cleaning and filtering has been done by the exclusion of null data, that can be caused by the 

count of empty droplets during SCT experiment procedure – the cell capture rate is zero at this 

situation. For example, in the raw data of the study sample GSM3258348, the cell barcode is 

~700,000, but the actual gene expression is only ~26,000, that means it calculates lots of empty 
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gene expression, so we filtered output the actual meaningful data by removing the null data in each 

matrix of raw data file. 

 

Figure 11. MTX file needs to be converted to CSV file for visualization. 

Raw data of different formats (e.g. .h5, .csv, .tsv, .txt, .mtx) with different genome versions have 

been converted into CSV file (.csv), with cell barcodes/cell numbers as the horizontal heading, the 

standard 30,698 gene features as the vertical heading, and gene expression values as digital matrix. 

The produced CSV file was converted into four standard file formats - .h5, .csv, .npz, .mtx (tsv), 

those used as common, unified and standardized output format for various purpose of use, such as 

file transfer, visualization, and statistical calculation.  

 

Figure 12. An example of a standardized count matrix (30,698 features). 

Data standardization has mapped the original digital matrix in raw data set to reference common 
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gene list (30,698 features). Those gene probes in common list that don’t have expression in cells 

have been filled up with zeros. Original gene probes in raw data that are not involved in reference 

list have been filtered out. 

3.1.6 PBMC data selection and properties analysis 

Among the collected SCT data sets, PBMC data sets with ‘blood’ as sample sources have been 

sorted out for following studies. There are 9 data sets of 10x Genomics Demonstration, 28 data 

sets of GEO database, 5 data sets of BroadS1 study and 31 data sets of BroadS2 study.  

3.1.6.1 PBMC data metadata 

The experimental information (experiment platform, experimental conditions, sample sources, etc.) 

and statistical information (cell number, etc.) of PBMC data sets have been described in metadata.  

 

Figure 13. The experimental metadata and statistical metadata for involved PBMC data sets. 

In PBMC metadata, original file names have been renamed with the index number of the study. 

PBMC data sets have been arrayed according to index, data source, original file name, new file 

name, publication date, study ID/series number/accession number, data format, experimental 

platform and protocol, genome, study description, sample source, cell type, receptors, special 

conditions, cell ranger version (the chemical), cell sorting method, etc.  

Cyclical PBMC classification experimental design can be done based on the selection of these 
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prepared and standardized data sets. The experimental metadata can help to explain and interpret 

ANN classifier behavior when it comes to multisource data sets.  

3.1.6.2 Basic statistical analysis 

The statistical properties of each data sets have been calculated, analyzed, stored in the statistical 

metadata. The statistical metadata contains information such as cell number, min value, max value, 

medium value, average value, sum profile, positive profile (gene expressed profile), normalized 

sum profile, percentile of sum and positive values, etc. for each data file matrix. 
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Figure 14. An example to show the statistical properties calculating procedure for one individual data set. 

 

Figure 15. The 0-100 percentiles of positive profiles of 10x and GEO data sets as an example. 

The statistical properties of each data set have been plotted into graphs for visual comparative data 

analysis, to figure out and contrast the difference in data structure and density distribution. The 

data structure and distribution represent specific gene expression profile pattern, that are crucial to 

ANN model performance on learning and predicting PBMC SCT data. 
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Figure 16. The scatter plots for percentiles of column positive value of each data set. 

The scatter plots represent an example of statistical metadata for a data property - the percentiles 

of column (cell number) positive value of each data file. Through visualization using scatter plots, 

data distribution of each data set can be explored and analyzed on a further level. 
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Figure 17. The scatter plots of positive values and sum values in each data set matrix. 

 

With scatter plots of positive values and sum values, the data density and structure can be easily 

visualized. Based on difference in gene count thresholds, data quality control has been considered 

to conduct during data processing. The high expression cells can be doublets or triplets of single 

cells generated during 10x sequencing procedure. The low expression cells have possibility to be 

low-quality cell or the fragmented transcripts of single cells that should be eliminated from 

following supervised classification process. The differential expression analysis to SCT data sets 

is significant for interpreting the learning process of ANN models. 

 

3.1.6.3 PBMC ontology metadata 

A PBMC ontology has been organized based on selected PBMC SCT data, as shown in Figure 6. 

The ontology metadata has been organized as shown in Figure 18.
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Figure 18. The metadata for PBMC ontology building, based on selected PBMC SCT data. 

In this ontology metadata, each cell type (subtype) has frequency, phenotype marker, function and properties, data source, additional information, 

references, etc. categories for lineage tracing and literature tracing. Related information and referenced literature have been stored in repository. The 

hierarchical relationship of each data set can be clearly located with the taxonomy dendrogram in Figure 6. It is significant to interpret single cell 

classification results with PBMC ontology and background metadata information. 
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3.2 Multi-Dimensional Single-Cell Ontology: PBMC as An Example 

Domain knowledge (prior biological knowledge) is significant to data, model/algorithm, 

parameters in single cell classification process. It can help to interpret and address machine bias 

from the perspectives of inaccurate assumptions to data labels and flawed data sampling where 

data is over- or under-represented in machine learning training data set. 

Currently existing cell ontologies are not suitable for single cell classification, with deeper 

resolution in SCT technology and new evolving concepts in cell type definition and determination. 

Traditionally, there are different classification criteria for cell types, such as cell morphology, 

molecular-cell function (surface receptors, cell secretions, etc.), but these criteria are not always 

connected. In addition, the cell classification ontology, standard, and naming of cell types are not 

consistent across different studies, to a certain extent. There is often a phenomenon of cell type 

recognition based on molecular markers discovered in certain research, or cell type determination 

standards that are chosen at purpose or for convenience.  

The existing classification of immune cells does not have a systematic and comprehensive 

classification standard, which makes it difficult for us to understand cell types and classify them 

with ANN models. The current cell ontologies focus on describe cell types based on traditional 

methods. The determination of cell identity, cell type, cell state, and cell fate has entered the era 

of digital quantitative definition of each individual single cell. Single cell gene expression can be 

sensitively affected by factors of multiple dimensions: from cell properties, organism properties, 

types of tissue, experimental settings, and data analytics. The classification of single cells urgently 

needs a systematic and formally defined multi-dimensional ontology. 

With the quantitative defined single cell gene expression profiles, in this section, a multi-

dimensional single cell ontology has been systematically described, with taking PBMC cell 

properties specifically as an example, referring to the existing literature and collected 10x SCT 

data. That gives a hierarchical, common, and controlled vocabulary prototype for single cell 

ontology. The PBMC cell properties has been designed to be one layer upper based on existing 

data, and one layer of subclasses beneath the classes of the existing data. 

The following has written the multi-dimensional single cell ontology proposed. This work has 

been organized into a paper manuscript under reviewing. 
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3.2.1 Abstract  

We propose a multi-dimensional cell ontology for single cell study, with PBMC as a specific 

example. It has described over 163 dimensions to category and characterize single cells, based on 

prior knowledge in immunology and single cell study domain. The multiple dimensions include 

cell types and factors affecting single cell gene expression level. This ontology can be used as a 

reference model to support with single cell data analysis, such as single cell classification. 

3.2.2 Introduction 

Ontology is a formalized representation of the definition of a group of concepts, and the 

standardized description of their attribute relationships, in a certain field. Ontology represents and 

describes two questions of concepts in a field – “what are they” and “what are their relationships”. 

Ontology helps to strengthen the certainty and clarification of the nature of research objects or 

facts. It is the basis for the understanding of research data and research questions [178, 179]. 

In single cell study field, it requires an ontology to annotate and category single cells with 

hierarchical structure of multiple dimensions. 

At the level of single cell, the cell gene expression can be affected by diverse elements: an inherent 

expression related to cell type, and influence of tissue location, organism properties, experimental 

settings, data analytics. 

For example, dendritic cells from tonsil has different expression to dendritic cells from peripheral 

blood [16, 65]; T cell gene expression can be changed by methanol fixation [16, 65]; the single-

cell transcriptomics (SCT) technology platform (e.g. 10x Genomics v2, v3) has a greater impact 

on the similarity of cell gene expression than the cell type itself [59]; the gene expression profile 

of PBMC in chronic lymphoid leukemia (CLL) patients has changed significantly over time and 

treatment [29]. 

In domain, currently, there are ontologies, such as Cell Ontology (CL) (cellontology.org) (an 

ontology for cell types) [180], Gene Ontology (GO) [181, 182], that have been constructed and 

written in a set of standardized principles of OBO foundry [183]. However, CL focuses on general 

concepts of cell types from prokaryotes to mammals, it does not have available subclasses 

underneath the class “PBMC”. Further, it is derived from the subjects of life science and cell 

biology, it has generally described cell types with the perspectives of cell origin, and cell function, 

etc. 
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The advance in SCT has brought a need in categorizing a single cell based on the concepts from 

diverse dimensions – not only from cell type, but also considering dimensions in tissue and 

organism, experimental processing and data processing. It requires a hierarchical vocabulary of 

multi-dimensions to categorize SCT profiles. It can support the repeatability and reliability in SCT 

analysis. 

This ontology supplies a structured and controlled vocabulary for single cell study. It determines 

distinct hierarchical categories and relationships for individual single cells. The ontology can be 

used as a reference for single cell classification, that helps SCT data being classified according to 

precise dimensions and compartments [184]. It can guide machine learning model and statistical 

analysis to find differential expression patterns of SCT data on each specific dimension.  

To meet the need of an ontology in single cell study, we produce a multi-dimensional ontology 

model, based on dimensions of cell properties, organism properties, tissue types, experimental 

settings, and data analytics. In cell properties, PBMC has been taken as example to describe. The 

biological knowledge of the ontology is from immunology [36, 185] and SCT research field. The 

ontology is built according to principles of being clear, concise, informative, and reliable. 

 

3.2.3 Construction and content 

3.2.3.1 SCT study dimensions 

Efficient SCT data integration and classification requires the ontology in multiple SCT study 

dimensions.  
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Figure 19. Five angles of SCT study multi-dimensions. The number in the figure shows the number of 

dimensions in each main angle. The ontology has over 163 dimensions in total. 

Comprehensively, the SCT study dimensions include five main angles: cell properties, types of 

tissue, organism properties, experimental settings, and data analytics. These five main angles are 

the primary factors that need to be considered for SCT data integration, analysis, and classification. 

Each sub dimension in these five main angles can affect the specific gene expression level in 

individual SCT profile. 

 

3.2.3.2 Cell properties and PBMC ontology 

• Cell properties 

First, specifically, in ‘Cell Properties’ angle, it has 12 sub dimensions, the first layer of ‘Cell 

Properties’ is comprised of ‘Genetic lineage’, ‘Maturation status’, ‘Activation status’, and 

‘Effector/memory’ dimensions. ‘Genetic lineage’ is the dimension to decide SCT cell type in the 

view of cell lineage development. Based on our previous PBMC SCT classification study [65], it 

has two sub dimensions: ‘non-PBMC’ and ‘PBMC’. ‘PBMC’ dimension has been structured in 

detail in Figures 21-26. 
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Figure 20. Dimensions in ‘Cell Properties’ angle. It includes subdimensions from ‘Genetic lineage’, 

‘Maturation status’, ‘Activation status’, and ‘Effector/memory’, four dimensions. 

Our ontology has set “the status of immune cells” as dimensions independent of “cell genetic 

lineage” (the dimension traditionally used to define cell types).  

There are different views on the division of the hierarchy between “cell type” and “cell status” [11, 

97, 184], and there are studies use “cell status” as a part of content in cell type determination and 

definition [186]. From the perspective of single-cell research and big data analysis, we have split 

the “cell lineage type” (named as ‘Genetic lineage’ in ontology) and “cell status type” as different 

dimensions to jointly define a gene expression profile of a specific cell population.  

“Cell status” is an emerging concept for cell type classification [97]. The joint definition of cell 

type through “Cell status” and “Genetic lineage” is the development and continuation of the 

epigenetic landscape theory described by Waddington [187]. In our ontology, the branches of cell-

fate decision points are jointly defined by multiple dimensions.  

The characterization and determination of cell state is one of the key challenges in SCT [22]. 

In our ontology, ‘Maturation status’ has described dimensions in the maturation process, from 

immature, transitional, to mature. Immune cells gain mature status in specific immune organs, but 
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it has found their existing in periphery, during cell trafficking [185, 188]. 

The ‘Activation status’ dimension has divided immune cell into ‘Active’, ‘Resting’, ‘Anergic’, 

three compartments. 

The ‘Effector/memory’ dimension is decided based on the time phase: whether the cells were 

stimulated by antigens, and the different differentiation stages they were in after receiving the 

activation stimulus. The ‘Naïve’ compartment refers to mature cells not exposed to antigen, 

‘Effector’ refers to immune cells performing effector function with short life span, ‘Memory’ 

refers to cells performing similar phenotype to ‘Effector’ cells, while with long life span (up to 

several years). 

 

• PBMC ontology 

 

Figure 21. Five classes under the ‘PBMC’ dimension. 

The dimension ‘PBMC’ consists of ‘B cells’, ‘Dendritic cells’, ‘Monocytes’, ‘NK cells’, and ‘T 

cells’, based on immunology prior knowledge [36, 185].   
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• B cells 

 

Figure 22. B cell ontology defined. (‘MZL B cells’ is the abbreviation for ‘Marginal zone-like B cells’.) 

In B cell dimension, the ontology has set six compartments - ‘Naïve B cells’, ‘Memory B cells’, 

‘MZL B cells’, ‘Plasma cells’, ‘Plasmablast’, and ‘Regulatory B cells’ [188-192]. Immature B 

cells and Transitional B cells before complete maturation, are not described in the ontology. 

After the maturation, naïve B cells enter the peripheral blood, they can be activated, effected, or 

brought to memory status, by self-antigens or hetero-antigens. Plasma cells are effector B cells, it 

is distinguished into two divisions based on different life span (short-lived; long-lived - from few 

months to lifetime) [193].  

Pre-switched B cells and post-switched B cells (lgG+, lgA+, lgE+ memory B) are listed as two 

compartments of the dimension ‘Memory B cells’ [194]. 

Regulatory B cells perform the function of regulation in peripheral blood, it is proposed that any 

B cell has the capacity to differ into a regulatory B cell in human [195]. 

Other B cell groups with trace amount of cell numbers in blood are not involved in the ontology, 

such as B-1 cells (mainly in fetus blood), early plasmablasts, transitional plasma cells, etc. 

While defining PBMC cell classes, we have found that PBMC cell types are largely defined by the 

types of specific cell surface markers (e.g. surface protein receptors, cluster of differentiation - CD 

markers), or, cells’ secretions (e.g. immunoglobulin (Ig), cytokines, chemokines, granzymes, etc.). 

Examples can be found in DC-CL (a dendritic cell ontology) [196] and hemo-CL (a hemopoiesis 

cell ontology) [197]. This ontology has made effort to focus on the essential classes of cell types.  
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• Dendritic cells 

 

Figure 23. Dendritic cell ontology defined. (‘AS DC’ is the abbreviation for ‘AXL+SIGLEC6+ DC cells’.) 

The construction of dendritic cell dimension is based on prior knowledge [100, 198] and newly 

derived knowledge with SCT studies [48, 199]. In the ontology, ‘Classical DC’ shares the 

synonyms with “conventional DC”, “myeloid DC”.  

The ‘Classical DC’ has the positive expression of CD11C. There are three subclasses under its 

dimension: CD11C+CD141+ DC (cDC1), CD11C+CD1c+ DC, and CD11C+CD141-CD1c- DC 

[48]. 

The ‘plasmacytoid DC’ positively expresses CD303 and CD123 marker [48]. The cDC can 

stimulate CD4+ T and CD8+ T in antigen-specific manner. The pDC produce type-1 IFN 

(interferon) as response to viruses [199]. 

The ‘AXL+SIGLEC6+ DC’ (AS DC) are newly defined in a DC SCT study [48], AS DC is unique 

to cDC or pDC. AS DC is isolated by co-expression of specific markers, such as, AXL, SIGLEC1/6, 

and CD22/SIGLEC2. 
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• Monocytes 

 

Figure 24. Monocyte ontology defined. 

The monocyte dimension has three compartments: ‘Classical monocytes’ - CD14++CD16–, 

‘Intermediate monocytes’ - CD14++CD16+, ‘Non-classical monocytes’ - CD14+CD16++ [48, 

100]. The newly defined “Mono3” and “Mono 4” subtypes [48] are not listed in the ontology, 

given the consideration of further verification on reproducibility.  

 

• NK cells 

 

Figure 25. NK cell ontology defined. (‘CIML NK’, ‘LRE NK’ are the abbreviations for ‘cytokine-induced 

memory-like NK cells’, and ‘population with low ribosomal expression NK cells’, respectively.) 

In NK cell dimension, there are four subclasses: ‘CD56dim NK’ - CD56+, ‘CD56bright NK’ - 

CD56++, ‘CD56negative NK’ - CD56–, and ‘Others’ [186, 198, 200, 201]. 

CD56bright NK and CD56dim NK both have two divisions: CD16– and CD16+. 

CD56brightCD16-, CD56brightCD16+, CD56dimCD16+, are, regulatory NK, intermediate NK, 
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effector NK, respectively.  

Inside of CD56dimCD16+ compartment, there are two further partitions: CD56dimCD16+CD57– 

and CD56dimCD16+CD57+ [186]. The CD56dimCD16+CD57+ NK cells are terminally 

differentiated mature NK cells, with high cytotoxicity. Its reference range is around 12.2% of the 

total NK cells [186]. 

The ‘CD56negative NK’ is also termed as “inflamed NK” or “Type-1 IFN responding NK”. It is 

closely related to CD56dim cells while it has diminished cytolytic capacity [186, 200]. 

In the compartment of ‘Others’, ‘CIML NK’ and ‘LRE NK’ have been listed. The ‘CIML NK’ is 

strongly activated NK cells, it is similar to CD56dimCD94high intermediary NK cells, it is a 

hybrid between CD56dim and CD56bright NK cells [186, 200]. The ‘LRE NK’ is resembling to 

CD56dimCD16+CD57+ NK cells, while it has significantly reduced ribosomal expression. It is 

reminiscent of cells undergoing senescence or quiescence (termed as “ribophagy”) [186, 200].  

There is a group of “adaptive NK cells” found in the NK SCT study [186], but not listed in the 

ontology, given the concern of reproducibility. 
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• T cells 

 

Figure 26. T cell ontology defined. (‘Tfh’, ‘Treg’, ‘MAIT’ and ‘NKT’ are the abbreviations for ‘T follicular 

helper cells’, ‘regulatory T cells’, ‘Mucosal associated invariant T cells’ and ‘Natural Killer T cells’, 

separately.) 

 

In T cell dimension, there are two main compartments: ‘Classical T’ and ‘Innate T’ [202]. 

The ontology has set ‘Double-negative T’ - CD4– CD8–, ‘Double-positive T’ - CD4+CD8+, and 

‘Single-positive T’ - CD4+/CD8+, compartments under ‘Classical T’, based on T cell lineage 

commitment [202]. Progenitor T cells experience T-cell receptor (TCR) gene rearrangement, 

thymus positive selection (MHC I, II) and negative selection (self-tolerance) to obtain single 

positive expression [185].  
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Under ‘Single-positive T’, based on the type of expressed surface receptors and the function, it has 

been divided into ‘Helper T’ - CD4+, ‘Treg’ - CD4+/CD8+, and ‘Cytotoxic T’ - CD8+. The 

‘Helper T’ has set subdivisions including ‘Th naive’, ‘Th1’, ‘Th2’, ‘Th9’, ‘Th17’, ‘Th22’, and 

‘Tfh’ [203, 204]. The ‘Cytotoxic T’ has subdivisions as ‘Tc naïve’, ‘Tc1’, ‘Tc2’, ‘Tc9’, and ‘Tc17’ 

[203, 205].  

Effector Th1, Th2, Th17 can secret cytokines and have functions in cellular/humoral immune 

response. Naïve CD8+ T cells can be activated by effector helper T cells into effector cytotoxic T 

cells (CTL) [185]. In few cases, CTL can also be the effector CD4+ T cells [206]. 

Treg cells highly express CD25 and the transcription factor Foxp3, it is also labeled as 

CD4+CD25+Treg [198]. In the adaptive immune response, it can perform negative regulation 

function (as opposed to Th cells), through direct contact or the secretion of cytokines. Treg cells 

can turn other cells from an active status to a resting status. The CD8+Treg and Treg of other 

phenotypes have also been found [207, 208].  

The ‘Innate T’ compartment includes ‘MAIT’, ‘NKT’, and ‘Gamma-delta T cells’. The ‘NKT’ 

and ‘Gamma-delta T cells’ compartments have subdivisions – ‘NKT1’, ‘NKT2’, ‘gd1’, ‘gd2’, 

respectively [209]. The ‘NKT1’ is also referred to as “invariant NKT cells” (iNKT) [210]. 

The ‘Innate T’ compartment is part of innate immunity of human body, as well as the ‘Dendritic 

cells’, ‘Monocytes’, ‘NK cells’ compartments. The ‘B cells’ and ‘Classical T’ compartments have 

functions in adaptive immunity. 

The similarity between compartments “T cells”, “NKT cells”, and “NK cells” can lead to 2~3% 

of misclassification of T cells and NK cells, based on SCT data and supervised machine learning 

model [65, 146]. 

 

3.2.3.3 Organism properties 

The ‘Organism properties’ angle has described at least 19 dimensions that can affect SCT cell gene 

expression profile, from the perspective of organism. 

The dimension ‘Individual Genetic Differences’ represents factors influencing SCT profiles in 

gene level, from genetic background (in nature), to environmental exposure (acquired), and others.  

Reference intervals and gene expression level of immune cell subsets can be different by regions, 
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populations, and ancestries [211-214], these factors conclude into ‘Genetic background’.  

‘Environmental factor exposure’ mainly refers to individual differences influenced by epigenetic 

modifications, such as industrial chemicals, heavy metals, air pollutions, temperature, humidity, 

light, ultraviolet radiation, mutagens, pharmaceuticals, vaccine [215], dietary components, alcohol, 

smoking, stress, sleep deprivation, behaviors, lifestyle, etc. [216-218]. Exposed to different 

environmental conditions, can make phenotype polymorphisms in genetically identical organisms. 

 

 

Figure 27. Dimensions in ‘Organism Properties’ angle. It includes subdimensions from individual differences, 

age, gender, to health status. 

 

The influence of ‘Developmental stage/Age’ and ‘Gender’ on sample immune cell differences 

have been observed, as found in previous studies [163, 213, 214, 219, 220]. In the ontology, five 

compartments – ‘Fetal’, ‘Pediatric’, ‘Young’, ‘Middle age’, and ‘Elderly’, have been set under the 

dimension ‘Developmental stage/Age’.  
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‘Healthy’ and ‘Illness’ dimensions can affect immune cell expression largely. The same type of 

cells can have specific gene expression in allergy [221, 222], autoimmunity [223, 224], infection 

[225, 226], cancer [227, 228], or, treatment [229], etc. conditions [163]. The change of PBMC 

gene expression in CLL patients with the process of treatment has been confirmed [29]. 

Other circumstances such as chronic disease [230], pregnancy [231] are also considered.  

 

3.2.3.4 Types of tissue 

 

Figure 28. Division from the perspective of tissue type. 

 

The settings of dimensions under “Types of Tissue” is done based on SCT data analysis practice 

and convenience, developed from views on traditional classification of anatomy, - the systems, 

organs, tissues, cells.  

The construction of the dimensional hierarchy adopts the top-down principle. 
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The enumeration of dimensions based on different locations of organs and tissues conforms to the 

law of permutation and combination. The ontology only lists the partial types of tissues based on 

collected SCT data. The purpose of enumeration is to demonstrate a multi-dimensional model, 

rather than exhaustively list all types of organs and tissues. 

Organs and tissues with available standardized SCT data include, “whole blood”, “PBMC”, “liver”, 

“lung”, “gallbladder”, “spleen”, “tonsils”, “breast”, “bone marrow”, “thymus”, “lymph nodes”, 

etc. In PBMC SCT data analysis, a common scenario is that less data comes from purified PBMC 

cell samples (such as only B cell samples or T cell samples), and more data are derived from 

PBMC mixtures or whole blood samples. This leads to the difficulty of PBMC cell splitting and 

the unavailability of the PBMC classification based on SCT data. 

Another common situation is that, reading literature related to experimental data can find that many 

data samples marked as "peripheral blood" in the SCT database may come from tissues (such as 

"liver", "spleen", etc.), rather than the circulating blood on the periphery - in the traditional 

meaning. The definition of “peripheral blood” is related to the classification and analysis of PBMC. 

The SCT expression profiles of peripheral blood in different tissue environments are 

heterogeneous. 

In particular, in PBMC SCT classification based on artificial neural networks (ANN), when adding 

tissue-residential dendritic cells (DC) data (from tonsil) to the training set [16], it can directly affect 

the accuracy of the classification model. 

The studies [16, 65, 146] have shown the fact of SCT data vacancy on certain tissue type and the 

importance of clarifying specific sample tissue source in SCT analysis. 

 

3.2.3.5 Experimental settings 
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Figure 29. Dimensions of experimental settings involved in SCT data analysis. 
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Sample isolation, fixation, storage, sorting, processing steps in SCT experiment can affect the gene 

expression of measured cells [232].  

A typical example is that, SCT data of T cells with methanol fixation [233] has apparently 

influenced the classification accuracy of ANN models [65]. 

It is very important to establish rigorous standard operating procedures (SOPs) and 

characterization methods for SCT data, that can avoid the introduction of technical variables in 

downstream analysis as much as possible. The data of the same cell type generated by different 

experimental procedures may not be comparable and reproducible. 

 

• Storage, temperature, and time 

SCT experimental material can be sampled with different conditions (e.g. fresh samples extracted 

from donor, or frozen-thawed samples received from sample library/biobanks).  

Processing cell samples immediately after collection or within 24 hours [234] is the expected way 

to obtain satisfied gene expression data. An over high temperature can affect the vitality and 

functional activity of PBMC [235]. 

Due to the complexity of blood sample collection and the lack of samples, it is difficult to obtain 

fresh blood samples and process them in time. Low-temperature storage after collection has 

become one of the potentially acceptable solutions. 

Transport temperature [236], storage temperature [50, 52, 237] and storage time can greatly affect 

the gene expression pattern of cells [232, 234]. Different storage temperatures can activate or 

inhibit the expression of certain genes [50]. 

Long-term low-temperature storage cannot prevent the degradation of RNA in frozen or 

refrigerated samples. Long-term low-temperature storage can lead to a decrease in cell viability 

and a decrease in the number of living cells [238], at the same time, the composition and function 

of cells can be changed [238]. 

At present, the preservation [238], thawing, and RNA extraction methods [239] of frozen blood 

samples are constantly being optimized. 
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• Cell sorting 

Markedly, due to the advancement and particularity of single cell technology, the impact of 

different cell sorting techniques on PBMC gene expression also needs to be considered carefully.  

The current mainstream cell sorting techniques include fluorescence-activated cell sorting (FACS), 

magnetic-activated cell sorting (MACS) positive selection and negative selection.  

Control and evaluation of the cell sorting process is very important to preserve biological 

characteristics (gene expression level, cell function and differentiation status) of sampled cells 

[240, 241]. The influencing factors usually come from the stimulation, perturbation, stress or injury 

to cells during cell sorting [242]. Stress response genes may be upregulated by FACS sorting 

devices. Compared with magnetic positive selection, the gene expression characteristics between 

cells separated by magnetic negative selection and FACS can be more similar [243]. 

Expansion studies involved in functionally selected cells should be split from normal studies, in 

preparing data for SCT analysis [16, 65].  

In the five-classification of PBMC, the gene differential expression coming from cell sorting 

method has been covered by differential expression coming from cell type. It has not significantly 

affected the model learning process and prediction performance [146]. Its impact on classification 

of sub cell types remains to be studied further.  

 

• Different SCT techniques and sequencing instruments 

Benchmark tests and evaluations [18] of different SCT protocols have shown they have different 

abilities to capture biological information in samples, reflecting on read structure and alignment, 

sensitivity, and range of multiple peaks (data distribution). 

Currently the most widely used SCT technologies are 10x Genomics (10x) and Smart-seq2.  

Smart-seq2 technology is a full-length sequencing, plate-based, low-throughput method, while 10x 

is a 3'-end or 5'-end sequencing, droplet-based, high-throughput method. 

The Smart-seq2 protocol has advantage in higher sensitivity - it can detect a greater number of 

transcripts (larger exon read ratio, larger median value in distribution [18]), can detect more low-

abundance rare transcripts, and RNA splicing isoforms [17]. Low-throughput methods are much 
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superior than high-throughput methods for research that demands the maximum sensitivity [244]. 

But it has a higher proportion of mitochondrial genes detection and a data combination that is more 

similar to bulk RNA sequencing.  

In high-throughput methods, 10x has performed the best [18]. 10x can detect the most UMIs and 

genes in each cell, also can detect more long non-coding RNA (lncRNA) in a cell [18]. It can cover 

a huge number of cells and have demonstrated good performance in recognizing rare cell types 

[17]. 

However, 10x technology has ‘dropout’ phenomenon, it has higher background noise and random 

capture for low-expression RNA. The ‘dropout’ comes from the missing in capturing, reverse 

transcription, and sequencing. 

Compared with 10x Genomics (v2), 10x Genomics (v3) has higher sensitivity in capturing RNA 

molecules. In terms of restoring the quantity of rare cell types, 10x Genomics (v2) has better 

capability than 10x Genomics (v3) [18]. 

For a same cell type, different technology platforms can produce SCT profiles with different data 

distribution and data structure characteristics [17, 18]. The technology platform can even affect 

the similarity of gene expression profiles more than the cell type itself [59]. 

Presently, supervised learning SCT cell classification has focused on data generated by 10x 

technology [146]. The SCT data generated by other technologies can to be collected and 

standardized, to further verify the generalization of the classification model. 

The difference in sequencing instrument also has impact on the sequenced data [245]. Studies have 

shown that there exist differences in sequence deviation patterns within different sequencing 

platforms [246]. In contrast, the Illumina HiSeq series may have more significant preceding-base 

bias.  

Standardization and quality control of experimental procedures are very important to produce 

usable and reproducible SCT data. 

It is worth emphasizing that the sequencing depth and read length can have impact on SCT profiles 

[247]. For non-UMI-based SCT protocols, genes with short read length are more captured. 

Adequate read length and sequencing depth can limit the technical noise [247]. However, too large 

sequencing depth can make the measured SCT profiles of different cells more similar. 
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SCT protocols based on UMI fragment reading (such as 10x Genomics) is not affected by read 

length. 

 

3.2.3.6 Data analysis 

 

Figure 30. Dimensions in data analytics of the ontology. 

 

Processing steps in data analysis creates data characteristics in more dimensions. 

As for 10x Genomics protocol, upstream analysis to raw sequencing data can be performed with 
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software Cell Ranger, that has different versions from v1 to v6. 

In the process of aligning the reads with the reference genome, there are different genome versions 

to choose from.  

In the data pre-processing before downstream analysis, the parameters and the thresholds in the 

steps for normalization and quality control – on gene count number, mitochondrial genes, 

ribosomal genes, cell type purity, etc. can create various formatted results. That indicates new 

dimensions in SCT. 

The ‘cell type purity’ here refers to the data-based, instead of purity assessment in cell sorting, one 

example is removing red blood cells (RBC), that recognized by unusual high expression of RBC 

genes, from PBMC SCT data. 

Different clustering algorithms and annotation references in unsupervised data processing can 

produce distinct results in the numbers and categories of cell type. 

For supervised classification methods, the training data quality and label reliability can decide the 

model behavior. 

The downstream cell classification that minimizes the deviation from the real fact requires a strict 

and standardized SCT data process, including all the dimensions both in the Experimental Settings 

and in the Data Analytics. 

3.2.4 Utility, conclusion, and discussion 

This ontology uses controlled, structured vocabulary to summarize the general categories and 

multiple dimensions in SCT data analysis, with PBMC cell subtypes as an example. 

It mainly describes three parts: the first is the name and determination of the cell type, the second 

is the multi-dimensional identity of each cell type, and the third is the SCT identification marker 

(protein marker and RNA marker) of each cell type. 

This ontology represents a multi-dimensional model for SCT study and demonstrates as a reference 

for PBMC single cell classification. It has described five main angles in the ontology. The 

dimensions described are the basic perspectives of SCT gene expression characterization, they 

should be considered carefully before conducting data analysis. 

SCT data downstream analyses (in particular, cell classification, cell heterogeneity analysis, etc.) 
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involve the discrimination of general categories and dimensions of single cells. Previously, the 

type of cell is commonly defined by morphology, function, and type of surface receptors. The 

resolution of single cell requires a multi-dimensional definition of the cell type. In practice, it can 

be found that the type or identity of a cell is usually determined by the intersection of different 

dimensions, that is a very common situation. Changes in one dimension can synergistically 

introduce switch in another dimension. 

The ontology has been built based on fact and logic. A clear and explicit SCT ontology can help 

accelerate the construction of SCT analysis automation [248] and scale down the misclassification 

in SCT cell classification [65]. 

The ontology needs to be continuously updated and maintained. The current multi-dimensional 

model is mainly constructed based on domain prior knowledge and practical experience in analysis. 

The ontology also requires further suggestion come from experts in the field. Other new 

dimensions, such as new knowledge derived from SCT analyzed data, need to be continuously 

added to the ontology. 

The ontology paradigm represented in this study can also be used in other genomics, proteomics, 

metabolomics research fields. 
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3.3 Classifier and Performance Assessment Methods 

3.3.1 Classifier - ANN 

A fully connected feed-forward artificial neural network (ANN) has been deployed for the study. 

The ANN system used in this study is illustrated in Figure 31.  

The multi-layer perceptron classifier MLPClassifier of scikit-learn [249] python library (functions 

from the class “sklearn.neural_network.MLPClassifier”, available at www.scikit-learn.org) has 

been used for software implementation.  

The ANN architecture consists of one input layer, one hidden layer and one output layer (Figure 

31 B). The input layer has 30,698 input units corresponding to the 30,698 genes in our standardized 

SCT data sets (the rows in the sparse matrices).  

The ten hidden nodes have been chosen to use after exploratory analysis that showed the best 

balance between the classification accuracy and training speed. The preliminary experiments have 

been accomplished with ANN architectures comprising 100, 50, 25, 10, 5, 2, and 1 hidden layer 

nodes [16]. It has been concluded that ten hidden nodes provide the best balance between the ANN 

model classification accuracy and the speed of training process. For example, for Cycle 1 data (in 

the study of the proof of concept, Chapter 6) the accuracy of cross validation of architectures with 

1, 2, 5, and 10 hidden layer nodes have been 73.4%, 92.2%, 99.79%, and 99.85% respectively. 

Further increases of the number of hidden layer nodes did not improve prediction accuracy. 

The output layer is composed of five output units (BC, TC, NK, MC, and DC classes) referring to 

the respective five PBMC cell types (B cells, T cells, NK cells, monocytes, and dendritic cells).  
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Figure 31. The ANN classification model architecture. The input data (A), ANN architecture (B), and the output data (C) are shown in this figure. The input data are in 

the form of sparse matrices where counts are represented by zeroes or positive integers. The architecture is fully connected ANN with 30,698 input units, 10 hidden layer 

units, and 5 output units, where output units correspond to classes representing major PBMC cell classes. The activation function ReLU has been used in this model, 

other parameters in detail have been documented in text below. The outputs are represented as matrices of output values that are used in training (by calculating errors) 

or for prediction of the class of cells of unknown type.  
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The activation function of the hidden layer nodes is rectified by linear unit ReLU, 𝑓(𝑥) =

max(0, 𝑥). The training data splitting minibatches of the size 200 is used to train the ANN model. 

The Adam algorithm [250] is used for first-order gradient-based optimization to train the neural 

network. The ANN model was set to random seed 42. The initial learning rate in the architecture 

is adjusted to 0.001 (10-3).  

The early stopping method has been performed for the prevention of data overfitting. In each ANN 

training process, 10% of the training data is put aside for validation while the remaining 90% of 

the data is used for ANN model training. The reaching point of ANN training stopping condition 

is set as when the prediction accuracy of the model on validation data sets is not improved for over 

ten continuous iterations (i.e. when the classification accuracy assessed by validation failed to 

improve for 11 iterations). 

The training data is in the form of large matrices (N × 30,698), where N is the total number of 

columns – cells in each training step. Gene expression counts of 30,698 genes (Figure 31 A) are 

in the rows. The output consists of five real numbers obtained from each of the output units, and 

their sum is VBC+VTC+VNK+VMC+VDC=1 (Figure 31 C). During training, the weights of the ANN 

are adjusted and after each adjustment the error is calculated as the sum of the absolute values of 

the difference between the expected value (one for the correct class, and zeroes for incorrect classes) 

and the actual score of the output units. The ANN training algorithm adjusts the weights between 

the nodes to minimize the overall output error. For classification, the true class of each cell is 

unknown, and the predicted class is determined by the maximum value of the five outputs (Figure 

31 C). 

The model has been trained with standardized SCT training sets, while tested with well-annotated 

high-quality testing sets. The model has recognized different transcriptional expression patterns 

across different cell types, that is learnt from training with well-labeled PBMC SCT data sets. 

 

3.3.2 Assessment of classification performance 

Certain assessment metrics have been used to evaluate and validate the performance of the model 

on PBMC classification. These are used to certify the understanding of the predictors’ behavior 

and performance crosswise different training and testing steps. 
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3.3.2.1 Confusion matrix 

A five-class multi-dimensional confusion matrix has been used for analysis of classifier 

performance, to present a complete picture of classification performance for all individual cell 

subtypes.  

Confusion matrix records and reappears the classifier’s prediction performance to each individual 

single cell in each experiment step. Confusion matrix is a two-dimensional digital matrix in which 

the row values on behalf of the cell number of each true class label, while the column values 

represents the cell number of prediction results voted and assigned by the ANN model (as shown 

in Figure 32). Confusion matrix can detect the trend of ANN classification performance, i.e., it can 

identify if the trained model is frequently mislabeling one class as another. The classification result 

of each training and testing experiment step has been recorded in each confusion matrix for 

following analysis. 

 

Figure 32. Illustrator of a confusion matrix. Confusion matrix is a visual model evaluation method, that 

consists of four situations to the result – true negative, true positive, false negative, and false positive. Metrics 

(Recall, sensitivity, specificity, precision, F1 score and overall accuracy) used to measure the capability of 

ANN classifier are sourced from confusion matrix. The detailed formulas and the relationship among these 

metrics have been explained as followed. 
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3.3.2.2 Appraisal indicators for comprehensive interpretation 

The assessment metrics sensitivity (SE), specificity (SP), precision (PR) and recall (RE) as well 

as the harmonic mean, the F1 score have been measured in each confusion matrix to evaluate the 

classification performance of each cell class in each step. The formula of Sensitivity/Specificity 

(Formula 1), Precision/Recall (Formula 2), F1 measure (Formula 3), and the overall Accuracy 

(Formula 4), are following: 

 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑆𝑃 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(1) 

 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝐸 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

F1 = 2 ×
𝑃𝑅 × 𝑅𝐸

𝑃𝑅 + 𝑅𝐸
(3) 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(4) 

 

where, 

TP – the number of true positives (experimental positives that are predicted as positives), 

TN – the number of true negatives (experimental negatives that are predicted as negatives), 

FN – the number of false negatives (experimental positives that are predicted as negatives), 

FP – the number of false positives (experimental negatives that are predicted as positives). 

 

The PR refers to the prediction result. It means the probability of true positive sample among all 

the samples predicted to be positive. PR can be confused with accuracy value, but they are two 

different concepts. PR represents the accuracy of the prediction to positive sample results, while 

the accuracy rate represents the overall prediction accuracy, including both positive samples and 
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negative samples. 

The RE refers to the original sample. Its meaning is the probability of being predicted as positive 

in truly positive samples. PR and RE are a measure of the trade-offs. It is necessary to combine 

the results of the two indicators to find a balance point to maximize the comprehensive 

performance of classification. 

The SE/SP values and the PR/RE values have been measured for each cell subclass as set in binary 

classifier, e.g. for B cells performance these values were measured for the result of B cells and 

non-B cells (union of DC, monocytes, NK cells and T cells). For the evaluation of incremental 

learning experiment design, the SE and SP value for each cell class in each periodic cycle were 

calculated to show the behavior of ANN classifier on each cell type during the procedure.  

The SE and RE represent the same entity. Because it has performed multi-class classification, 

accuracy measure has been used for the assessment of overall performance, while F1 values are 

used for the assessment of performance in the classification of individual cell types. 

The overall predictor performance has been assessed with the metric Accuracy (ACC).  

The accuracy rate is defined as the percentage of the correctly predicted results in the number of 

the total sample (Formula 4). The accuracy value of each training and testing step has been 

calculated and recorded to validate the model classification performance on testing data sets.  

In the result analysis procedure of the study – incremental learning (Chapter 6), the prediction 

result of dendritic cells had been put together into the prediction result of monocytes. The curve 

of ACC to testing data set classification results in different cycles (steps) can demonstrate the 

performance properties, robustness, and generalization of ANN model during incremental learning 

process (Chapter 6, 7).  
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CHAPTER 4 STUDY I – PROOF OF CONCEPT 

This study has demonstrated the proof of concept of single cell classification done with supervised 

machine learning method ANNs and standardized SCT data of five cell types from PBMC samples. 

The work has been organized and published on the 2019 International Conference on 

Bioinformatics and Biomedicine (BIBM) [16]. This work was performed jointly with team 

colleagues. The metadata organization and training and testing sets preparation was performed by 

the author, the model setup was performed by the team colleague. 

4.1 Abstract 

The 27 human single cell transcriptomics (SCT) data sets have been used to develop an artificial 

neural network (ANN) model for classification of Peripheral Blood Mononuclear Cells (PBMC).  

We demonstrated that highly accurate models for classification of PBMC subtypes can be 

developed by combining multiple independent data sets to form training data sets. A significant 

data preparation effort was needed for building predictive models. Using a data set of ~120,000 

single cell instances we showed the accuracy of classification of PBMC call of ~ 90%. 

Optimization techniques and addition of new high-quality data sets for model training are expected 

to improve PBMC subtype classification accuracy. 

4.2 Introduction 

This work has been demonstrated as the proof of concept that single cell classification can be done 

with purely supervised ML method ANN and standardized multi-source SCT data. 

We standardized a selection of datasets that represent SCT profiles of major subsets of PBMC and 

trained artificial neural network (ANN) to classify five main types of PBMC cell subtypes. Given 

the rapid expansion of experimental data, the set of models generated in this study should be able 

to accommodate future, currently unknown cell types. Several research questions were pursued in 

this study: 

Can we train an ANN on a set of data extracted from unrelated SCT studies and accurately classify 

PBMC cell subtypes? 

How many different data sets are needed for developing accurate classification models? 
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Is it possible to generate accurate prediction models without feature selection or dimensionality 

reduction? 

Is it possible to use tissue-resident immune cell subsets to accurately predict PBMC Cell subtypes 

of the same kind? 

4.3 Materials and Methods 

4.3.1 Data 

Data were extracted from three sources, together with the metadata describing the samples and 

experimental conditions. We have collected, cleaned, labelled, and standardized 27 SCT data sets 

from multiple single cell gene expression studies. The labels corresponded to the PBMC cell 

subtypes – B cells, DC, monocytes, NK cells, and T cells. Each data sets only contain cells labeled 

as one specific subtype of PBMC. The number of datasets from individual sources are shown in 

Table 3. Nine datasets were from the 10x company demonstration data (10xS data set) [10], 13 

datasets were from the GEO database (GEOS data set) [251], and five datasets from the Broad 

Institute (BroadS data set). The 10x data sets represented raw transcript counts for CD19+ B cells, 

CD14+ monocytes, CD56+ NK cells, four sets of CD4+ T cells, and two sets of CD8+ T cells. The 

GEO datasets were extracted from Sample IDs GSM3258348, GSM2773408, GSM2773409, 

GSM3375767, GSM3087629, GSM3209407, GSM3209408, GSM3430548, GSM3544603, and 

GSM3478792. The Broad Institute datasets (BroadS) were extracted from the single cell study 

SCP345. Most of the data were in the Raw Count format, except for GSM3544603 and SCP345 

that were log-transformed.  We transformed back these two data sets to the same scale as others 

by rounding to the nearest integer the result of antilog transformation: 𝑦 = 2𝑥 − 1, where 𝑥 is the 

previously log-transformed value from the source data and 𝑦 is the antilog-transformed value 

approximating raw transcript counts. Since we had only a limited DC data (142 cells) that were 

extracted from PBMC, we also included SCT data of DC extracted from tonsils and tumor ascites 

(GSM3162630 and GSM3162632). 

The summary report of the data sets is shown in Table 3. The total number of cells we used in this 

study is 121,281; the breakdown of cell numbers by PBMC subtype is shown in Table 4. 
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Table 3. The number of data sets used in this study. 

 

 

Table 4. Total number of cells available for this study. 

 

  

All data sets were cleaned and standardized. The genes across these data sets were named using 

dictionaries from different genomic builds including Genome Reference Consortium Human 

Builds 37 and 38 (GRCh37 and GRCh38) and their various patch releases. We mapped these 

different versions of the genomic builds to GRCh38 patch release 12 (GRCh38.p12). To make data 

sets easily comparable, we preserved the genes that were common across all the genomic builds 

represented across our studied data sets. Each standardized data set contains 30,698 genes. The 

rows of the data matrix represent genes (features) and the columns represent cells with the 

expression values of all identified transcripts. There are 30,698 rows corresponding to each feature 

while the number of cells (columns) in each data set range from 142 to >12,000. The BroadS data 

contains only 21,814 features. We mapped the values of these features to the standardized data set 

(30,698 genes) and set the missing feature values to zero.  

We divided the data sets into training and testing sets. The GEOS data was divided into GEOS1 
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training set (8 data sets) and the TE1 testing data set (5 data sets). The testing set TE1 comprises 

a combination of high-quality data sets data sets annotated experimentally. The testing data set 

TE2 comprises manually annotated data sets from BroadS. To avoid confusion of terminology 

between biology and statistics, we consider term “sample” as biological sample that is represented 

by one or more data sets. Individual cell profile is called “single cell instance” or “instance”. 

 

4.3.2 Study design 

The study design involves several cycles of training and testing designed to assess the effects of 

diversification of training data as well as generalization properties of the trained models. The 

specific train-test cycles were: 

o Cycle 1: Train ANN using 10xS data + tonsil-resident DC data, test using 2-fold cross 

validation (internal cross-validation) 

o Cycle 2: Train ANN using 10xS + GEOS data, test using 2-fold cross validation (internal 

cross-validation) 

o Cycle 3: Train ANN using 10xS + GEOS + BroadS/TE2 (all 27 data sets) data, test using 

2-fold cross validation (internal cross-validation) 

o Cycle 4: Train ANN using 10xS data + tonsil-resident DC, test using GEOS data set 

(independent experimental test set) 

o Cycle 5: Train ANN using 10xS + GEOS1 data, test using TE1 (independent experimental 

test set representing all studied cell subtypes) 

o Cycle 6: Train ANN using 10xS + GEOS1 + BroadS/TE2 data, test using TE1 (independent 

experimental test set) 

o Cycle 7: Train ANN using 10xS + GEOS data, test using BroadS/TE2 (independent expert-

annotated test set) 

Cell class in independent experimental data sets is determined by experimental measurement using 

fluorescence-activated cell sorting (FACS) instrument. The cells in expert-annotated data sets were 

labeled using unsupervised clustering and analysis of features. They annotated cells at the level of 

sub-subclasses (seven subclasses of T cells, 2 subclasses of both B cells and monocytes, and a 
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single subclass of both DC and NK cells).  

We consider expert-annotated data sets to be of very high quality. The order of cycles was 

determined arbitrarily, starting from company demonstration data sets, and data sets from GEO 

database that had raw transcript counts. After low accuracy of classification was achieved in Cycle 

4 an additional data set was extracted from GEO for assessment in cycle 5. The final addition was 

an expert-annotated BroadS data set that was alternatively used in Cycles 6 and 7 as described 

earlier.  

 

4.4 Results 

4.4.1 Training results 

The artificial neural network with the smallest training set was trained using more than 42,000 

instances - labelled cell data (Cycle 1), while the largest training set had more than 110,000 

instances. The training took between 20 and 60 epochs (iterations) before terminating. A typical 

learning curve displaying the changes in log-loss and validation score with respect to number of 

epochs is shown in Figure 33, indicating smooth convergence. Typical learning showed 

convergence at 20-40 cycles and the training terminated after 10 cycles without an increase in 

Validation Score (Figure 33). 

 

4.4.2 Internal cross-validation 

Two-fold cross-validation was performed on progressively increasing data sets. The smallest set 

was 10xS set (Cycle 1 – 85,429 single cell instances), the middle set was 10xS+GEOS (Cycle 2 – 

107,982 instances), and the largest set with all data was 10xS+GEOS+BroadS (Cycle 3 – 121,281 

instances). The overall internal cross-validation results shoved very high accuracy. Cycle 1 had 

99.8%, Cycle 2 had 99.3%, and Cycle 3 had 98.9% correctly classified instances. The overall 

Cycle 1 and 2 results (data not shown) were very similar to the Cycle 3 results (Table 5). In Cycle 

3, 1.5% of B cells, 2.7% of DC, 2.7% of monocytes, 3.7% of NK cells, and 0.6% of T cells were 

misclassified. The highest misclassification rate was for NK cells (3.5% of experimental NK cells 

classified as T cells), DC (2% of experimental DC classified as monocytes), and monocytes (1.4% 
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of experimental monocytes were classified as DC). These results were corroborated by additional 

classification performance metrics shown in Table 6. 

 

 

Figure 33. Representative ANN learning. The training stopped after 10 cycles of no improvement of 

validation score. 
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Table 5. Cycle 3 confusion matrix. 

 

 

Table 6. Cycle 3 assessment metrics. 

 

 

The cross-validation results indicate that the ANN learning is effective when we combine multiple 

data sets from different studies even if they are performed by different laboratories. If datasets are 

randomly split and a study is represented in both training and test sets, the misclassification rate 

for any cell subtype will be lower than 4%.  
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4.4.3 Prospective validation 

After demonstrating that ANN can accurately classify cell subtypes represented in the training set 

(but not identical to the cell instances in the test set), we explored the generalization ability of 

trained ANN models. The process included diversification of training data by incremental addition 

of data sets.  

In Cycle 4, we trained ANN using the 10xS + tonsil resident DC (TRDC) data and used the GEOS 

data set for testing. The GEOS data set did not contain TRDC data, but it contained tumor-ascites 

resident dendritic cells (TADC). This was done to explore whether PBMC resident DC can be 

predicted using DC from other tissues. 

The same model that could perform highly accurate predictions using internal cross-validation 

(Cycle 1) could not predict previously unseen data sets with satisfactory accuracy. The accuracy 

of predictions in Cycle 4 was only 46.1% and none of the cell subtypes showed useful predictions 

(Figure 34). 
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Figure 34. A comparison of classification performance for cycle 1 and cycle 4. 

 

Cycle 5 involved splitting GEOS data (test set in Cycle 4) into GEOS1 data set and a smaller TE1 

test set. GEOS1 was added to the 10xS to form a new training set, while TE1 was used to test 
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predictive performance in Cycle 5. In Cycle 6 we added BroadS data set to training set from Cycle 

5 and tested using the same TE1 test set as in Cycle 5. The results show improvement in overall 

accuracy, 52.8% in Cycle 5 and 62% in Cycle 6. Although these were notable overall 

improvements (6.7 and 15.9% as compared to Cycle 4), the analysis of Cycle 5 data shows 

improvement of classification performance relative to Cycle 4 for T cells, B cells, and NK cells, 

whereas the performance declined for DC and monocytes (Figure 34 and Figure 35). The reason 

for this change was that majority of tumor-ascite resident DC were predicted as monocytes 

reducing accuracy of classification for both data sets. For Cycle 6, we added the BroadS data set 

to the training set from Cycle 5.  The classification results for TE1 set show further improvement 

of predictive performance for B cells, NK cells, and T cells, whereas predictive performance for 

DC and monocytes remained low with the majority of tumor-ascite resident DC classified as 

monocytes (Figure 35). 

The final step of this study involved training of ANN using combined 10xS + GEOS data set and 

testing using BroadS data set – Cycle 7. The advantage of this construction is that BroadS data set 

is derived from PBMC, including PBMC DC whose frequency is only 1-2% of the total PBMC. 

The result showed improvement of predictive accuracy relative to previous cycles, using a test set 

that is unseen by the trained ANN.  
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Figure 35. A comparison of classification performance for cycle 5 and cycle 6. 
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Table 7. Cycle 7 confusion matrix. 

 

 

Table 8. Cycle 7 assessment metrics. 

 

 

The overall accuracy of Cycle 7 predictions is 89.4% (Table 7). In Cycle 7, 7.3% of B cells, 51.4% 

of DC, 20.6% of monocytes, 20.4% of NK cells, and 7.0% of T cells were misclassified. The 

highest misclassification rate was for DC (50.7% of experimental DC classified as monocytes), 

NK cells (17.5% of experimental NK cells classified as T cells), monocytes (8.6% of experimental 

monocytes were classified as DC and 7.2% of experimental monocytes classified as B cells), B 

cells (5.8% of experimental B cells classified as monocytes), and T cells (5.6% of experimental T 

cells classified as NK cells). These results were corroborated by additional classification 

performance metrics (Table 8). 
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4.5 Conclusions 

We performed a cyclical refinement of ANN models by combining data from multiple unrelated 

studies into unified training set for prediction of PBMC cell subtypes. We achieved high overall 

accuracy of predictions 89.4%. We showed that ANN training using a limited number of related 

data sets, generated in the same study, does not generalize well and has low accuracy when tested 

with unrelated data sets. It is unclear how many diverse data sets are needed to achieve high 

accuracy of trained models. Our data indicate that two distinct B cell data sets (13,596 instances) 

produced an ANN model that performed well on an independent data set (F1=0.91, SE=0.93, 

SP=0.99). At the same time, two distinct NK data set (10,088 instances) produced an ANN model 

that had moderate performance on independent data set (F1=0.75, SE=0.80, SP=0.98). Having 10 

or more data sets for each PBMC cell subtype appears to suffice for achieving a very high accuracy 

of trained ANN models, as seen for prediction of T cells (Table 8).  

Furthermore, we have demonstrated that ANN models can be trained for high accuracy and 

excellent generalization properties without feature selection or dimensionality reduction. This will 

enable fine tuning of future training of ANN models to predict rare cell types without the need to 

redefine relevant features. 

Our findings indicate that accurate prediction of PBMC-resident DC cannot be achieved by 

training using tissue-resident DC and tumor ascites DC. This finding indicates that SCT may be 

useful for developing diagnostic tests based on various tissue resident cell subpopulations, because 

each of them is likely to have own shared patterns of gene expression. 

Finally, we noted that most of misclassifications involved bilateral misclassification of DC and 

monocytes and bilateral misclassification of NK cells and T cells. It is known that monocytes can 

differentiate into DC [252] making these two cell types a part of the same lineage. NK cells 

differentiate from the same precursor as T cells and B cells and may share molecular markers. At 

this point we cannot determine the reasons for high number of misclassifications of NK cells and 

T cells. 

 

 

 



Page | 87  

 

4.6 Discussion 

To our knowledge, this is the first study that has applied supervised machine learning to data sets 

from multiple unrelated studies to classify cell subtypes. The training set in the final cycle 

exceeded 110,000 training instances.  

We anticipate a rapid expansion of new studies that will share their data. This will create several 

challenges. First, there is a need for more systematic classification of cell subtypes [42] that will 

provide a new model of ontologies and cell taxonomies. Second, data sets are becoming larger and 

they appear with increasing frequency. We anticipate that GEO repository may have more than 

100,000 data sets for 10x single cell transcriptomics as early as the end of 2020. Unfortunately, 

individual files are mostly of non-standard format requiring a significant effort in cleaning and 

standardizing these data sets. The rapid growth of data will create significant challenges in 

gathering, cleaning, standardizing, managing, and exchanging the data.  

Our results indicate that accurate SCT classification can be made using ANN prediction models. 

Although the major cell subtypes can be determined by a small number of cell surface expression 

markers in cell sorting studies, these markers are often not captured in SCT data, and often subsets 

of different cell subtypes express overlapping sets of surface markers. We have shown that 

supervised machine learning can compensate for both limitations in measurements and biological 

patterns overlap. In practice, this allows us to skip the cell sorting step and directly analyze mixed 

PBMC samples.  

Machine learning methods involve optimization of performance. Increasing the number and 

quality of training data sets and generating high-quality test sets is the basic approach. More 

advanced methods include feature extraction and dimensionality reduction, optimization of model 

architecture and learning algorithms, exploration of multiple machine learning algorithms, and the 

use of knowledge-based methods. The availability of large number of standardized SCT data sets 

has enabled the application of supervised machine learning methods, paving the way for 

development of new SCT-based blood tests. 
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CHAPTER 5 STUDY II - INCREMENTAL LEARNING 

Systematically incremental learning experiment design and cyclical validation on SCT PBMC 

classification have been deployed for ANN model training and testing in this study. This work has 

been organized and published on the 2020 International Conference on Bioinformatics and 

Biomedicine (BIBM) [65]. 

5.1 Abstract 

In this study, we obtained and standardized 27 SCT data sets, derived from healthy PBMC samples 

using 10x SCT. We used artificial neural networks (ANN) to assess the ability of ANN to classify 

main PBMC cell types. Incremental learning by the gradual addition of new data sets to ANN 

training improved classification. The overall prediction accuracy of the final step of incremental 

learning reached 93% in 4-class classification. 

5.2 Introduction 

Supervised learning methods, such as artificial neural networks (ANN), can be used for advanced 

SCT cell classification with the potential for automation of analysis. Previously we standardized a 

selection of PBMC data sets and applied artificial neural networks (ANN) to explore its ability to 

classify main cell types of PBMC. We achieved the accuracy of five-class classification of human 

peripheral blood mononuclear cells (PBMC) to be approximately 90% [16]. In the current study, 

we extended the previous model to a full, incremental learning model to classify 5 main cell types 

of PBMC. Three research questions were pursued in this study: 

• Can incremental learning (retrain ANN with newly generated data) improve the accuracy 

of classification? 

• Can this classification system learn by combining data from samples that are subject to 

very different sample processing methods? 

• How stable is ANN model performance as new independent data sets are added? 
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5.3 Materials and Methods 

5.3.1 Study design 

We deployed incremental learning (data accumulation methodology [253]) for ANN model 

training and testing. The design aims to study the data quality effect to single cell classification 

performance, as simulating the real-life situation – when new diverse SCT data sets are generated 

from different laboratories/hospitals and added into the previously existing training data set. In 

each cycle, 2-fold cross validation, external validation with the next upcoming data set, external 

validation with a qualified test data set (BroadS1 data sets), have been conducted to evaluate the 

trained ANN model. At the end of this cycle, the next upcoming data set is added into the existing 

training set and forms a new accumulated training set. In the next cycle, this newly generated 

accumulated training set is used to train the ANN model, and the same validation steps are repeated 

as the last cycle. In each cycle, the performance assessment is done with determined metrics, as 

described in Methodology Chapter, for five cell types of PBMC. 

The training data consisted of the 10x Gen data sets [10] and GEO DB data sets [251], derived 

from multiple independent studies. The training and testing of ANN consisted of several iterated 

cycles where training was done using continuously increasing independent multi-source data sets. 

Nine 10x Gen data representing four cell classes (B cells, monocytes, NK cells, and T cells) were 

used as the initial training data set (the first cycle, Table 9). Thirteen GEO DB data sets were 

ordered based on study publication date and used in cycles 2, 3, and 4 as shown in (Table 9). Since 

our training data did not have a dendritic cell set, the ANN predictor was trained as a 4-class 

classifier. Overall, our study had 25 training-testing steps distributed over five training cycles.  

Each training-testing cycle had three parts: internal cross-validation (2-fold), classification of new 

incoming data sets, and external validation. The classification of new data sets was performed 

using ANN models trained by all data sets available in the immediate previous cycle. BroadS1 

data set was used as a test set for external validation (ICA dataset, singlecell.broadinstitute.org). 

We consider it as a suitable testing data set since it was checked and annotated by experts. BroadS1 

has a class DC with 142 instances of dendritic cells. Because we did not have DC in the training 

sets, we merged DC from BroadS1 into monocyte test set. 

The flow chart describing the design of this study is shown in Figure 36. The loop in the middle 

of the chart was repeated for each of the 25 steps in our study. The data sets were added to the 

training set ordered by the date of their addition to the GEO DB. 
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5.3.2 Data 

We collected, cleaned, and converted into standard format 27 SCT data sets of PBMC. These data 

sets were generated from fresh and frozen blood samples using 10x sequencing technology. Nine 

datasets were from 10x Gen; 13 datasets from 5 GEO studies (GSE103544, GSE112845, 

GSE116130, GSE116683, and GSE124731). The BroadS1 dataset from study ID SCP345 was 

used for the test set. The number of cells used in this study is shown in Table 10. Each individual 

data set in this study was in the form of sparse matrix, having 30,698 rows representing human 

genes, and up to 11,954 columns representing single cells. In each matrix the number of columns 

was identical to the number of cells in each dataset. 



Page | 91  

 

Table 9. The training set and testing set in each cycle of ANN incremental learning experimental design. Step 

26 is added to indicate future inclusions of new data sets. 
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Table 10. Total number of cells for different cell types and data sources implemented in this study. 

 

 

 

Figure 36. Experimental design with incremental learning for ANN classification of PBMC cell types using 

SCT data. 
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5.4 Results 

ANN classification of 10x SCT data sets from healthy PBMC samples was done using incremental 

learning using independent data sets. We analyzed the change of accuracy of incremental learning 

in each step on specific cell types. Then, we assessed the overall accuracy at the end of each cycle. 

Finally, we assessed the performance of ANN classifier on specific cell types by considering all 

performance measures. 

5.4.1 Incremental learning 

During the incremental learning, the initial ANN was trained by a combined data set composed of 

nine 10x Gen data sets (B cells, monocytes, NK cells and six T cell data sets). Thirteen SCT data 

sets of healthy PBMC samples from GEO database were adding for incremental learning in order: 

M →M→T→B→NK→T→T→T→T→T→T→T→T, where B, M, NK, and T stand for B cells, 

monocytes, NK cells, and T cells, respectively. The results (Figure 37) show that the initial ANN 

trained on 10x Gen data could predict NK cells with high accuracy and T cells with low accuracy 

(50%), while the accuracy of classification of B cells (73%) and monocytes (85%) was 

intermediate (Step 4, Figure 37). Adding monocytes to the training data increased the accuracy of 

classification for monocytes while accuracy of classification of other cell types decreased slightly 

(Step 7, Figure 37). Adding one T cell data set resulted in a notable increase in the accuracy of T 

cells (from 47% to 92%), while the accuracy of NK cells decreased (from 96% to 80%) (Step 10, 

Figure 37). Adding one NK data sets to training (Step 19, Figure 37), stabilized prediction 

accuracies to be close to 90%. Adding multiple T cells stabilized the accuracy of classification of 

B cells (90%) and monocytes (99%), and T cells (97%), while it did affect the accuracy of 

classification of NK cells. The final accuracy of NK cells reached 73% (Step 25, Figure 37).  
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Figure 37. ANN performance on cell type classification of the incremental learning experiment across 

different cycle steps. 

 

5.4.2 Overall accuracy 

The overall average classification accuracy of B cells, MC+DC, NK cells, and T cells showed 

steady improvement as the training set was increasing (Figure 38). The exception was a slight 

decline in overall accuracy in step 7. The overall average of all these cell types across all the steps 

in incremental learning procedure has grown from 0.62 to 0.93, from step 4 to the final step 25.  

We used micro-average method to calculate the average value. Micro-average (total true 

prediction/total number) weighs each sample equally whereas macro method weighs each class 

equally. In our multi-class classification setup, micro-average is preferable when there is class 

imbalance (considering DC class and TC class).  
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Figure 38. The overall accuracy of the classification of ANNs during incremental learning across different 

cycles. Data sets were added in order following study publication dates, from earliest to the latest. 

The ANN model trained incrementally shows a steady improvement of the overall accuracy. 

However, we can observe a lack of stability of accurate predictions for specific types of cells. 

Adding a data set to training can markedly change predictions. For example, extensive changes 

were seen between steps 10 and 19 (Figure 38). Adding a NK data set to training data increased 

accuracy of B cell classification from 67% to 97%, and of NK cells classification from 79% to 

84%. On the other hand, the accuracy of classification of monocytes declined from 99% to 94% 

and of T cells from 92% to 90%. Adding multiple sets of T cells may cause changes in the accuracy 

of NK cell classification (steps 23 and 25, Figure 38). 

 

5.4.3 Sensitivity and specificity analysis 

The SE/SP analysis tells us about positive prediction rates and negative prediction rates. The 

results (Figure 39) show satisfactory predictions for monocytes. Classification of B cells shows 

high specificity and sensitivity of ~90%. This means if a vast majority of cells predicted as B cells 

are indeed B cells. On the other hand, 10% of actual B cells will be classified as some other cell 

type. Another important observation is that we have a notable bilateral misclassification of T cells 

and NK cells. We propose that this misclassification involves NK-like T cells [254]. 
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Figure 39. ANN predication performance on each cell type in the incremental learning experiment. 

 

5.4.4 Final step results 

The overall accuracy of the final step predictions reached Acc=93.0% (Table 11). In step 25, 10.6% 

of B cells, 0.54% of monocytes, 26.8% of NK cells, and 2.6% of T cells were misclassified. The 

highest misclassification rate was for NK cells – 26.5% of experimental NK cells were classified 

as T cells. The second highest misclassification was for B cells – 6.3% of experimental B cells 

were classified as monocytes, and 2.9% as T cells. 2.4% of experimental T cells were classified as 

NK cells. 
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Table 11. The confusion matrix of final training and testing cycle (step 25). 

 

 

These results were corroborated by the PR/RE and F1 classification performance metrics (Table 

12).  

 

Table 12. The assessment metrics of the final training and testing cycle (step 25). 

 

 

 

5.5 Conclusions and discussion 

Compared to the previous work [16], we used additional data sets and excluded several data sets 

that do not represent healthy PBMC. The incremental learning demonstrated the overall accuracy 

improvement from 89% to 93%. Gradual but steady improvement of the overall accuracy indicates 

that the overall strategy is successful, and future improvements will be achieved by the addition of 

new data sets. The addition of new data, however, needs to be done with due care. We observed 

that new data sets could cause marked shifts of misclassifications from one class of cells to another. 

We observed the bilateral misclassifications within the B cells-monocytes and NK cell-T cell pairs. 
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An important observation from our study is that the training data and test data do not represent the 

same sample processing steps. Our training data involve more processing steps than the test set, 

since training data involve cell sorting by FACS instrument while the test set was annotated by 

feature analysis and expert annotation. This indicates that although additional sample processing 

steps do change gene expression profiles, the fundamental patterns of gene expression remain 

preserved in the cells, thus enabling accurate classification. For bulk sequencing, FACS sorting 

has minimal effects on gene expression profiles [241]. However, we found that in SCT gene 

expression profiles show large differences between gene expression profiles of unsorted cells and 

profiles of cells sorted by FACS [28]. ANN models showed robustness and the ability to capture 

key patterns of cell classes irrespective of the sample processing.  

There are several limitations of this study that will be addressed in future work. The training data 

set, although diverse, is limited. We have only two independent data sets of NK cells, two sets of 

B cells, and three sets of monocytes. Additional data sets are needed to capture the diversity of cell 

subtypes. We do not have DC in training sets, and these data need to be added. The addition of 

new data sets must be done with care to prevent large changes in predictions for specific cell types.  
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CHAPTER 6 STUDY III –INCREMENTAL LEARNING WITH 

PURIFIED REFERENCE DATA AND FOUR SUPER SETS 

SWAPPING EXTERNAL VALIDATION 

The work of this chapter has been organized and documented into journal paper manuscript. 

6.1 Abstract 

We used 56 purified reference datasets to train ANN incrementally – over seven cycles of training 

and testing. The sample processing involved four protocols: separation of PBMC, separation of 

PBMC + enrichment (by negative selection), separation of PBMC + fluorescence-activated cell 

sorting (FACS), and separation of PBMC + magnetic-activated cell sorting (MACS). The training 

data set included between 85 and 110 thousand cells, and the test set had approximately 13 

thousand cells. Training and testing were done with various combinations of data sets from four 

principal data sources. The overall accuracy of classification on independent data sets reached 5-

class classification accuracy of 94%. Classification accuracy for B cells, monocytes, and T cells 

exceeded 95%. Classification accuracy of natural killer (NK) cells was 75% because of the 

similarity between NK cells and T cell subsets. The accuracy of dendritic cells (DC) was low due 

to very low numbers of DC in the training sets. 

The incremental learning ANN model can accurately classify the main types of PBMC. With the 

inclusion of more DC and resolving ambiguities between T cell and NK cell gene expression 

profiles, we will enable high accuracy supervised ML classification of PBMC. We assembled a 

reference data set for healthy PBMC and demonstrated a proof-of-concept for supervised ANN 

method in classification of previously unseen SCT data. The classification shows high accuracy, 

that is consistent across different studies and sample processing methods. 

 

Figure 40. Graphic abstract for Study III. This study is a baseline research to investigate the performance of 

ANN models with purified reference SCT data. 
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In this study, we prepared purified SCT datasets to perform incremental learning. Also, the newly 

collected datasets of BroadS2 were added in the cycles, that brought unseen profiles and training 

instances for dendritic cell class. In the second part of this study, four data sources swapping 

external validation experiments has been performed, to investigate the effect of data generating 

protocols to classification performance. 

 

6.2 Introduction 

Our earlier work demonstrated the potential of artificial neural networks (ANN) to classify healthy 

PBMC cells in blood samples. In the original study, we achieved the accuracy of PBMC 

classification (BC, DC, MC, NK, and TC) of 89.4% [16]. The follow-up study was performed 

using an improved and expanded data set to perform incremental learning. Several irrelevant data 

sets were removed, such as DC from non-blood samples (tonsils and tumor ascites) and T cells 

fixed in methanol, and several new data sets were added to the training set. The classification 

accuracy improved to 93.0% [65]. The introduction of assemblies of ANNs with a new voting 

function further improved the accuracy of classification to 94.7%, but this required a 100-fold 

increase in computational processing time.  

The previous two studies have demonstrated that high accuracy can be achieved in the single cell 

classification of PBMC cell types. The limitation of these studies is that all testing was performed 

using a single independent (of the training) test set that was annotated by experts. In this work, we 

used experimentally labeled datasets to test the trained model. In the current work, we have 

explored generalization properties of the ANN classification by incremental learning, the effects 

of data protocols on classification accuracy, and have assessed the current accuracy of PBMC 

classification by ANN. This study is vital for establishing a baseline for comparing healthy samples 

with those representing various altered conditions, including gene expression changes in disease. 

This study is an extension of our previous studies [16, 65]. The basic ANN classifier is the same 

as in previous studies. The data sets used for training and testing are different: some of the data 

sets used in [65] were removed and new data sets were added. Subsequent analysis of data sets 

used in our previous study indicated that some of the training data represent cells that were 

processed to the extent that they do not represent healthy PBMC well. The removed data sets 

include those representing non-malignant cells generated from cancer patients (cutaneous T-cell 
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lymphoma) pre- and post-therapy (GSM3478792 and GSM3558027) [255], ex vivo activated of T 

cells (GSM3430548 and GSM3430549) [256], cells that represented mixtures of monocytes and 

dendritic cells (GSM3258345 and GSM3258347) [257], and cells of mixed populations (selected 

by designed sorting panel: CD19+ cells (GSM3258348) [257], CD8+ cells (GSM3087628) [49]). 

One more high-quality test set, BroadS2, was added to our study (GSE132044, [18]). 

Compared to former studies, in this study, we added instances representing dendritic cell class into 

training sets, also brought one more independent data source into the models. 

The first part of the study design included incremental learning with larger and more diverse data 

sets than in our previous studies [16, 65]. The second part of the study involved a comparative 

validation where all data from one source were used for performance testing while data from other 

sources were used for training. 

Incremental learning is endowed with the ability to continuously process the constantly emerging 

SCT data, it can retain, integrate, recognize, and extract gene expression pattern of different cell 

type from accumulated SCT data and newly absorbed data sets.  

With multi-source independent data, data accumulation incremental learning can validate the 

model performance on identifying the effective classification patterns from training knowledge. 

The accumulation of old knowledge and new knowledge can help the model learn the classification 

patterns better, and continuously improve the model's ability to make classification judgments. 

The study has demonstrated the joint training method – traditional data accumulation method for 

incremental learning. The data accumulation method is to retrain the model on currently all known 

data. It is generally regarded as - the upper bound of the performance of incremental learning, with 

the best effect among different learning frameworks. But the disadvantage exists that the training 

cost is relatively higher. 

Cross-validation is added at each training and testing step. The design has discussed how the 

publication date, batch effect, sampling protocol, and other influencing factors affect the ANN 

model's ability/behavior to classify the five cell types of PBMC. At the same time, the behavior of 

ANN classifier on recognizing dendritic cell expression pattern has been discovered. 

This study tries to explore four research questions: 

• What is the best accuracy of ANN trained using scRNA-seq data to classify five main classes of 

PBMC?  

• How does using data from different studies using different levels of sample processing affect the 
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accuracy of single cell classification by ANN? 

• What is the accuracy of classification when the ANN is trained using samples that have same 

processing level but are from different studies? 

• What are the effects of technical noise on the accuracy of ANN classification? 

 

6.3 Materials and Methods 

6.3.1 Study design 

In the first part of this study, we deployed an incremental learning process for ANN model training 

and testing as previously described [65]. Five data sets from BroadS1 study were combined to be 

used as the test set. The training was performed incrementally – data were added to the training 

set following the order of time of data sets acquisition. Seven cycles of training were done until 

all training data sets were used. The overall assessment of classification performance was done 

after Cycle 7. In the final step, we swapped BroadS1 and BroadS2 data sets and assessed the 

classification accuracy with BroadS2 dataset as a test set. The incremental learning process is 

illustrated in Figure 41.  
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Figure 41. Illustration of the process of incremental learning (training and testing) by adding data sets to the training set and cyclical assessment of classification 

accuracy. The cycles of learning were ordered by their publication dates to simulate the situation with real-life data accumulation. In the final step of incremental 

learning, BroadS1 and BroadS2 datasets were swapped to observe the reproducibility of ANN results. 
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Figure 42. Technical route diagram for the study design in Study III. As illustrated, the study design includes two parts. The detailed is documented as following. 
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Three types of classification tests were performed in each learning cycle (except Cycle 0 and the 

Swapping Cycle, that do not have upcoming data sets):  

• Internal 2-fold cross validation on the training set to check the internal consistency of the 

training data,  

• Classification accuracy on newly added data sets (upcoming data) before their inclusion in 

the training set, to check to what extent the gene expression patterns of the added data sets are 

already represented in the training set,  

• Classification accuracy of the training set after inclusion of the added data sets using 

standard independent test set (BroadS1). 

 

The second part of this study involved a comparative analysis of PBMC classification of different 

training and testing sets. We performed a comparative analysis of the classification of PBMC using 

four parallel classification models using data sets from our sources: 

• Training set: {10x ⋃ GEO ⋃ BroadS2}, testing set: {BroadS1} 

• Training set: {10x ⋃ GEO ⋃ BroadS1}, testing set: {BroadS2} 

• Training set: {GEO ⋃ BroadS1 ⋃ BroadS2}, testing set: {10x}  

• Training set: {10x ⋃ BroadS1 ⋃ BroadS2}, testing set: {GEO} 

 

The comparative analysis involved the assessment of classification accuracy and the interpretation 

of results using the statistical properties of the data sets. A schematic diagram of the detailed 

overall experimental design is shown as Figure 42. 

The model training and testing steps were performed as illustrated. The voting results of the trained 

neural networks were collected and analyzed of each step, in study part I and part II (in Figure 42). 
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6.3.2 Data 

We selected 56 purified reference datasets that represent PBMC from healthy blood samples. 

These data sets were collected from the NCBI GEO database (www.ncbi.nlm.nih.gov/geo), 10x 

Genomics demonstration data [10], and Broad Institute Single Cell Portal 

(singlecell.broadinstitute.org/single_cell). All data sets were processed into our standardized 

format that has 30,698 features (genes). Most analyses were done using raw data values of 

standardized features, as provided by the source. Additional validation step was performed with 

cells from BroadS2 that were subject to quality control: cells that had less than 300 positive 

features, or less than 670 total counts were excluded, and the results were compared to the results 

obtained from predictions that used raw data only. 10x demonstration data were generated using 

standardized 10x scRNA-seq experimental protocol, including validated upstream data analysis 

[10]. We consider these data sets as reference for PBMC cells processed by PBMC isolation, 

enrichment (purification), freezing, thawing, and 10x processing.  

Eleven data sets were extracted from the GEO database including GSM2773408, GSM2773409, 

GSM3544603 (seven datasets in this GSM), GSM3209407, and GSM3209408 [209, 258, 259]. 

These data sets were generated from PBMC samples extracted from fresh whole blood of healthy 

donors. These 11 data sets were produced using 10x protocol after PBMC isolation followed by 

cell sorting by FACS (fluorescence-activated cell sorting) or MACS (magnetic-activated cell 

sorting). We obtained two PBMC data sets from Broad Institute Single Cell Portal. The first data 

set is from the study SCP345, and the second data set is from the study SCP424 (also published in 

GEO GSE132044 [18]). We named these two data sets BroadS1 and BroadS2, respectively. These 

data sets were produced using 10x protocol after PBMC isolation followed by annotation of cell 

types by cell labeling algorithms, and manual labeling correction by experts. These data sets 

represent a large variety of sample processing, experimental conditions, data analysis approaches, 

and study purposes. The original test sets (BroadS1) and the newly added set (BroadS2) have 

multiple repeated SCT measurements of samples from the same individuals at different times, 

locations, or different chemistry. The same samples processed under the same conditions show 

high reproducibility. When different chemistry (v2 vs. v3 with BroadS2) was used in the 10x 

protocol, a modest but notable shift in gene expression reproducibility was observed [28]. The 

summary information on the distribution of cell types across our data sources and their numbers is 

shown in Table 13. The detailed description of data sets with associated metadata can be found in 

Supplemental Table 1 (in Appendix 7 Supplemental Materials in Study III, same as the followings).  
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The number of data sources in our study is four, and the number of data sets is 56. PBMC comprises 

five main cell types: B cells (BC), dendritic cells (DC), monocytes (MC), natural killer (NK) cells, 

and T cells (TC). Cell types in our data set have multiple subtypes: NK cells have one subtype; 

each of BC, DC, and MC has two cell subtypes; TC type has three cell subtypes (Figure 43). TC 

subtypes are further divided into three sub-subtypes, each for CD8+ T cells and innate-like T cells, 

and four sub-subtypes of CD4+ T cells. The actual number of PBMC subtypes at multiple levels 

of ontology is likely to be in hundreds [163]. The total number of cells in our study is 115,190. 

The test sets have 13,183 cells (BroadS1) or 12,292 cells (BroadS2). The distributions of gene 

expression values across cells in each data set were visualized. Plotting module pl.violin from 

SCANPY [124] was used for drawing violin plots. 

 

Table 13. Summary description of 56 SCT data sets involved in this study. Cell numbers and the number of 

data sets (values within brackets) are shown per cell type. The data sources are described in the main text. 

BC – B cells, DC – dendritic cells, MC – monocytes, NK – natural killer cells, TC – T cells. BroadS1 is the 

original test set. 

 CELL TYPES - CLASSES  

SOURCES BC DC MC NK TC TOTAL CELLS 
10x Demo  10,085 (1) 0 2,612 (1) 8,385 (1) 64,341 (6) 85,423 (9) 

GEO  0 0 856 (2) 309 (1) 3,127 (8) 4,292 (11) 

BroadS1 1,660 (1) 142 (1) 1,661 (1) 1,394 (1) 8,326 (1) 13,183 (5) 

BroadS2 1,884 (4) 270 (7) 2,132 (8) 842 (4) 7,164 (8) 12,292 (31) 

TOTAL 13,629 (6) 412 (8) 7,261 (12) 10,930 (7) 82,958 (23) 115,190 (56) 
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Figure 43. The ontology of cell types and subtypes in our study. The designation of cell subtypes and sub-sub 

types is provided to show the diversity of cell subtypes used in this study. Because the classification task in 

this work focuses on the classification of five main types, the descriptions of cell subtypes and sub-sub types 

have been omitted. 
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The data are represented as sparse matrices, where the list of cell identifiers (cell ID) occupies the 

top row (starts from column 2), and the list of gene names (features) occupies the first column 

(starts from row 2). The first matrix position (1,1) is blank, while other matrix values represent 

gene expression counts of a given gene in the given cell determined by the matrix position (gene 

name, cell ID). Our standardized gene list contains 30,698 genes that are arranged in the same 

order. Most of the values in an expression matrix are zero. 

 

6.4 Results 

6.4.1 Density distribution 

Density distributions of gene expression within data sets showed a great variety (Figure 44). Data 

sets from GEO (cells sorted by FACS) show a high median gene expression value (between 2700 

and 3300 counts). GEO data sets MC02 and MC03 showed broad quartile ranges and unimodal 

density distributions. GEO data sets TC13 and TC14 showed intermediate quartile ranges with 

bimodal distributions. On the other hand, GEO data sets NK02, and TC07-TC12 showed high 

median gene expression values (around 3000 counts) and narrow quartile ranges, most with 

bimodal density distributions. NK02 and TC07 data sets showed unimodal distributions and 

narrow quartile ranges. Bimodal distributions indicate the presence of more than one cell 

subpopulation. 
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Figure 44. Density distributions of gene expression across 56 data sets used in the current study. A) violin 

plots of B cells, monocytes, and dendritic cells. B) violin plots of NK cells and T cells. BC01, MC01, NK01, 

and TC01-TC06 are from 10x demonstration data; MC02, MC03, NK02, and TC07-TC14 are from GEO 

data set; BC02, DC01, MC04, NK03, and TC15 are from BroadS1; the remaining data sets BC03-BC06, 

DC02-DC08, MC05-MC12, NK04-NK07, and TC16-TC23 are from BroadS2. The maximal width of each of 

the violin plots was set to one (“1”).
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Data sets from BroadS1, BC02, DC01, MC04, NK03, and TC15 showed a high median value of 

gene expression and intermediate breadth of quartile ranges. The majority of BroadS1 cell type 

data sets showed unimodal distribution, while MC04 showed a bimodal distribution, most likely 

representing CD14+ and CD16+ monocyte subtypes. We noted that all BroadS1 data have high 

gene expression counts (4880 ≥ median counts ≥ 2815, across BroadS1 data sets), and high number 

of positive features (1890 ≥ median features ≥ 790) than BroadS2 where expression counts (1843 

≥ median counts ≥1163, across BroadS2 data sets) and positive features (1508 ≥ median features 

≥ 611) (Supplemental Table 2). BroadS2 data sets showed wider interquartile ranges than BroadS1 

data sets. A large proportion of BroadS2 data sets had shown distinct bimodal distributions (Figure 

44 B), indicating that this data may contain distinct subtypes within the indicated cell type. 

Bimodal counts of gene expression were also observed in T cell data sets from BroadS2 data set 

and in monocytes from BroadS1. 

 

6.4.2 Incremental learning 

The average composition of the training sets and the compositions of test sets are shown in Table 

14. The composition of the training sets is stable across cycles (Figure 45). Test sets match well 

the healthy ranges [260, 261] while DC was severely underrepresented in the training sets, 

monocytes were underrepresented, and T cells were overrepresented (Table 14). The DC were 

included in the training set only in Cycles 4-7 and their representation in the training set remained 

low, approximately 10- to 20-fold lower than their representation in test sets. The training set in 

Cycle 0 included only samples that were from 10x demonstration data – processing of these cells 

included PBMC extraction, purification by bead-enrichment, freezing, thawing, and 10x 

processing. Cycles 1-3 included the addition of cells sorted by FACS or MACS to the 10x data set. 

Testing in all cycles was performed using minimally processed (PBMC extraction and freezing) 

data set BroadS1. The final round, swapping, involved two steps: a) training data set included 10x, 

GEO, and BroadS2 data, and testing was done using BroadS1 and b) training set included 10x, 

GEO, and BroadS1 data, and the entire BroadS2 data set was used for testing.  

The results of ANN classification are shown in Figure 46. The internal cross-validation showed 

reproducibly high accuracy ranging from 99.9% to 99.3%. The accuracy of classification of new 

independent data sets was initially low (82.0% in Cycle 0 and 24.3% in Cycle 1, then it rapidly 

increased and stabilized between 92% and 99% from Cycle 2. The external validation with 

BroadS1 data set showed low accuracy of classification in Cycles 0 and 1, followed by a rapid 

increase to 92.2%, followed by a gradual improvement in accuracy that reached 94.6% in Cycle 7. 
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The swapping step, where BroadS2 was used as a test set showed the accuracy of internal cross-

validation of 99.2% and external validation accuracy of 91.7%. Taken together, the results indicate 

that the overall accuracy of 5-class classification is between 92 and 94%. 

 

Table 14. The cell type compositions of training and testing sets. The proportions of the main PBMC cell 

types are shown for the healthy range [260, 261], training sets, and test sets (BroadS1 and BroadS2). 

 

CELL TYPE 
Healthy  
Range 

Average 
Training Sets 

Test Set  
BroadS1 

Test Set 
BroadS2 

B Cells 5-15% 11.44±0.36% 12.59% 15.33% 

Dendritic Cells 1-2% 0.09±0.18% 1.08% 2.20% 

Monocytes 10-30% 4.44±1.05% 12.60% 17.34% 

NK Cells 5-10% 9.64±0.21% 10.57% 6.85% 

T Cells 40-70% 74.39±0.93% 63.16% 58.28% 
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Figure 45. Data sets used in training cycles appear in the time sequence as we acquired them. The increase in 

the number of cells in training sets was gradual and the proportions of cell types were stable. The new sets of 

cells tested in the current cycle were appended to the subsequent training set. For example, monocytes from 

GSM2773408 (425 cells) and GSM2773409 (431 cells) were classified using the training set from 10x dataset 

(Cycle 0), then were included in the training set for Cycle 1. 

 

 

 

 



Page | 114  

 

 

Figure 46. The internal cross-validation showed extremely high accuracy (≥99.2% in all cycles). After early 

instability (Cycle 1) the classifier starts converging towards the internal cross-validation line. With the 

increase of the number of data sets added to the training set, new data files are predicted with steadily 

increasing accuracy (added data line). The swapping step showed that the overall accuracy of the current 

system is within the range of 92-94%. 

 

6.4.3 External validation 

The Cycle 7 and the swapping produced results for EXP 1 and EXP 2 (Figure 46 and Table 15). 

The remaining part of our study involved training of the ANN classifier by 

GEO+BroadS1+BroadS2 and testing with 10x data (EXP 3, Table 15), and training of the ANN 

classifier by 10x+BroadS1+BroadS2 and testing with GEO data (EXP 4, Table 15). Sample 

processing alone has a profound effect on gene expression pattern recognition (Table 15). The 

prediction model trained on a combination of samples processed by enrichment or FACS/MACS 

cell sorting, can be used for high accuracy prediction of minimally processed samples (94.6% and 

91.7%, in EXP 1 and 2, Table 15). The model trained with a combination of minimally processed 

samples can reach higher accuracy, when testing with samples processed by enrichment (98.3%, 
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EXP3, Table 15) or cell sorting (93.5%, EXP 4, Table 15). 

 

Table 15. Classification accuracy for modeling experiments where the testing set derived entirely from one 

source, while training sets were combined from other sources. The results also show the F1 measure for 

individual cell types. Further details are available in Supplemental Tables 3, 4, and 5. 

 

EXP TEST SET* 
SAMPLE 
PROCESSING 

CLASSIFICATION 
ACCURACY 

F1 VALUES 

1 BroadS1 Separation 94.6% 
BC – 0.963, DC – 0.880, 
MC – 0.983, NK – 0.781, 
TC – 0.964 

2 BroadS2 Separation 91.7% 
BC – 0.962, DC – 0.000, 
MC – 0.958, NK – 0.695, 
TC – 0.946 

3 10x Demo 
Separation, 
Enrichment 

98.3% 
BC – 0.969, DC – NA, 
MC – 0.873, NK – 0.954, 
TC – 0.995 

4 GEO 
Separation, 
FACS or MACS 

93.5% 
BC – NA, DC – NA, 
MC – 0.989, NK – 0.700, 
TC – 0.955 

5 BroadS1 Separation 94.5% 
BC – 0.953, DC – 0.887, 
MC – 0.983, NK – 0.792, 
TC – 0.961 

6 BroadS2 Separation 88.1% 
BC – 0.876, DC – 0.000, 
MC – 0.971, NK – 0.592, 
TC – 0.927 

*EXP 1-4 involve three training sets and one testing set. EXP 5 and 6 involve only BroadS1 and BroadS2 data sets. 

 

The overall performance of classification differs between individual cell types (Table 15, EXP 1 

and 2): B cells, monocytes, and T cells show high accuracy with F1 values exceeding 0.95. 

Classification performance of NK cells shows lower accuracy with F1 value in the vicinity of 0.75. 

Quality control of BroadS2 data set (removal of cells that have total counts lower than 670 or 

number of positive features lower than 300) did not affect classification performance (EXP 2a and 

EXP 2b, Supplemental Table 5). Classification of dendritic cells was unstable, F1=0.88 in EXP 1 

and 0.00 in EXP 2 (Table 15). When two-fold external validation with BroadS1 and BroadS2 data 

sets were performed (EXP 5 and 6, respectively), the overall accuracy in EXP 5 was 94.5%, and 

in EXP 6 was 88.1%. The inclusion of data sets with high median gene expression (GEO, 2700-

3300 and BroadS1, 2800-4900, Supplemental Table 2) in the training data set results in lower cell 

classification accuracy (EXP 2 as compared to EXP 1, and EXP 6 as compared to EXP 5, Table 
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15). Consistently, adding BroadS1 to the training set in the swapping step, as compared to Cycle 

3, results in lower classification accuracy tested on BroadS2 (92.3-91.7%, EXP 7 and EXP 2, 

Supplemental Tables 3, 4, and 5). ANN model has demonstrated well generalization ability when 

performing four supersets swapping, it has achieved an average accuracy of 94.5%. Differences in 

gene expression brought about by various generation protocols have led to differences in 

predictions for individual cell types, such as the prediction of monocytes was 87.3% in EXP 3 

(when trained on a combination of minimally processed samples and samples sorted by 

FACS/MACS), while in EXP 1, 2, and 3, the monocytes classification accuracy was 98.3%, 95.8%, 

and 98.9%, respectively (Table 15). 

 

6.5 Conclusions 

Overall, our results demonstrate that supervised ML is a viable option for classifying cell types 

from single cell expression data. Patterns that are characteristic of cell types are preserved in single 

cell gene expression data even when the single cell samples are processed using different 

processing steps. Data sets derived from minimally processed samples (PBMC separation only) 

alone can be used to predict cell type from samples that are additionally processed (we achieved a 

prediction accuracy of 98.3% for enriched and 93.5% for sorted cells, Table 15). Gene expression 

pattern characteristics of a given cell type are preserved in samples that have additional processing 

steps and these sets can be used for accurate predictions of minimally processed samples (93% 

accuracy on BroadS1 data set was achieved by training set consisting of 10x and GEO data, Figure 

46 and Supplemental Tables 3, 4, and 5). That is suitable for broad application. The training data 

set – the reference set – is composed of multiple data sets that represent various sample processing 

conditions and contain sufficient biological variability. The ANN classifier is robust – the system 

can tolerate a proportion of cells that have gene expression lower than quality control thresholds 

(in our studies it is 670 for gene expression counts and 300 for positive features).  

Two-fold internal cross-validation has shown that once a data set is added to the training set, the 

patterns contained in that set will be remembered by the classifier. The classifier generalizes well, 

and generalization properties improve with the addition of new data. Once a data set representing 

a particular cell type and sample processing protocol is added to the training data set, the ANN 

will learn this data type. When data sets where a particular cell type, biological condition, and 

experimental processing protocol is well, that is very high (≥99.2%, Figure 46). 

The overall classification performances in EXP 1 and 2 (Table 15) are satisfactory (94.6% and 
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91.7%), also in EXP 3 and 4 (98.3% and 93.5%). Training data used in EXP 1 and EXP 2 are 

representative of all three sample processing protocols: i. separation (of PBMC), ii. separation + 

enrichment, and iii. separation + cell sorting. Training data used in EXP 3 did exclude separation 

+ enrichment protocol data that was used for generating test data in the same experiment. Similarly, 

test data in EXP 4 were generated using separation + cell sorting protocol, while the corresponding 

training data represented samples produced by other processing protocols. A well-established 

classification theory concept in ML is that the training set must be representative of the variability 

that is present in real cases. Our results clearly show the effects of the training sets that are not 

fully representative. Even the average prediction accuracy of four supersets swapping reaches 

94.5%, the effect of enrichment or cell sorting in changing gene expression pattern still appears in 

the results - when the training set includes data sets of samples by enrichment or cell sorting (EXP 

1 and 2), the prediction performance is decreased, compared to when training set includes 

minimally processed samples (EXP 3 and 4). The data sets of minimally processed samples are 

found with better representative properties. A problem for SCT is that processing steps such as 

enrichment or cell sorting are part of the experimental validation of results that are missing in 

minimally processed samples. Our results of EXP 1 and 2 show high accuracy of classification but 

cannot be validated directly by experiments. On the other hand, the cell type in EXP 3 and 4 is 

known, and the classification accuracy are 98.3% and 93.5% when similar data sets are present in 

the training set. 

EXP 1-8 (Supplemental Table 5) results indicate that the average gene expression level of data 

sets used in training has an influence on classification accuracy, particularly in situations where 

the training set is limited. The results indicate that the classification of cell types is better in data 

sets that have moderate gene expression levels, with gene counts between 1000 and 2000 per cell. 

This observation needs further study to confirm the actual influence of gene counts on 

classification accuracy. The analysis of factors that possibly influence prediction accuracy in this 

study is presented in the Discussion section. 

 In summary, we have demonstrated that ANN, a supervised ML method, is capable of high 

accuracy classification of five main cell types of healthy PBMC. The accuracy is very high for B 

cells, monocytes, and T cells. The classification accuracy of NK cells is lower, because of their 

similarity with subsets of T cells (such as NK-like T cells, subsets of CD8+ T cells, and subsets of 

innate T cells). This problem was noted in [10], where the authors reported that it was challenging 

to separate cytotoxic T cells and NK cells since they have overlapping feature spaces. The accuracy 

of the classification of DC is low because of the underrepresentation of DC in the training sets, 

and this problem should be overcome by adding additional DC samples. 
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6.6 Discussion 

This work demonstrates the potential of supervised ML methods to classify single cells from their 

gene expression counts. We achieved the 5-class classification accuracy of 94% using 56 data sets 

derived from healthy PBMC that were processed by different experimental procedures applied to 

PBMC samples. An important finding is that once a dataset representative of a cell type, condition 

(in this case healthy PBMC), and a specific sample processing protocol is added to the training set, 

similar data sets will be classified with very high accuracy (>99%). 

Several factors limit the accuracy of our 5-class classification of PBMC. They include lack of 

training data (for DC) and similarity of cell subtypes with cells from other classes (NK cells), and 

training data with high median gene counts. Additional factors include undefined classes or 

subclasses of cells that are normally found in peripheral blood but are not included in current 

training set. Such cells, for example, include CD34+ cells (circulating hematopoietic cells that may 

represent between 0.1 and 0.3% of PBMC [261]. Natural killer T (NKT) cells have markers of 

both T cells (CD3+) and NK cells (CD56+) and are present in circulating PBMC [262] and can 

easily be confused with NK cells. On the other hand, CD8+ NK cells [263] share properties with 

cytotoxic T cells. Given the similarity of gene expression profiles, is not surprising that in our 

study, 2.6% (218) of T cells from BroadS1 and 8.7% (624) of T cells from BroadS2 were classified 

as NK cells. Conversely, 22.9% (319) of NK cells from BroadS1 and 6.7% (56) of NK cells from 

BroadS2 were classified as T cells. FACS sorting showed that NK cells from 10x data were 92% 

pure, while CD8+ cytotoxic cells were 98% pure. Further investigation, including advanced 

clustering methods (such as [264, 265]) and the analysis of misclassifications, will be pursued to 

improve PBMC classification.  

One challenge for the classification of cells from SCT data arises from the need for experimental 

validation of cell types as opposed to expert annotation in minimally processed samples. 

Experimental sample processing steps such as bead enrichment (negative selection) produce 

homogeneous samples (one cell type or subtype) whose purity can be verified by cell sorting. 

Alternatively, cells can be sorted by FACS or MACS procedures that help sort cells, and provide 

a measurement of purity, percentage of contaminating cells, and cell properties (e.g. [258]). 

Depending on the purpose of single cell study, various sample processing workflows may be 

deployed (Figure 47). The difficulty with processed samples is that each processing step induces 

changes in gene expression profiles. These profile changes are significant, and they prevent direct 

comparison of cells from studies that follow different protocols. Minimally processed samples 

have similar gene expression to the native blood cells. The annotation of single cells in this case, 

is done by various tools that utilize gene expression markers and are normally inspected and 
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corrected manually, introducing annotation bias. Protein markers and gene expression markers do 

not match perfectly, the expression of proteins and corresponding mRNA significantly correlate 

only in about one-third of targets [266, 267]. Since SCT data sets are sparse and a large proportion 

of expressed genes are missing, simple marker-based assignments are insufficient. A selection of 

in silico methods is needed in combination with experimental validation for conclusive assignment 

of cell types and subtypes. 

 

 

 

Figure 47. Sample workflows relevant for our study: A. Workflow involving minimally processed samples 

(BroadS1, BroadS2), B. Generic flow for 10x studies, C. Workflow of samples processed by FACS or MACS, 

may include multi-step processing (GEO data sets in our study), D. Workflow for functional studies, PBMC 

samples are often cultured overnight along with bioactive agents, followed by FACS/MACS, E. Workflow 

using negative selection by bead enrichment (used in 10x demonstration study). Workflow D was not used in 

this study because culturing with bioactive agents generates cellular responses not relevant for profiling of 

PBMC from healthy blood. 
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Supervised ML has distinct advantages in comparison with unsupervised clustering when used for 

classification tasks. The main advantage is that once reference sets are available, standardized 

analysis can be performed across samples that represent various biological conditions. Single cell 

technologies applied to PBMC require the ability to analyze minimally processed samples directly 

and accurately and reproducibly determine cell types, subtypes, and their status from single cell 

expression profiles. To achieve this goal, we need standardized sample processing workflows and 

SOP of upstream single cell analysis and supervised ML methods for downstream analysis. Several 

sample processing protocols were demonstrated as reproducible and are available (see 

support.10xgenomics.com/single-cell-gene-expression/sample-prep). SCT samples can be 

analyzed using existing SOPs and they yield highly reproducible results (as demonstrated, for 

example, in [18, 28]).  

Given that the SCT part is stable, supervised ML requires that training data are representative of 

all major sample processing protocols. Supervised ML analysis can classify any future sample 

collected, prepared, and analyzed using one of the validated protocols with the expected accuracy. 

Our results indicate that the accuracy of classification from validated protocols should be above 

98%, which matches cell purity from standard cell sorting methods. New sample processing 

protocols can be validated by splitting minimally processed samples, perform supervised method 

(such as ANN) classification on one partition of the sample, and performing additional processing 

steps to confirm the numbers or proportions of cell types in the second partition. In this study we 

have defined a reference data set for 10x PBMC 5-class classification that provides 94% accurate 

classification. Our future goal is to refine classification of DC, by increasing the number of DC 

data in the training set and resolve ambiguities between NK cells and subsets of T cells (non-

classical T cells and CD8+ T cells) that are misclassified due to their gene expression similarity. 
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CHAPTER 7 STUDY IV - VULNERABILITY OF ANN-SCT-

PBMC CLASSIFIERS 

In this chapter, we studied the vulnerability of ANN-SCT-PBMC models, using five groups of 

non-representative datasets and seventeen rounds of 4-supersets-swapping external validation. 

7.1 Abstract 

The vulnerability and robustness of the ANN-SCT-PBMC model can be affected by SCT data 

representativeness. This study aims to verify the vulnerability and robustness of the ANN-SCT-

PBMC model under the cumulative impact of five confounding factors: ‘empty cells’, ‘other 

tissue’, ‘dead cells’, ‘activated cells’, and ‘mixed population’. We used 56 reference datasets and 

17 non-representative datasets from four independent data sources for deploying 17 rounds of four 

parallel external cross-validation experiments, to study the classification performance of the model. 

The overall average accuracy of four parallel external validation (among 10x, GEO, BroadS1, and 

BroadS2) increased from 0.660 to 0.945 in 17 train-test rounds when cumulatively eliminating 

non-representative datasets. The prediction on BroadS1 and BroadS2 testing sets showed high 

accuracy (averagely 0.937 and 0.914 in 17 rounds). The GEO testing set showed an overall upward 

trend, it increased with 24.41% of accuracy. The accuracy of the 10x testing set had significant 

improvement, from 0.059 in Round 1 to 0.983 in Round 17. The performance for four testing sets 

all converged to above 0.917 at the last swapping round. From the F1-score of each class, BC, MC, 

and TC prediction was robust, the prediction of NK had lower performance, while the prediction 

of rare class DC was unstable and affected largely. From the error rate of each cell subtype, 

misclassification mainly occurred in ‘NK’, ‘nonT’, ‘DC’, ‘pDC’, four innate-like T cell subtypes 

(‘iNKT’, ‘MAIT’, ‘Vd1’, and ‘Vd2’), and subtypes of the ‘Empty Cells’ group, the ‘Other Tissue’ 

group, the ‘Dead Cells’ group, and the ‘Mixed Population’ group. 

Our results revealed that when trained with sufficient reference datasets, the ANN-SCT-PBMC 

model is robust and can survive a small number of non-representative instances hidden in the 

training set. The model can discriminate between and assess the relative representativeness of SCT 

data when it has only been trained on high-quality reference datasets. The confounders of different 

properties can have varying effects on model vulnerability. The factors that can affect model 

vulnerability include - the proportion of reference and non-representative datasets, the proportion 

of the classes in training and testing sets, the similarity of gene expression between cell types and 

subtypes, and the properties of non-representative datasets, etc. 
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7.2 Introduction 

The quality and representativeness of data has an impact on the classification performance of 

supervised machine learning artificial neural network (ANN) models [268, 269]. In the process of 

studying using ANN for PBMC classification based on SCT gene expression profiles (ANN-SCT-

PBMC classification), we found that non-representative data (cells with confounding factors such 

as ‘empty cells’, ‘other tissue’, ‘dead cells’, ‘activated cells’, and ‘mixed population’) can be easily 

mixed in the data set. It can have implications for accurate classification of PBMC using ANN 

models at single-cell resolution. The presence of non-representative data can affect model training 

and prediction results.  

This study attempts to explore the relationship between the vulnerability and robustness of the 

ANN-SCT-PBMC model and the representativeness of the datasets. Meanwhile, this study 

designed four parallel external cross-validation experiments to investigate the specific effects of 

non-representative components on model performance when they were included in SCT datasets 

from different sources. 

This study aims to identify: 

1. The effect of non-representative data to ANN-SCT-PBMC classification performance: 

the model performance in four parallel external cross-validation experiments (4-

supersets-swapping) when progressively eliminating non-representative data of 

different properties. 

2. The specific factors affecting the vulnerability of the ANN-SCT-PBMC model. 

3. With the gradual elimination of non-representative datasets, the robustness of the ANN-

SCT-PBMC model for the five classes (BC, DC, MC, NK, and TC) in the 4-supersets-

swapping experiment. 

4. With the gradual elimination of non-representative datasets, the robustness of the ANN-

SCT-PBMC model for different cell subtypes in the 4-supersets-swapping experiment. 

7.3 Materials and Methods 

This study focuses on the vulnerability testing and robustness validation of ANN model, with the 

effect of different groups of non-representative PBMC SCT data sets. This study is an extension 
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of previous studies [16, 65]. In this study, the entire data sets have included five groups of non-

representative data sets and one group of 56 clean reference data sets (the same as the healthy 

PBMC samples used in incremental learning study [146]).  

The fundamental architecture of ANN classifier and the assessment metrics of classification 

performance are the same as in earlier research.  

The 56 clean data sets [146] have 10x Demo, GEO, BroadS1, and BroadS2, four data sources. The 

five groups of non-representative data sets represent groups of “Empty Cells”, “Other Tissue”, 

“Dead Cells”, “Activated Cells”, and “Mixed Population”, sourcing from GEO database. These 

groups contain common PBMC datasets that are easily confused and misused as reference datasets. 

In this study, they were used to test the influence of the representativeness of the training set and 

the confounding factors on the classification model. 

The study design has involved comparative vulnerability testing using both non-representative 

data sets and clean data sets, with the method of four supersets swapping [146].  

 

7.3.1 Study design 

We deployed a "from noise to clean" experimental design to validate and examine the vulnerability 

and robustness of ANN-SCT-PBMC classification model.  

In the first round of the experiment, the datasets for training and testing consist of all clean datasets 

and non-representative datasets. All datasets are divided into four super sets according to the data 

source, and four parallel ANN training and testing steps (Steps 1-4, Figure 48 B) are performed in 

4-super-sets-swapping manner – three super sets are used as training set, while use the fourth super 

set to test the trained network, then iteratively swap the next super set as testing set. After one 

round of 4-super-sets-swapping training and testing, it collects the classification results to each 

testing set, and evaluates model performance of this round. Then enter the second round. In this 

round, one non-representative data set is eliminated from all datasets, and the ANN training and 

testing of 4-super-sets-swapping is performed again. The same steps are then repeated, 

cumulatively removing the next non-representative data set in the next round until the final round 

- only clean reference datasets exist. The detailed workflow is shown in Figure 48 A). The order 

of decreasing deletion of the non-representative data sets is based on arbitrary order, from the least 

representative to the closest to clean data, in the order of eliminating: ‘Empty Cells’ → ‘Other 

Tissue’ → ‘Dead Cells’ → ‘Activated Cells’ → ‘Mixed Population’ (as shown in Figure 49). 
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Figure 48. Schematic diagram of study design. A) shows the workflow of model training and testing. 

Classification results are collected and analyzed with various trained neural networks and testing sets in 

different rounds. B) demonstrates the components of training set and testing set in one round of four-super-

sets-swapping. There are four steps in one round. As an example, in Step 1, the sum of 10xDemo, GEO, and 

BroadS2 are used as training set, while BroadS1 is used as testing set to assess the classification accuracy. 

 

In this study, there are in total 17 rounds of 4-super-sets-swapping ANN training and testing. As 

an example, ‘Round 1’ (as shown in Figure 49) is the first round of ANN training and testing, in 

the first step of it (Step 1, Figure 48 B): 9 reference data sets (of 10x data source); 11 reference 

data sets, 50 empty cells, and GSM3162632 [270], GSM3162630 [270], GSM3087629 [49], 

GSM3430548 [256], GSM3430549 [256], GSM3478792 [255], GSM3558027 [255], 

GSM3258345 [257], GSM3258347 [257], GSM3258346 [257], GSM3258348 [257], and 

GSM3087628 [49]  (of GEO data source); 31 reference data sets (of BroadS2 data source); these 

(as ticked with check marks in Figure 49) are used to train the network. The complete BroadS1 

data sets are used as the testing set.  

In Step 2 (Figure 48 B), 31 reference data sets (of BroadS2) are used as testing set, others are used 

as training set. Similarly, in Step 3 and 4 (Figure 48 B), data sets of 10xDemo and of GEO, are 

used to test their corresponding trained networks, respectively. In the following Round 2 to Round 

17 (Figure 49), the eliminated data in each round (each column in the figure) is illustrated as blank 

(Figure 49). The non-representative data is eliminated one at a time in the rounds.  
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The last round (Round 17) includes 4-super-set-swapping train-test on 56 clean reference data sets. 

The seventeen rounds of 4-super-sets-swapping train-test experiments were done until all non-

representative data sets were eliminated. The voting results of the trained neural networks were 

collected and analyzed of each step in each round. 
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Figure 49. Illustration of involved data sets of ANN train-test in Round 1 to 17. In the final round of 4-super-

sets-swapping, solely 56 reference data sets were included. The study design aims on testing the vulnerability 

of ANN-SCT-PBMC classification model with confounding factors on data representativeness. 
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The results of Round 5, 7, 8, 12, 17 (in Figure 49) represents the model performance when 

iteratively cumulatively depleting ‘Empty Cells, ‘Other Tissue’, ‘Dead Cells’, ‘Activated Cells’, 

and ‘Mixed Population’ data groups. For these rounds, we also used 1-Sensitivity [271, 272] to 

assess the classification error rate of each cell subtype:  

1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where, TP – true positives (class positives classified as positives), FN – false negatives (class 

positives but predicted as negatives). 

 

For Round 1 to 17, we performed assessment with confusion matrix, accuracy (ACC), specificity, 

sensitivity/RE, PR, and F1-score, same as in previous studies [65, 146]. Specifically, we used 

accuracy (ACC) for multi-class overall assessment and used F1-score for individual cell type 

assessment (i.e., for BC, DC, MC, NK, and TC). 

The comparative analysis within Round 1 to 17 demonstrated the vulnerability and robustness of 

ANN classifier with the effect of SCT PBMC data representativeness. 

 

7.3.2 Data 

The 56 clean data sets [146] representing PBMC from healthy blood samples were selected. Their 

data set group property is described as “clean” in this study.  

The other 17 data sets are considered as “non-representative” data sets, they are sourced from GEO 

database and form “Empty Cells”, “Other Tissue”, “Dead Cells”, “Activated Cells”, and “Mixed 

Population” five non-representative data groups. The datasets were collected and standardized to 

30,698 gene list, and converted to five different file formats, in this study, MTX file format was 

mainly used for ANN training and testing, considering computational efficiency. The gene 

expression of each cell profile used in training and testing is filtered and standardized raw gene 

counts (quality control), captured and sequence aligned by 10x SCT protocol.  

For “Empty Cells”, we put 10, 5, 2, and 1 empty cells under each class (BC, DC, MC, NK, and 

TC) of GEO data, in the Round 1, 2, 3, and 4, individually. The four rounds contained 50, 25, 10, 

and 5 empty cells in total, respectively. From the Round 5, ‘Empty Cells’ noise is not included in 
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the loop. These round-reduced empty cells were populated with the labels of five classes and 

treated as five non-representative datasets. The gene expression of the empty cells is zero, 

simulating the effect of “dropout” instances (in real-life single cell sequencing situation) to the 

ANN SCT classification model.  

Two dendritic cells data sets have formed “Other Tissue” group, one is ‘tumor ascites dendritic 

cells (GSM3162632) [270]’ and the other is ‘tonsil dendritic cells (GSM3162630) [270]’. They 

are tissue-residential dendritic cells samples, the SCT gene expression of those dendritic cells are 

different from those of peripheral blood circulating dendritic cells.  

The data set GSM3087629 [49] represents “Dead Cells”, the biological sample of it is CD8+ T 

cells of healthy frozen PBMCs fixed with methanol reagent. After processing with methanol 

fixation, the cells are pictured with specific instantaneous gene expression status, that is different 

from the gene expression level of fresh cells or frozen-thawed cells.  

GSM3430548 [256], GSM3430549 [256], GSM3478792 [255], and GSM3558027 [255] represent 

for “Activated Cells” data group. GSM3430548 and GSM3430549 are IL-10 producing Foxp3-

CD4+ T cells from healthy blood samples of two donors, they are specifically selected activated 

CD4+ T cells for functional study. GSM3478792 and GSM3558027 are nonmalignant P5 

CD3+CD5intSSCintCD4+ T cells from fresh blood of a 61-year-old male patient donor, pre- and 

post- stage IVA Sézary syndrome (T4N1M0B2) treatment. The CD4+ T cells in those two data 

sets are in activated functional status, their gene expression can be different from normal 

circulating CD4+ T cells in healthy individual samples.  

In “Mixed Population” group, there are five data sets - GSM3258345 [257], GSM3258347 [257], 

GSM3258346 [257], GSM3258348 [257], and GSM3087628 [49]. The first four data sets come 

from one series GSE116683 [257]. GSM3258345 and GSM3258347 are pair data sets of HLA-

DR+ cells, GSM3258347 is the control group. They are designed to target live enriched HLA-

DR+ cells and deplete other blood lineages (CD235a, CD3, CD4, CD8, CD19, CD56). They are 

mixed populations of cells expressed HLA-DR cell surface receptor. Monocytes constitutively 

express HLA-DR, those two data sets are labeled under “MC” class. GSM3258346 and 

GSM3258348 are pair data sets of CD19+ cells, they are enriched and selected by FACS cell 

sorting, that solely targeting live CD19+ cells and depleting other blood lineages (CD235a, CD3, 

CD4, CD8, HLA-DR, CD56). They are labeled with “BC” class, as CD19 is typical cell protein 

marker of B cells. They are mixture of various cell populations expressed CD19 protein marker, 

other than B cells expressed CD19 marker. Those four data sets are sampled from healthy fresh 

blood. GSM3087628 is a mixture of cell groups expressed CD8 protein marker, that is sorted by 

magnetic beads of MACS cell sorting. It is labeled as the “TC” class, as CD8 is a regular marker 
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of T cells.  

The total number of cells in this study is 145,605. Table 16 summarized the data sets and cells 

numbers of each class involved in this study. Table 17 shows as a brief metadata for 17 non-

representative reference data sets, it includes information such as series ID, publication date, cell 

type and the labeling class.  

 

Table 16. An overview of the 73 SCT data sets used in this study is as below. Cell numbers and the number of 

data sets are shown for each class. 

NUMBER OF CELLS AND DATA SETS OF CLASSES 

Sources BC DC MC NK TC Total Cells 
10x Demo  10,085 (1) 0 2,612 (1) 8,385 (1) 64,347 (6) 85,429 (9) 

GEO  1,796 (3) 4,362 (3) 3,311 (4) 319 (2) 24,912 (15) 34,700 (27) 

BroadS1 1,660 (1) 142 (1) 1,661 (1) 1,394 (1) 8,326 (1) 13,183 (5) 

BroadS2 1,884 (4) 271 (8) 2,132 (8) 842 (4) 7,164 (8) 12,293 (32) 

Total 15,425 (9)  4,775 (12) 9,716 (14) 10,940 (8) 104,749 (30) 145,605 (73) 

 

Table 17. The summary of the 17 non-representative data sets. 

SOURCE SERIES DATE CELL TYPE CLASS 

GEO 

N/A N/A 

10-Empty-Cells-in-BC BC 

10-Empty-Cells-in-DC DC 

10-Empty-Cells-in-MC MC 

10-Empty-Cells-in-NK NK 

10-Empty-Cells-in-TC TC 

GSM3162632 
5/30/2018 

Tumor Ascites Dendritic Cells 
DC 

GSM3162630 Tonsil Dendritic Cells 

GSM3087629 7/25/2018 CD8+ T Cells (Methanol SSC) TC 

GSM3430548 
11/7/2018 

IL-10 Producing Foxp3-CD4+ T Cells (Donor 1) 
TC 

GSM3430549 IL-10 Producing Foxp3-CD4+ T Cells (Donor 2) 

GSM3478792 1/31/2019 Nonmalignant P5 CD3+CD5intSSCintCD4+ T Cells 

TC 
GSM3558027 7/25/2019 

Nonmalignant P5 CD3+CD5intSSCintCD4+ T Cells 
(After Therapy) 

GSM3258345 

10/15/2018 

HLA-DR+ Cells 
MC 

GSM3258347 HLA-DR+ Cells (Control) 

GSM3258346 CD19+ Cells 
BC 

GSM3258348 CD19+ Cells (Control) 

GSM3087628 7/25/2018 CD8+ Cells TC 
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The Figure 50 shows the cell subtypes and their proportions in four data sources. In clean data sets, 

there are 4 subtypes (‘BC’ of 10x, ‘Bn’/ ’Bm’ of BroadS1, ‘BC’ of BroadS2) of B cells, 3 subtypes 

(‘DC’ of BroadS1, ‘DC’/ ’pDC’ of BroadS2) of dendritic cells, 6 subtypes (‘M14’ of 10x, ‘M14’ 

of GEO, ‘M14’/ ’M16’ of BroadS1, ‘M14’/’M16’ of BroadS2) of monocytes, 4 subtypes (‘NK’ of 

10x, ‘NK’ of GEO, ‘NK’ of BroadS1, ‘NK’ of BroadS2) of NK cells, and 24 subtypes 

(‘CD45RA+CD25-T4naive’/ ‘T4’/ ‘CD45RA+T8naive’/ ‘T8’/ ‘CD45RO+T4mem’/ 

‘CD4+CD25+Treg’ of 10x, ‘T4’/ ‘T8’/ ‘iNKT’/ ‘MAIT’/ ‘Vd1’/ ‘Vd2’/ ‘T4’/ ‘CCR5+CD69-T4’ 

of GEO, ‘aTreg’/ ‘nonT’/ ‘rTreg’/ ‘T4em’/ ‘T4naive’/ ‘T8em’/ ‘T8naive’/ ‘Tncl’ of BroadS1, and 

‘T4’/ ‘T8’ of BroadS2) of T cells.  

In 17 experimental data sets (highlighted in yellow in Figure 50), it has other 3 subtypes of 

dendritic cells, 7 of T cells, 3 of monocytes, and 3 of B cells. The hierarchical relationship of these 

cell subtypes has been drawn in the ontology of PBMC [146]. 

In the four super sets (10x, GEO, BroadS1, and BroadS2), the frequency of cell numbers in each 

class (BC, DC, MC, NK, and TC) are corresponded to the reference values of healthy interval 

ranges in PBMC, as described in previous studies [65, 146].  
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DATA SOURCE CELL SUBTYPE SUBTYPE NUMBER CLASS FREQUENCY TOTAL NUMBER

BC 10085 BC 11.81%

M14 2612 MC 3.06%

NK 8385 NK 9.82%

CD45RA+CD25-T4naive 10479

T4 11213

CD45RA+T8naive 11953

T8 10209

CD45RO+T4mem 10224

CD4+CD25+Treg 10263

M14 856 MC 2.47%

NK 309 NK 0.89%

T4 222

T8 310

iNKT 325

MAIT 382

Vd1 284

Vd2 204

T4 965

CCR5+CD69-T4 435

10-Empty-Cells-in-BC 10 BC 0.03%

10-Empty-Cells-in-DC 10 DC 0.03%

10-Empty-Cells-in-MC 10 MC 0.03%

10-Empty-Cells-in-NK 10 NK 0.03%

10-Empty-Cells-in-TC 10 TC 0.03%

Tumor_Ascites_DC 1613

Tonsil_DC 2739

Methanol_SSC_T8 4753

Donor1_ IL-10-Producing_Foxp3-_T4 1247

Donor2_ IL-10-Producing_Foxp3-_T4 1902

Nonmalignant_P5_CD3+CD5intSSCint_T4 4486

Nonmalignant_P5_CD3+CD5intSSCint_T4_Afth 3725

HLA-DR 48

HLA-DR_Control 2397

CD19 26

CD19_Control 1760

CD8 5662 TC 16.32%

Bn 1169

Bm 491

DC 142 DC 1.08%

M14 1263

M16 398

NK 1394 NK 10.57%

aTreg 921

nonT 426

rTreg 1072

T4em 975

T4naive 1134

T8em 1031

T8naive 1336

Tncl 1431

BC 1884 BC 15.33%

DC 202

pDC 68

M14 1809

M16 323

NK 842 NK 6.85%

T4 3380

T8 3784

BroadS2 (CLEAN)

12.59%

12.60%

12292

TC

TC

TC

MC

BC

BC

13183

TC

DC

5.15%

63.16%

10x (CLEAN) 85423

BroadS1 (CLEAN)

9.01%

12.54%

46.44%

7.05%MC

34700GEO (ALL)

2.20%

17.34%

58.28%TC

75.32%

DC

MC
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Figure 50. The cell subtypes and proportions in each data source. Subtypes of one same class are highlighted 

in similar color hue. The color bar shows the level of abundance in ‘Subtype Number’, ‘Frequency’, and 

‘Total Number’.  

 

In four super sets swapping, the testing sets can have 85,423 cells (10x), 34,700 cells (GEO), 

13,183 cells (BroadS1) or 12,292 cells (BroadS2). The training sets can have 133,306 cells ({10x 

U GEO U BroadS1}), 132,415 cells ({10x U GEO U BroadS2}), 110,898 cells ({10x U BroadS1 

U BroadS2}), 60,175 cells ({GEO U BroadS1 U BroadS2}). 

 

7.4 Results  

7.4.1 Overall accuracy of four testing sets in each round 

The results of overall ANN classification are shown in Figure 51. It shows the prediction accuracy 

of the testing set for four parallel train-test steps, within seventeen swapping rounds. 
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Figure 51. Accuracy of 4-super-sets-swapping in Round 1 to 17. The predication on BroadS1 and BroadS2 

testing sets showed high accuracy (averagely 0.937 and 0.914 in seventeen rounds). With the 

representativeness of data sets increased during seventeen rounds, the model performance on 10x testing set 

had significant improvement, from 0.059 in Round 1 to 0.983 in Round 17. The average of the external 

validation to four sets showed upward trend on overall accuracy. All four data sets showed a trend of 

convergence, eventually reaching over 0.917. In the final round, the average accuracy of the four supersets 

reached 0.945.  

 

With cumulatively eliminating non-representative data sets in training set, the classification 

accuracy of testing set BroadS1 (the black line in Figure 51) remained above 0.912 across 

seventeen rounds. The average prediction accuracy of BroadS1 testing set was 0.937 for PBMC 5-

class classification.  

The classification performance on BroadS2 data sets overall remained above 0.866. With the 

adjustment and alteration in the training set, the prediction results for the BroadS2 data sets 

fluctuated, but the overall classification performance remained relatively high, with an average 
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accuracy of 0.914 in total seventeen rounds.  

The prediction performance on the 10x Demo testing set has shown a significant improvement 

across the seventeen rounds, the overall accuracy has increased from 0.059 in Round 1 to 0.983 in 

Round 17 (Figure 51). From Round 1 to 5, by removing ‘Empty Cells’ in the training set, the 

prediction performance on 10x improved by 0.069 of accuracy. Considering the large data 

proportion of clean data sets in the training set (60,125 reference cells of 60,175 total cells, 99.92%, 

as shown in Figure 49 and Figure 50), the ANN model was sensitive and vulnerable to ‘Empty 

Cells’ confounding factor hidden in the training data. When testing with 10x data sets, the model 

vulnerability was largely affected by representativeness of the training data. During Round 1 to 

Round 12, with the groups ‘Empty Cells, ‘Other Tissue’, ‘Dead Cells’, and ‘Activated Cells’ 

included in the training set, overall accuracy on 10x Demo data sets swinged up and down around 

0.119. Different numbers of empty cells and different noise properties of the non-representative 

instances in the training set have irregular negative effects on classification accuracy. Since R12, 

there was a rapid increase in accuracy, until the R17 accuracy rose to 0.983. From R12 to R17, the 

training set gradually removed the data sets of ‘Mixed Population’ group, one at a time. 

For GEO testing set, the neural networks in seventeen rounds were trained by the reference data 

sets of 10x, BroadS1, and BroadS2 (as shown in Figure 49). The entire classification results on 

GEO testing set showed an overall upward trend. From Round 1 to 17, it increased 24.41% of 

accuracy, when eliminating confounding data sets in both training and testing sets, within 4-super-

sets swapping experiments. The results of GEO in the seventeen rounds demonstrated the effect 

of the components of testing set to model accuracy evaluation in multi-class classification.  

The gray line in Figure 51 showed the average accuracy of the 4-super-sets-swapping external 

validation results. During Round 1 to Round 17, it demonstrated a steadily increase in overall 

accuracy. With the improvement of data representativeness, the overall accuracy rose from 0.660 

to 0.945, for four independent super sets train-test swapping experiments.  

From Figure 51, the performance for four testing sets all converged to above 0.917 at the last 

swapping round. Taken together, when with high data representativeness (solely included clean 

reference data sets), the external validation accuracy of four independent sets for ANN-SCT-

PBMC 5-class classification ranged from 0.917 to 0.983, with the average of 0.945. 
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7.4.2 F1-score of individual cell types in each round 

We measured F1-score value of each cell type (BC, DC, MC, NK, and TC) prediction for seventeen 

swapping rounds. F1-score is the harmonic mean of precision and recall, in our 5-class 

classification, it was the main metric used in individual cell type evaluation. The results of F1-

score of each class in each round for four parallel testing have shown as Figures 52-55. 

 

7.4.2.1 Testing with BroadS1 

When the training set included data source of 10x, GEO, and BroadS2, testing with BroadS1 

(Figure 52), the prediction performance of BC, MC, TC was quite robust, F1-score steadily 

remained 0.943 to 0.983, averagely 0.961. The F1-score of NK class was around 0.773, for 

seventeen rounds.  

 

Figure 52. F1-score results of five cell types in 4-super-sets-swapping rounds, with BroadS1 as the testing set. 

The prediction performance of BC, MC, NK, and TC were stable, while it of DC was close to zero in Round 6 

and 13. The F1-score of BC, MC, TC were kept around 0.961, and it of NK was around 0.773, during 

seventeen rounds.  
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The classification to 142 dendritic cells of BroadS1 was affected by non-representative data sets 

in the training set. It was unstable, it was 0.000 of F1-score measure in Round 6 and 0.027 in 

Round 13, while remaining 0.693 to 0.880 for other rounds. When gradually removed 30,408 of 

non-reference cells out of 132,415 of total cells (22.96%), the model classification performance 

was not affected much, when it comes to BC, MC, NK, and TC.  

The DC prediction was fragile, while gradually removed 4,362 of non-reference dendritic cells out 

of 4,632 total dendritic cells in training set. With a small amount of instances, the model behavior 

on DC was quite vulnerable and it was largely affected by the number, proportion, and properties 

of the non-reference data of five classes, that were hidden in the training set. 

 

7.4.2.2 Testing with BroadS2 

When we used BroadS2 as the testing set and the data sourcing from 10x, GEO, and BroadS1 as 

the training set, the prediction results (Figure 53) on each cell type was quite similar to the 

experiments when testing with BroadS1 (Figure 52). From Figure 53, the F1-score on BC, MC, 

and TC during seventeen rounds stabilized around 0.947, compared to 0.961 when tested with 

BroadS1 (Figure 52). The F1-score to NK demonstrated a slightly more up-and-down trend – 

averagely 0.681, with the lowest value of 0.536 in Round 10.  
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Figure 53.  F1-score of five cell types in 4-super-sets-swapping rounds, with BroadS2 as the testing set. The 

classification performance of BC, MC, and TC class were stable, it remained around 0.947. The F1-score of NK 

class was around 0.681, during seventeen swapping rounds. The model prediction of DC was irregular, that 

was 0.310 in average. 

 

In Round 10, both the F1-score of NK and TC decreased, the NK F1-score decreased by 0.127, 

the TC F1-score decreased by 0.045, compared to Round 9. In Round 11, the F1-score of NK and 

TC prediction increased back to 0.734 and 0.952, respectively. The ANN model was sensitive to 

changes in the representativeness of the gene expression profiles that comprise the training set. 

In Round 10, the training set included 4,486 cells of the data set 

‘Nonmalignant_P5_CD3+CD5intSSCint_T4’ and 3,725 cells of 

‘Nonmalignant_P5_CD3+CD5intSSCint_T4_Afth’ (both of the group ‘Activated Cells’), under 

TC class. The existing of the set ‘Nonmalignant_P5_CD3+CD5intSSCint_T4’ confounded the 

model pattern recognition ability on NK-TC binary classification.  

This set was a T cell set while sampled from patient fresh blood – a 61-year-old male patient donor, 

with stage IVA Sézary syndrome (T4N1M0B2) being treated. The gene expression of this T cell 

set was different from it of normal healthy T cell set, that caused the misclassification between NK 

and TC – as in Round 10, 793 more T cells in BroadS2 (that has totally 7,164 T cells) was predicted 

as NK cells, compared to Round 9.  
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In Round 11, the training set eliminated the data set ‘Nonmalignant_P5_CD3+CD5intSSCint_T4’ 

while kept the data set ‘Nonmalignant_P5_CD3+CD5intSSCint_T4_Afth’, that was the pair T cell 

set of the patient after therapy. The gene profile of patient T cell set after therapy demonstrated 

less influence on model vulnerability. The inclusion of 3,725 after-therapy T cells increased the 

classification performance of NK and TC. 

The prediction on DC class showed irregular results, the F1-score of DC was 0.310 in average, 

during seventeen swapping rounds. Similar to when testing with BroadS1, the DC prediction was 

largely affected by the non-representative data of five classes, in the training set. 

 

7.4.2.3 Testing with 10x 

The results of 10x testing set showed as Figure 54, that had F1-score results of four classes – BC, 

MC, NK, and TC. All four classes showed a trend from a low initial F1-score value (averagely 

0.036) to a gradual increase until it converged to a high F1-score value (averagely 0.948). The 

results of 10x testing set clearly showed the significant impact of non-representative data sets to 

ANN-SCT-PBMC classification model – when gradually purifying and cleaning training set from 

non-reference data, the classification ability for each class was improved, and it reached the highest 

point when there were only clean reference sets included in the training set (as shown in Figure 

54, in Round 17, the F1-score for BC, MC, NK, and TC classification, was 0.969, 0.873, 0.954, 

and 0.995, respectively).  
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Figure 54. F1-score of four cell types in 4-super-sets-swapping rounds, with 10x as the testing set. The results 

showed the impact of groups of non-representative data on ANN-SCT-PBMC classifier, especially when it 

accounts for a large proportion of the training set. 

 

As listed in Figure 50, 10x data source contains 85,423 cells, which accounts for a large proportion 

in the data composition of four sources (58.67% of the sum of all data sets). The 85,423 cells of 

10x set are qualified reference gene profiles. When the 10x set was not included in training set 

(Figure 54), ANN-SCT-PBMC model was heavily impacted by the proportion of reference data 

sets in training set – that was 49.47% in Round 1, while 100.00% in Round 17. Unlike when the 

large reference set 10x was included in the training set and maintained basic robustness for BC, 

MC, NK, and TC prediction (Figure 52 and Figure 53), the model was vulnerable in 10x testing 

experiments (Figure 54) – that trained with the combination of GEO, BroadS1, and BroadS2. 

In Round 16, without the balancing benefits from other classes, when solely the 5662 cells of data 

set ‘CD8’ (of ‘Mixed Population’ group) included in non-reference sets, the model was affected 

largely – the F1-score for all four classes was decreased, by 0.086, 0.172, 0.015, and 0.007, for 

BC, MC, NK, and TC, individually. In Round 16, the model was trained by 13,183 cells of 

BroadS1, 12,292 cells of BroadS2, 4,292 reference cells of GEO, and 5662 CD8 cells of GEO. 

The ‘CD8’ cells are the mixture of sorted cell populations that expressed CD8 protein marker. The 

CD8 receptor exists on the surface of different cell types within PBMC, including NK cells, innate-

like T cells, cytotoxic CD8+ T cells, dendritic cells [273], and that caused the confusion on 

prediction to BC, MC, NK and TC classes. 
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7.4.2.4 Testing with GEO 

The predictions of the four classes showed a gradual convergence trend from Round 5, and reached 

the maximum value in the last round (Round 17, Figure 55).  

 

 

Figure 55. F1-score of five cell types in 4-super-sets-swapping rounds, with GEO as the testing set. The model 

demonstrated pattern recognition ability in distinguishing representative and non-representative data in GEO, 

after being jointly trained by 10x, BroadS1, and BroadS2 reference data sets. The F1-score of four classes (BC, 

MC, NK, and TC) showed a trend of increasing and convergence within seventeen rounds. In Round 17, the 

F1-score of MC, NK, and TC reached 0.989, 0.700, and 0.955. 

 

As shown in Figure 55, the model jointly trained by the 10x, BroadS1, and BroadS2 reference data 

sets had certain pattern recognition ability for the representative data and non-representative data 

in GEO. The model had good classification performance on representative data in GEO, while had 

low performance on non-representative data. In Round 17, after gradually eliminating non-

representative sets of five groups, the F1-score value for MC, NK, and TC was 0.989, 0.700, and 

0.955, respectively. Generally, the F1-score of BC and MC kept around 0.702~0.729, the F1-score 

of TC remained averagely around 0.922, and it of NK class steadily increased from 0.180 in Round 

1 to 0.700 in Round 17. The prediction F1-score of DC class kept around 0.001, as shown in Figure 

55. The 1,613 cells of ‘Tumor_Ascites_DC’ data set and the 2,739 cells of ‘Tonsil_DC’ data set 

were correctly not predicted as DC class, that demonstrated the pattern recognition ability of the 
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model. The SCT gene expression profiles of ‘Tumor_Ascites_DC’ and ‘Tonsil_DC’ data sets are 

different from those of healthy circulating dendritic cells of PBMC. These two sets are dendritic 

cells sampled from tumor ascites and tonsil tissue. Additionally, the calculation result of F1-score 

was also affected by the imbalance of multi-class classification. 

 

7.4.3 Subtype classification performance in Round 1, 5, 7, 8, 12, and 17 

– group comparison 

The classification evaluation to each cell subtype was measured by 1-Sensitivity, that is used as 

measurement for error rate. We measured the value of 1-Sensitivity of subtypes in Round 1, 5, 7, 

8, 12, and 17, specifically. These are the rounds when each entire group of non-representative sets 

was eliminated. For example, in Round 12, the entire group of ‘Activated Cells’ was removed 

from 4-super-sets-swapping train-test experiment, as compared to Round 8, that included 

‘Activated Cells’ and ‘Mixed Population’ groups. Group comparisons of subtype error rates in 

these rounds demonstrated the robustness of the model to different subtypes when faced with 

changes in data profiles across groups. 

 

7.4.3.1 Subtype performance of testing set BroadS1 

There are 14 cell subtypes in the testing set BroadS1, as shown in Figure 56. Within the group 

comparison of Round 1, 5, 7, 8, 12, and 17, the subtype error rate (refers to 1-Sensitivity in the 

study) showed an overall downward trend – i.e., the model performance for subtypes generally 

improved as the non-representative groups were pulled out. Among them, the subtypes ‘NK’ and 

‘nonT’ (Figure 56) had high error rate across the six rounds, with an average of 0.220 and 0.464, 

respectively. 
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Figure 56. The performance of subtype prediction within group comparisons, used BroadS1 as testing set. 

The subtypes ‘NK’ and ‘nonT’ had high error rate, 0.220 and 0.464 in average. ANN model steadily 

recognized subtype patterns, with various non-representative sets included in training set, in six rounds. 

 

Even in Round 17, 99.07% of the misclassifications in the NK class was ‘T cells’, which is related 

to the biological similarity hidden in the gene expression profiles of NK cells and T cells. As 

expected, 'nonT' had a high classification error rate, roughly half of 'nonT' were classified as ‘NK 

cells’ and the other half were classified as ‘T cells’, in all six rounds. There was a potential paradox 

in original annotation of ‘nonT’ subtype: there were two labelling methods for the BroadS1 dataset, 

one of which annotates the 'nonT' cell population as ‘non-T cells’, while the other method identifies 

them as ‘T cells’. This group of cells has specific gene expression intermediate between NK cells 

and T cells. 

Taken together, the results for BroadS1 subtypes indicated that the model can sensitively identify 

cell populations with confounding gene expression profiles, to a certain extent. Furthermore, the 

model showed robustness across group comparisons in six rounds. 

 

7.4.3.2 Subtype performance of testing set BroadS2 

The classification results for the 8 subtypes of BroadS2 varied widely in six rounds. The subtypes 

‘DC’ and ‘pDC’ had extremely high error rates (the average over six rounds were 0.823 and 0.971). 

The ‘BC’, ‘NK’, and ‘T8’ exhibited average error rate as 0.071, 0.162, and 0.126, respectively. 
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Figure 57. The performance of subtype prediction within group comparisons, taken BroadS2 as testing set. 

 

Compared to Round 1 and Round 5, the error rates of ‘DC’ and ‘pDC’ were significantly decreased 

in Round 7, which excluded the ‘Empty Cells’ data group, and ‘Tumor_Ascites_DC’ and 

‘Tonsil_DC’ data sets of the ‘Other Tissue’ group. The ‘empty-cells’, ‘non-healthy’, and ‘non-

peripheral’ sets had a greater impact on the prediction of DC than those confounding factors of 

other groups. At the same time, due to the small sample size (‘sample’ refers to data samples), the 

DC class was more affected by non-representative datasets, showing larger vulnerability in the six 

rounds.  

As the number of samples of non-representative T cells gradually decreased, the predictions of 

subtypes ‘NK’ and ‘T8’ exhibited a “trade-off” trend - the ‘NK’ error rate decreased, while the 

‘T8’ prediction error rate increased. 

In general, when BroadS2 was used as the testing set, the vulnerability of ANN model was affected 

by the number of samples within the category, the type of non-representative data, and the 

similarity of gene expression profiles. 

 

7.4.3.3 Subtype performance of testing set 10x 

With groups of confounding factors included, the 9 subtypes of the 10x testing set had high error 

rate in Round 1, 5, 7, 8, and 12. Among these rounds, the average error rate of ‘BC’, ‘NK’, and 6 

T cell subtypes was 0.902. While in Round 17, the subtype error rate of the 10x testing set showed 
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a sharp drop, with an average of 0.026 for the 9 subtypes. When the 10x dataset (that has a large 

sample size) was not included in the training set, the model robustness was significantly affected 

by the non-representative data sets (in Round 1, 5, 7, 8, and 12).  

 

 

Figure 58. The performance of subtype prediction within group comparisons, used 10x as testing set. The 

average error rate of 9 subtypes decreased from 0.863 to 0.026, when gradually excluded non-representative 

sets from experiments. The variations in the types and proportions of non-representative datasets had a 

significant impact on the model's robustness.  

 

The error rate of 6 T cell subtypes (‘CD45RA+CD25-T4naive’, ‘T4’, ‘CD45RA+T8naive’, ‘T8’, 

‘CD45RO+T4mem’, and ‘CD4+CD25+Treg’, Figure 58) dropped in Round 7 (average value 

0.767) and then rose again in Round 8 and Round 12 (average value 0.870 and 0.932, respectively). 

The robustness of the model was affected heavily by variations in the types and proportions of 

non-representative datasets within the five classes.  

 

7.4.3.4 Subtype performance of testing set GEO 

When testing with GEO data source, the five non-representative groups were included in the 

testing set. The network was trained with clean reference data sets of 10x, BroadS1, and BroadS2. 
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In the testing set, there are 11 subtypes from reference datasets and 13 subtypes from non-

representative datasets. 

 

 

Figure 59. The performance of subtype prediction within group comparison, testing with GEO. 

 

In the reference set subtypes, the misclassification was concentrated in the four innate-like T cell 

subtypes - ‘iNKT’, ‘MAIT’, ‘Vd1’, and ‘Vd2’ (the average of 1-Sensitivity value was 0.209). They 

have special gene expressions different from those of conventional T cells.  

Among the non-representative subtypes, misclassification occurred mainly in the ‘Empty Cells’ 

group, the ‘Other Tissue’ group, the ‘Dead Cells’ group, and the ‘Mixed Population’ group (Figure 

59). For these groups, the values of 1-Sensitivity were 1.000, 1.000, 0.298, and 0.368, individually. 

The results indicated that, ANN model trained on high-quality reference datasets have a certain 

ability to screen and identify the representativeness of SCT data. The voting results of the neural 

network trained with high-quality instances can be used to evaluate the SCT data 

representativeness. 
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7.5 Conclusions 

7.5.1 Overall accuracy 

Overall, the results indicated that the non-representativeness of data can negatively affect the 

ANN-SCT-PBMC model classification performance. The model was vulnerable and had low 

classification accuracy when there were non-representative instances included in the datasets 

(overall average accuracy was 0.660 in Round 1, Figure 51). As the non-representative data was 

gradually stripped from the datasets, the average accuracy gradually increased, across the four 

external cross validation experiments, eventually converging to 0.945 (Figure 51).  

When high-quality reference data accounts for more than half of the total training instances (e.g. 

10x dataset, accounting for 58.67% of the sum of all datasets), the model is robust against changes 

in attributes and proportions of non-representative components hidden in the training set. As from 

the results, the five-class classification average accuracy of BroadS1, BroadS2, and GEO testing 

set fluctuated between 0.912~0.946, 0.866~0.941, 0.752~0.935, respectively; while the fluctuation 

range of 10x testing set was relatively large, between 0.054~0.983 (Figure 51). 

 

7.5.2 F1-score of 5 classes  

From the F1-score of each cell type, while being affected by non-representative instances, the class 

with small scale (the “rare class”) is more vulnerable (e.g. the DC class had irregular and unstable 

predictions, Figure 52 and Figure 53). The performance of model for rare class can be greatly 

influenced by the attributes and proportions of the data. 

When the training set contains reference data source with large cardinality, the model is robust to 

the predictions of BC, MC, NK, and TC classes and remains stable over 17 rounds (Figure 52, 

Figure 53, and Figure 55). Compared with BC, MC and TC classes, NK prediction had lower F1-

score results. Due to the similar SCT gene expression profile to TC instances, the prediction 

performance of NK was greatly restricted.  

When the training set contains large number of non-representative instances, with the continuous 

reduction of non-representative instances and the increase of high-quality reference instances, the 

F1-score for BC, MC, NK and TC demonstrated a gradual increase and convergence in 17 rounds, 

with a final average of 0.948 (Figure 54). 
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7.5.3 Performance on subtypes  

From the results of the six group comparisons, it can be seen that the classification performance 

for subtypes varies with the properties and proportions of different non-representative groups. 

In the BroadS1 testing set, subtype misclassification occurred mainly in ‘NK’ and ‘nonT’, that was 

traced to the highly confounding gene expressions of NK cells and T cells.  

Meanwhile, the ‘DC’ and ‘pDC’ subtypes in BroadS2 consistently had high error rate across 17 

train-test rounds, with an average of 0.823 and 0.971, respectively (Figure 57). Compared to other 

non-representative data groups, the ‘Empty Cells’ group and the non-representative DC instances 

in the ‘Other Tissue’ group had a greater impact on DC class prediction. The error rate for the two 

DC subtypes both decreased when these groups were excluded from the training set.  

When the large reference set 10x was excluded from the training set, the non-representativeness 

of the dataset has a significant effect on model performance. The 9 subtypes of the 10x testing set 

had high error rates in Round 1, 5, 7, 8, and 12. In Round 17, the subtype error rate dropped 

dramatically, with an average of 0.026 for the 9 subtypes (Figure 58). 

From the results of GEO subtypes, it can be clearly seen that the model trained by high-quality 

reference datasets has a certain ability to identify and evaluate the representativeness of SCT data. 

The model had low error rates for subtypes of the reference datasets and high error rates for non-

representative datasets. Misclassifications focused on four innate-like T cell subtypes ‘iNKT’, 

‘MAIT’, ‘Vd1’, and ‘Vd2’; one subtype of ‘Empty Cells’ group; two subtypes of ‘Other Tissue’ 

group; one subtype of ‘Dead Cells’ group; and five subtypes of ‘Mixed Population’ group. It 

indicated that the model was more vulnerable to non-representative instances from ‘Empty Cells’, 

‘Other Tissue’, ‘Dead Cells’, and ‘Mixed Population’ groups, than the ‘Activated Cells’ group.  

 

7.5.4 Final overall conclusions 

Comprehensively, the ANN-SCT-PBMC model is robust when trained with sufficient reference 

instances, it can tolerate a small number of non-representative instances hidden in the training set. 

Among the five classes, the prediction performance of the rare class can fluctuate greatly. At the 

same time, the model purely trained by high-quality reference sets has the ability to distinguish 

and evaluate the relative representativeness of SCT data. Of the five confounding factors, the 

‘Empty Cells’, ‘Other Tissue’, ‘Dead Cells’, and ‘Mixed Population’ groups can have greater 



Page | 148  

 

influence than the ‘Activated Cells’ group. 

In final conclusion, in this study, the factors that can affect the vulnerability of the ANN-SCT-

PBMC model include  

a. the proportion of the reference datasets and the non-representative datasets in the 

training set,  

b. the proportion of the classes in the training set and the testing set, 

c. the similarity of gene expression between cell types and cell subtypes,  

d. the properties of the non-representative datasets (the least relevant non-representative 

datasets can have a higher impact and the specific impact needs to be confirmed by 

further study). 

 

7.6 Discussion 

This study demonstrates the effect of decreasing non-representative datasets one by one on the 

robustness of the ANN-PBMC-SCT model in four external cross-validation experiments. The 

results found that the ratio of reference and non-representative datasets has a large impact on model 

performance. As shown in Figure 60, when the reference datasets occupy a large proportion of the 

training set, the model can counteract the negative effects of non-representative instances (Figure 

60, A and B); while when the non-representative datasets occupy a large proportion of the training 

set, the model's vulnerability increases with the number of non-representative instances (Figure 60, 

C). More in-depth discussions can include – investigating the number of reference instances 

required to train a qualified ANN-SCT-PBMC model, and the number of non-representative 

instances it can tolerate. 
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Figure 60. The illustration for the effect of the proportion of reference and non-representative datasets on 

model performance. The A), B), C), and D) represent the specifics of the training and testing sets in four 

external cross-validation experiments in this study when non-representative instances are involved. Different 

symbol sizes imply the relative proportions of different data sources (e.g., 10x, BroadS1, BroadS2, GEO 

reference set, and GEO non-representative set account for roughly 59%, 9%, 8%, 3%, and 21% of total 

instances). 

 

Meanwhile, the classification results on the GEO testing set indicate that the model trained on 

sufficient pure reference data has the ability to evaluate the representativeness of SCT data (Figure 

60, D). The voting results of the model can be used as a metric for scoring the representativeness 

of the dataset [269]. 



Page | 150  

 

A limitation of this study is that the experimental design shows only one potential order of 

cumulative reduction of the five groups of confounders, and results under other alternative orders 

can be done in further studies - our focus of this study is to reveal the trends in the performance 

changes brought about by the accumulation of non-representative datasets. The confounders of 

different properties have different effects on model vulnerability. The impact of individual 

confounders on model performance can be explored in further study.  

It is worth noting that the non-representative datasets used in our study only represents part of the 

SCT samples, and more instances from other sources are needed to complete further validation 

with larger sample size. 

Furthermore, in addition to the five confounding factors included in this study (the ‘Empty Cells’, 

‘Other Tissue’, ‘Dead Cells’, ‘Activated Cells’, and ‘Mixed Population’ groups), model 

performance is also affected by other factors (described in SCT cell ontology), such as  

a. the “Maturation status: Immature/Transitional/Mature” in “Cell Properties” dimension;  

b. the “Developmental stage: Fetal/Pediatric/Young/Middle-age/Elderly” in “Organism 

Properties” dimension;  

c. or the “Sample preparation: Isolation/Staining-and-purity-assessment/Cell-sorting” in 

“Experimental Settings” dimension; etc.  

The effect of these other confounding factors on the ANN-SCT-PBMC model vulnerability needs 

to be explored further. 
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CHAPTER 8 GENERAL CONCLUSIONS AND FUTURE WORK 

8.1 General Conclusions 

This research demonstrated and proved the concept that single cell classification can be done with 

purely supervised ML method ANN and multi-source independent SCT data. The ANN-SCT-

PBMC classification models have achieved good performance with various datasets generated 

from multisource studies. It has demonstrated adequate gene expression profile pattern recognition 

and classification ability, also good robustness to SCT datasets with diverse sample conditions. 

This research collected and standardized PBMC SCT reference datasets from various data 

sources (GEO database, Broad Institute, and 10x Genomics Demonstration), with five main cell 

types (B cells, dendritic cells, monocytes, natural killer (NK) cells, and T cells). Corresponding 

metadata has been organized for the qualitative description and statistical properties of SCT 

datasets. We designed and described the multi-dimensional single-cell ontology for PBMC SCT 

classification. It used over 163 dimensions to category and characterize single cells, based on prior 

knowledge in immunology and single cell domain. In the pilot study, we used 27 SCT datasets 

of 121,281 single cell instances to achieve the accuracy of classification of PBMC of 89.4% and 

proved the concept that using purely supervised machine learning method to classify single cells. 

In the initial study of incremental learning, we selected 27 SCT datasets that derived from 

healthy PBMC samples. We used methods of cyclical holdout internal cross-validation, external 

validation, and validation on added datasets to evaluate SCT classification performance. The 

cyclical incremental learning that simulating real-life situation by the gradual addition of new 

independent data sets to ANN training improved classification. In the final cycle, the overall 

accuracy reached 93.0% for 4-class classification. In the follow-up expanded incremental 

learning study, we sorted solely clean representative data and newly collected dataset BroadS2 

and explored the effect of different data processing protocols to ANN models. BroadS2 dataset 

has brought reference dendritic cells into the training sets. With 56 clean reference datasets and 

seven cycles of training and testing, the overall accuracy of 5-class classification reached 94.6%. 

Classification accuracy for B cells, monocytes, and T cells exceeded 95%. Classification accuracy 

of NK cells kept around 75% caused by the similarity between NK cells and T cell subsets. The 

accuracy of dendritic cells was limited due to small proportion of numbers in the training sets. We 

also analyzed the impact of different processing methods to gene expression profiles and SCT 

classification. The results indicated that datasets derived from minimally processed samples 

(PBMC separation only) contributed to SCT gene expression pattern recognition. Building upon 

these, we used other 17 non-representative datasets of five groups: ‘empty cells’, ‘other tissue’, 
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‘dead cells’, ‘activated cells’, and ‘mixed population’, and 17 rounds of four parallel external 

cross-validation (four-supersets-swapping) experiments to explore the vulnerability of ANN-

SCT-PBMC classification models. Our findings showed that the ANN-SCT-PBMC model was 

robust and could tolerate non-representative instances hidden in the training set when trained with 

sufficient reference datasets. When the model has been trained on purified high-quality reference 

data, it can distinguish and evaluate the representativeness of SCT data. The factors that affected 

model vulnerability include - the proportion of reference and non-representative datasets, the 

proportion of the classes in training and testing sets, the similarity of gene expression between cell 

types and subtypes, and the properties of non-representative datasets, etc. 

Overall, our research demonstrates that supervised ML ANN is a viable option for single cell 

classification. This research gives solution to the current “eleven grand challenges” of SCT data 

analysis. It built reference datasets for PBMC SCT classification. It solves the difficulties in single 

cell classification using purely supervised ML ANN, that demonstrates generalization and 

robustness on various upcoming data sets.  

Cell ontology and biological explanation with gene expression profile were used to comprehend 

the performance of ANN classifier. We found that other than the ‘cell properties’ (inherent gene 

expression of cell types), other dimensions in cell ontology can have significant impact on SCT 

classification performance, such as - data generation protocol (cell sorting), tissue source 

(peripheral circulating or tissue-residential), cell state (healthy, methanol fixation, or functionally 

activated), cell labeling (mixed population).  

The results revealed that well-defined, rigorous, and detailed annotation of true classes is the key 

issue of ANN SCT classification. The results indicated that adequate reference data, produced 

under exacting and stringent SCT protocols, and labeled with a comprehensive and in-depth multi-

dimensional cell ontology are necessary for highly accurate single cell classification, which can 

support future predictive health development. The machine-simulated purely supervised single cell 

classification models can maximize the potential value of SCT data, it can help achieve future 

systematic regular detection of human health, early disease diagnosis and prevention, as well as 

development in hematology.  
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8.2 Future Work 

Our work has limitations as start-up research in the field, further study could be done on: 

1. Data: Need more reference data sets. With more SCT data sets of multi-dimensional subtypes 

of PBMC, a classification model based on multi-dimensional PBMC cell ontology can be built and 

evaluated with metrics. 

2. Model: This study proves the concept of using SCT data and ANN to do supervised single cell 

classification. Optimized methods with model structure and parameter changing or comparison 

with different supervised ML methods can be used to explore the performance of SCT 

classification. 

3. Metadata: This study focuses on healthy PBMC SCT data training and testing, focusing on 

proof-of-concept validation and generating benchmark reference data for data quality control and 

disease/function PBMC data pattern recognition. When it comes to potential further functional 

study situations, the model can be trained with disease data sets (sample of CLL patients), and 

used for disease single cell prediction. 

4. Incremental learning: In this study, we deployed the traditional incremental learning – manual 

data accumulation. We aimed on observing model performance on independent SCT datasets. 

Combined reference data on specific dimension of cell ontology, ensemble learning can be used 

in research on model learning efficiency. 

5. Class imbalance: In this study, we kept data class distribution as collected, simulating the real 

frequency of each cell type in human blood. A study on balanced class classification can be 

explored with under-sampling, over-sampling, and advanced-sampling methods. 

6. Divide and conquer: Further explore the misclassification of TC and NK, MC and BC, and the 

identification and differentiation of intermediate cell subtypes. 

7. Model vulnerability: Further explore the effect of other dimensions (in the multi-dimensional 

cell ontology) on SCT classification performance, such as ‘maturation status’, ‘developmental 

stage’, ‘gender’, etc. 
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Appendix 2 Reference SCT Datasets 

All datasets from this study are available at 

 

 

http://projects.met-hilab.org/SCTdata/PBMC001
http://projects.met-hilab.org/SCTdata/PBMC001
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Appendix 3 Outline Graph of the Literature Review 
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Appendix 4 SCT Study Dimensions 
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Appendix 5 PBMC Dimensions 

 



Page | 179  

 

Appendix 6 Cell Ontology Construction Metadata (PBMC Section) 
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Appendix 7 Supplemental Materials in Study III 

• J. Zhong, M. Lyu, H. Jin, Z. Cao, L. T. Chitkushev, G. Zhang, D. B. Keskin, and V. Brusic, 

“Artificial Neural Networks for classification of single cell gene expression,” bioRxiv, 

2021. 

 

 

❖ Supplemental Table 1. Metadata describing samples as described by the sources. 

 

1. Datasets that are included in incremental learning experiments: 
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2. The non-representative datasets that are included in model vulnerability experiments: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source Series Date Cell Type Class Sample Condition

GSM3162632 Tumor Ascites Dendritic cells tumor ascites

GSM3162630 Tonsil Dendritic cells tonsil tissue

GSM3087629 2018/07/25 CD8+ T cells (methanol SSC) TC healthy frozen PBMCs

GSM3430548 IL-10 producing Foxp3-CD4+ T cells

GSM3430549 IL-10 producing Foxp3-CD4+ T cells

GSM3478792 2019/01/31 nonmalignant P5 CD3+CD5intSSCintCD4+ T cells

GSM3558027 2019/07/25 nonmalignant P5 CD3+CD5intSSCintCD4+ T cells (after therapy)

GSM3258345 HLA-DR+ cells

GSM3258347 HLA-DR+ cells (control)

GSM3258346 CD19+ cells

GSM3258348 CD19+ cells (control)

GSM3087628 2018/07/25 CD8+ cells TC healthy fresh blood

GEO

2018/05/30 DC

2018/11/07 TC

TC

2018/10/15

MC

BC

healthy blood

patient fresh blood

healthy fresh blood

Donors Separation Sorting Strategy Other

ovarian cancer patients gated as HLA-DR+CD11c+CD1c+CD16−

healthy patients (both male and female) gated as HLA-DR+CD11c+CD14−

anonymous, healthy donors from NIH Blood Bank LeucoSep tube with Ficoll-Paque-plusMACS Dynabeads™ CD8 Positive Isolation Kit methanol fixation

healthy donor 1

healthy donor 2

healthy donor

control

healthy donor

control

n/a centrifuge, ficoll MACS Dynabeads™ CD8+ Isolation Kit magnetic beads

centrifuge, ficoll cell culture >10 days

enriched using MACS CD4 beads (Miltenyi) activated cells

activated cells

bead-enriched, negative selection; FACS

Biocoll separation solution (Biochrom)MACS

FACScentrifuge, ficoll Aria II (BD Biosciences)61-year-old male patient donor, with stage IVA Sézary syndrome (T4N1M0B2) being treated

FACS enriched, mixed populationscentrifuge, ficoll

designed to target live HLA-DR+ cells and deplete other blood lineages (CD235a, CD3, CD4, CD8, CD19, CD56) 

designed to target live CD19+ cells and deplete other blood lineages (CD235a, CD3, CD4, CD8, HLA-DR, CD56) 

Purity Extraction & Sequencing Reads Upstream Alignment Genome Build Reference

n/a Chromium Single-Cell 3′ Reagent (v2) Kit (10X Genomics) Illumina NextSeq 500 10X Cell Ranger v2.0.1 GRCh38 (hg38) Chen et al, 2018

10X Cell Ranger v2.2

10X Cell Ranger v2.1

	Illumina MiSeq

HiSeq X Ten

Illumina MiSeq

HiSeq X Ten

n/a Chromium Single-Cell 3′ Reagent (v2) Kit (10X Genomics) Illumina HiSeq 3000 10X Cell Ranger v2.0.1 GRCh38 (hg38) Chen et al, 2018

n/a

n/a

n/a

n/a

Tang-Huau et al, 2018

Brockmann et al, 2018

Borcherding et al, 2019

Ranu et al, 2019

Chromium Single-Cell 3′ Reagent (v2) Kit (10X Genomics) Illumina HiSeq 2500 10X Cell Ranger v2.0.1 GRCh38 (hg38)

Illumina HiSeq 4000 GRCh37 (hg19)Chromium Single-Cell 3’ method (10X Genomics) 10X Cell Ranger

GRCh38 (hg38)Illumina HiSeq 4000Chromium Single-Cell 5' method (10X Genomics)

10X Cell Ranger v1.3.1 GRCh37 (hg19)Chromium Single-Cell 3’ method (10X Genomics) 
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❖ Supplemental Table 2. The results of basic statistical analysis of the data sets. 

 

 

 

1. Data sets that are included in incremental learning experiments: 

 

 

 

LEGEND

Q1,Q2,Q3,Q4: Quartiles

IQR: InterQuartile Range, Q3-Q1

R=Range=Max-Min

Below QC threshold (670-300)

Above QC threshold (670-300)

CD19+ B cells BC BC01 10085

CD14+ Monocytes MC MC01 2612

CD56+ NK cells NK NK01 8385

CD8+ CTLs (Cytotoxic T cells) TC01 10209

CD4+CD45RO+ Memory T cells TC02 10224

CD4+CD25+ Treg cells TC03 10263

CD4+CD45RA+CD25- Naïve T cells TC04 10479

CD4+ Th cells TC05 11213

CD8+CD45RA+ Naïve CTLs (Cytotoxic T cells) TC06 11953

GSM2773408 CD14+CD16- Monocytes MC02 425

GSM2773409 CD14+CD16- Monocytes MC03 431

NK cells NK NK02 309

CD4+ T cells TC07 222

CD8+ T cells TC08 310

iNKT (invariant Natural Killer T cells) TC09 325

MAIT (Mucosal-associated Invariant T cells) TC10 382

Gamma Delta 1 T cells TC11 284

Gamma Delta 2 T cells TC12 204

GSM3209407 CD4+ T cells TC13 965

GSM3209408 CD4+CCR5+CD69- T cells TC14 435

B cells BC BC02 1660

Dendritic cells DC DC01 142

Monocytes MC MC04 1661

NK cells NK NK03 1394

T cells TC TC15 8326

B cells BC BC03 288

CD4+ T cells TC TC16 550

CD14+ Monocytes MC05 640

CD16+ Monocytes MC06 102

Cytotoxic T cells TC TC17 1174

Dendritic cells DC DC02 55

NK cells NK NK04 166

Plasmacytoid Dendritic cells DC DC03 26

B cells BC BC04 388

CD4+ T cells TC TC18 908

CD14+ Monocytes MC07 379

CD16+ Monocytes MC08 73

Cytotoxic T cells TC TC19 954

Dendritic cells DC DC04 33

NK cells NK NK05 263

Plasmacytoid Dendritic cells DC DC05 12

B cells BC BC05 346

CD4+ T cells TC TC20 960

CD14+ Monocytes MC09 354

CD16+ Monocytes MC10 98

Cytotoxic T cells TC TC21 962

Dendritic cells DC DC06 38

NK cells NK NK06 194

B cells BC BC06 862

CD4+ T cells TC TC22 962

CD14+ Monocytes MC11 436

CD16+ Monocytes MC12 50

Cytotoxic T cells TC TC23 694

Dendritic cells DC DC07 76

NK cells NK NK07 219

Plasmacytoid Dendritic cells DC DC08 30

TC

pbmc2_10X_v2

MC

pbmc1_10x_v2_B

MC

pbmc1_10x_v3
MC

cells >=400 gene present

MC

pbmc1_10x_v2_A

GemCode platform

TC
GEO

2018/10/15 MC stained HLA-DR, CD14, CD16

GSM3544603 2019/01/08 various

TC Aria II (BD Biosciences)

Cell Type Class Strategy Tag Cell Number (N)Source Series Date

2019/06/20

10x Genomics SRP073767 2017/01/16

BroadS1 SCP345 2019/07

BroadS2
GSE132044/ SCP424, SCP425 and 

SCP426
2020/04/06
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Min % <670 Q1 (25%) Q2/ Median (50%) Mean Q3 (75%) Max Range (R) IQR Standard Deviation (σ) Skewness (Sk) Kurtosis (K)

460 3.24 1029 1231 1424 1601 6862 6402 572 663.68 2.07 5.85

567 29.20 653 776 1079 1034 9005 8438 381 966.31 3.86 16.11

445 2.42 1349 1576 1661 1850 6451 6006 501 605.60 1.59 5.29

432 1.05 1344 1620 1671 1901 7632 7200 557 543.90 1.46 5.79

496 0.94 1238 1500 1609 1835 10255 9759 597 601.76 2.50 17.14

383 3.88 1010 1218 1301 1475 7278 6895 465 490.82 2.37 12.86

358 3.90 980 1181 1222 1385 6775 6417 405 395.98 1.91 10.28

416 3.26 1076 1320 1390 1585 8767 8351 509 520.59 2.37 15.95

334 0.84 1229 1435 1505 1673 4991 4657 444 462.11 1.46 3.91

853 0 2252 3303 3641 4661 11194 10341 2409 1812.52 0.80 0.68

871 0 2174 3282 3574 4530 15009 14138 2355 2005.85 1.62 5.08

2627 0 2965 3107 3113 3263 3644 1017 298 206.52 0.21 -0.46

2191 0 2664 2745 2791 2909 3291 1100 244 191.17 0.37 0.45

2505 0 2698 2803 2865 3045 3369 864 347 210.10 0.55 -0.81

2177 0 2764 2952 2949 3149 3521 1344 385 248.10 -0.34 -0.13

2206 0 2751 2827 2903 3105 3445 1239 353 222.47 0.30 -0.35

2167 0 2817 3033 3018 3198 3541 1374 381 232.98 -0.18 -0.52

2544 0 2773 2944 2966 3159 3522 978 385 224.20 0.12 -1.13

447 9.64 2360 2844 2755 3399 9134 8687 1039 1157.46 -0.03 1.48

417 5.52 2462 2793 2771 3193 9134 8717 731 955.77 0.53 6.25

2026 0 2551 2815 3069 3355 7227 5201 804 775.50 1.82 3.92

2614 0 4386 4880 4860 5327 7106 4492 941 721.39 -0.02 0.70

2146 0 2664 3040 3295 3945 5691 3545 1281 801.33 0.71 -0.53

2148 0 2969 3210 3276 3489 5884 3736 520 484.70 1.27 3.41

1845 0 2818 3138 3179 3480 7782 5937 662 560.48 1.19 4.71

626 0.69 1033 1190 1192 1326 1969 1343 293 217.98 0.42 0.58

724 0 1130 1293 1287 1410 2594 1870 279 226.35 0.91 3.44

366 6.56 962 1171 1181 1405 1972 1606 443 332.75 0.03 -0.30

824 0 1210 1476 1466 1660 2223 1399 449 313.80 0.25 -0.51

672 0 1123 1251 1254 1385 2173 1501 262 198.75 0.20 0.58

946 0 1110 1320 1388 1585 2100 1154 475 331.44 0.59 -0.69

955 0 1307 1400 1409 1522 1938 983 215 185.01 0.19 0.20

913 0 1058 1455 1454 1860 2007 1094 802 405.35 0.06 -1.68

717 0 1057 1168 1189 1278 2052 1335 221 211.11 1.08 2.13

361 0.33 1196 1291 1294 1388 2117 1756 192 181.73 0.20 3.74

270 5.54 1063 1229 1207 1386 2018 1748 323 292.74 -0.49 0.80

946 0 1479 1652 1620 1843 2100 1154 364 307.64 -0.60 -0.30

455 0.10 1150 1258 1263 1355 1971 1516 204 157.39 0.54 1.80

971 0 1054 1198 1296 1301 2040 1069 247 325.02 1.21 0.29

999 0 1206 1310 1343 1439 2127 1128 233 196.08 1.09 2.03

947 0 1079 1567 1456 1713 1970 1023 634 380.56 -0.06 -1.72

720 0 12956 1520 1419 1655 2155 1435 359 324.59 -0.78 -0.45

709 0 937 1599 1436 1790 2238 1529 853 425.39 -0.35 -1.43

798 0 1155 1367 1498 1884 2420 1622 729 411.23 0.55 -0.95

993 0 1203 1300 1339 1445 2321 1328 242 198.89 1.76 6.43

774 0 1610 1737 1726 1866 2249 1475 256 208.88 -0.77 1.98

873 0 1071 1164 1172 1240 1527 654 169 156.84 0.42 0.22

1000 0 1707 1843 1803 1967 2350 1350 260 267.41 -1.03 1.24

631 0.12 1260 1402 1397 1526 2478 1847 266 228.63 0.24 1.30

85 0.73 1272 1432 1403 1542 2302 2217 270 242.42 -0.99 5.23

521 0.92 1237 1533 1503 1723 2385 1864 486 345.50 -0.05 -0.37

979 0 1055 1415 1553 2068 2372 1393 1013 508.80 0.25 -1.68

810 0 1391 1521 1505 1622 2324 1514 231 206.84 -0.07 1.73

903 0 1149 1253 1311 1371 2141 1238 222 268.94 1.38 1.82

942 0 1362 1511 1526 1667 2329 1387 305 227.74 0.49 1.29

926 0 1030 1163 1423 1879 2364 1438 849 522.83 0.88 -0.97

Column_Sum (total number of counts in each cell)
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Min %<300 Q1 (25%) Q2/ Median (50%) Mean Q3 (75%) Max Range (R) IQR Standard Deviation (σ) Skewness (Sk) Kurtosis (K)

197 2.82 417 474 524 574 1854 1657 157 178.62 1.87 4.71

267 4.10 332 378 455 461 2393 2126 129 244.58 3.37 12.61

223 0.80 614 701 722 798 2073 1850 184 200.08 1.18 3.68

213 0.91 501 567 578 633 2216 2003 132 140.12 1.51 7.77

217 0.81 482 552 579 635 2677 2460 153 164.45 2.44 15.23

190 1.98 463 542 562 625 2311 2121 162 165.61 2.04 10.05

188 2.73 421 486 496 550 2130 1942 129 122.74 1.60 8.45

204 1.94 460 541 558 626 2435 2231 166 162.65 1.99 11.53

141 1.53 442 496 511 556 1348 1207 114 117.10 1.21 3.17

382 0 907 1186 1217 1496 2715 2333 589 423.06 0.38 -0.09

315 0 876 1163 1184 1425 3402 3087 548 437.55 0.90 1.99

557 0 788 864 878 964 1975 1418 176 154.83 1.45 7.78

487 0 774 883 870 966 1417 930 191 168.05 -0.06 0.46

492 0 853 930 932 1016 1360 868 163 153.78 -0.21 0.72

514 0 807 890 903 985 1729 1215 178 176.91 1.19 4.36

503 0 849 942 922 1018 1484 981 169 156.62 -0.42 1.04

461 0 832 928 922 1015 1563 1102 183 164.87 -0.01 1.56

500 0 834 919 915 998 1691 1191 164 178.36 0.71 3.55

32 4.87 834 955 899 1057 2548 2516 223 293.06 -0.46 2.13

56 2.53 889 988 960 1071 2548 2492 183 262.07 -0.14 5.80

489 0 697 790 952 986 4286 3797 289 490.49 2.99 10.54

695 0 1661 1890 1875 2096 2986 2291 435 397.53 -0.17 0.77

490 0 653 839 938 1170 2351 1861 517 353.18 0.91 0.13

489 0 802 902 920 1001 2365 1876 199 194.21 1.85 8.87

486 0 797 907 935 1029 4368 3882 232 240.52 2.86 21.29

230 1.74 582 739 770 949 1648 1418 367 265.63 0.46 -0.02

382 0 678 884 878 1056 2252 1870 378 262.97 0.65 1.63

89 13.28 410 611 679 913 1658 1569 503 360.45 0.64 -0.36

355 0 731 988 1019 1241 1859 1504 510 347.32 0.46 -0.62

290 0.09 555 775 763 946 1859 1569 391 242.05 0.35 0.08

593 0 749 981 1024 1228 1736 1143 478 322.59 0.67 -0.50

452 0 757 952 931 1065 1631 1179 308 219.97 0.38 0.32

591 0 718 912 1064 1525 1662 1071 806 413.32 0.38 -1.66

358 0 680 784 814 893 1728 1370 213 223.93 1.15 2.36

88 0.33 805 911 914 1016 1749 1661 211 195.76 0.34 2.38

54 7.65 512 676 707 901 1686 1632 389 301.99 0.38 0.13

563 0 1083 1256 1231 1465 1772 1209 382 318.55 -0.48 -0.49

136 0.10 769 862 862 943 1636 1500 174 152.95 0.60 3.35

570 0 700 840 933 944 1670 1100 244 318.17 1.18 0.29

489 0 818 913 934 1010 1755 1266 192 198.76 1.22 3.02

576 0 723 1199 1104 1380 1637 1061 657 386.95 -0.04 -1.69

402 0 970 1184 1092 1323 1817 1415 353 323.38 -0.73 -0.49

391 0 614 1268 1112 1465 1915 1524 851 423.13 -0.34 -1.44

350 0 821 1034 1166 1534 2119 1769 713 417.50 0.51 -0.92

682 0 873 977 1008 1115 1980 1298 242 196.79 1.75 6.10

485 0 1283 1405 1396 1534 1935 1450 250 211.80 -0.85 2.23

570 0 743 840 845 909 1321 751 166 162.46 0.91 1.32

664 0 1378 1508 1473 1618 2037 1373 240 260.52 -0.93 1.18

201 0.23 849 1003 997 1165 2185 1984 316 273.51 0.15 0.66

14 0.83 857 1062 1028 1209 1970 1956 352 271.67 -0.44 0.93

164 2.52 768 1046 1058 1342 2041 1877 574 401.39 0.03 -0.65

598 0 708 963 1183 1679 2030 1432 971 508.93 0.31 -1.65

346 0 972 1120 1083 1227 2019 1673 255 254.89 -0.22 1.11

577 0 815 914 977 1040 1794 1217 225 265.69 1.31 1.58

420 0 938 1107 1070 1229 1993 1573 295 270.23 0.06 1.31

581 0 685 857 1083 1494 2049 1468 808 523.84 0.93 -0.85

n/a

Zheng et al, 2017

Ding et al, 2020

Gutierrez et al, 2019

Goudot et al, 2017

Woodward et al, 2019

Column_Positive (number of genes with counts > 0)
Reference
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2. The non-representative data sets that are included in model vulnerability experiments: 

 

 

 

 

 

 

 

 

 

 

 

GSM3162632 Tumor Ascites Dendritic cells tumor tissue 1613

GSM3162630 Tonsil Dendritic cells tonsil tissue 2739

GSM3087629 2018/07/25 CD8+ T cells (methanol SSC) TC methanol fixation Dead Cells 4753

GSM3430548 IL-10 producing Foxp3-CD4+ T cells 1247

GSM3430549 IL-10-producing Foxp3-CD4+ T cells 1902

GSM3478792 2019/01/31 nonmalignant P5 CD3+CD5intSSCintCD4+ T cells 4486

GSM3558027 2019/07/25 nonmalignant P5 CD3+CD5intSSCintCD4+ T cells (after therapy) 3725

GSM3258345 HLA-DR+ cells 48

GSM3258347 HLA-DR+ cells (control) 2397

GSM3258346 CD19+ cells 26

GSM3258348 CD19+ cells (control) 1760

GSM3087628 2018/07/25 CD8+ cells TC selected by designed panel Mixed Population 5662

Source Series

2018/10/15

ClassCell TypeDate Strategy Group Cell Number (N)

DC Other Tissue

2018/11/07 TC

GEO

MC

BC

2018/05/30

IL-10 producing Activated Cells

TC functional study

selected by designed panel Mixed Population

Activated Cells

Min % <670 Q1 (25%) Q2/ Median (50%) Mean Q3 (75%) Max Range (R) IQR Standard Deviation (σ) Skewness (Sk) Kurtosis (K)

675 0 2122 3004 3080 3877 11511 10836 1755 1357.05 1.16 3.98

825 0 5323 7081 9119 10309 62353 61528 4987 6397.48 2.90 11.98

835 0 1787 2686 2790 3402 33385 32550 1615 1531.10 4.53 60.15

1424 0 4341 5855 6345 7860 25281 23857 3520 2835.92 1.37 4.02

815 0 2733 3631 3893 4832 16781 15966 2099 1732.94 1.28 4.44

1575 0 4017 4969 5158 5910 27095 25520 1893 2100.48 2.30 12.08

1058 0 3872 4615 4797 5413 29910 28852 1541 1663.79 3.02 27.48

421 2.08 3795 6270 7039 9530 18584 18163 5735 4119.06 0.80 0.26

1058 0 2240 3316 3771 4724 21431 20373 2484 2190.60 2.02 7.21

22 7.69 2673 4288 4320 5797 8445 8423 3124 2250.02 -0.23 -0.61

1951 0 2972 4067 5252 5679 50189 48238 2707 4212.31 3.97 22.74

980 0 2924 3455 3681 4145 57391 56411 1221 1533.98 9.14 273.39

Column_Sum (total number of counts in each cell)

Min %<300 Q1 (25%) Q2/ Median (50%) Mean Q3 (75%) Max Range (R) IQR Standard Deviation (σ) Skewness (Sk) Kurtosis (K)

218 0.81 797 965 959 1110 2695 2477 313 292.71 0.90 4.43

401 0 1526 1848 2089 2397 6354 5953 872 829.60 1.55 2.61

309 0 612 815 814 959 4369 4060 347 284.57 1.89 12.34 Chen et al, 2018

479 0 1589 2031 2047 2511 4638 4159 922 671.89 0.30 0.15

311 0 875 1162 1203 1458 3705 3394 583 467.31 0.83 1.63

94 0.02 1246 1458 1500 1690 5147 5053 444 471.00 1.37 5.01

60 0.08 1117 1268 1310 1467 4859 4799 350 336.16 1.76 10.53

233 2.08 1181 1474 1477 1839 2751 2518 658 522.09 -0.16 0.02

38 1.75 903 1205 1239 1541 3911 3873 638 481.48 0.61 1.41

20 30.77 236 747 751 1199 1546 1526 963 494.13 -0.07 -1.48

78 1.25 974 1228 1402 1583 5285 5207 609 665.77 2.04 5.98

336 0 869 963 998 1075 5717 5381 206 258.82 2.92 28.55 Chen et al, 2018

Tang-Huau et al, 2018

Brockmann et al, 2018

Borcherding et al, 2019

Ranu et al, 2019

Column_Positive (number of genes with counts > 0)
Reference
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❖ Supplemental Table 3. The assessment of classification performance for incremental 

learning by cycles and steps. 

 

  

 

  

 

LEGEND

2-fold cross-validation

New set classification

Test Result (BroadS1)

Final Result - BroadS1

Final Result - BroadS2

Nan - not analyzed

Data Sets TP TN FP FN # of Cells ACC SE SP PR RE F1 ACC

B cells BC01 10078 75330 8 7 85423 0.99982 0.99931 0.99989 0.99921 0.99931 0.99926

Monocytes MC01 2582 82780 31 30 85423 0.99929 0.98851 0.99963 0.98814 0.98851 0.98832

NK cells NK01 8358 77016 22 27 85423 0.99943 0.99678 0.99971 0.99737 0.99678 0.99707

T cells TC01-TC06 64290 21028 54 51 85423 0.99877 0.99921 0.99744 0.99916 0.99921 0.99918

Step 2 added-predict Monocytes MC02 374 0 0 51 425 0.88000 0.88000 NA 1.00000 0.88000 0.93617

Step 3 added-predict Monocytes MC03 328 0 0 103 431 0.76102 0.76102 NA 1.00000 0.76102 0.86429

B cells BC02 1378 11523 0 282 13183 0.97861 0.83012 1.00000 1.00000 0.83012 0.90718

Monocytes MC04 1483 11403 119 178 13183 0.97747 0.89284 0.98967 0.92572 0.89284 0.90898

Dendritic cells DC01 0 0 0 142 13183 0.00000 0.00000 NA NA 0.00000 0.00000

NK cells NK03 1377 9546 2243 17 13183 0.82857 0.98780 0.80974 0.38039 0.98780 0.54926

T cells TC15 6554 4828 29 1772 13183 0.86338 0.78717 0.99403 0.99559 0.78717 0.87920

B cells BC01 10074 76187 7 11 86279 0.99979 0.99891 0.99991 0.99931 0.99891 0.99911

Monocytes MC01-MC03 3436 82770 41 32 86279 0.99915 0.99077 0.99950 0.98821 0.99077 0.98949

NK cells NK01 8341 77881 13 44 86279 0.99934 0.99475 0.99983 0.99844 0.99475 0.99659

T cells TC01-TC06 64292 21863 75 49 86279 0.99856 0.99924 0.99658 0.99883 0.99924 0.99903

Step 6 added-predict NK cells NK02 309 0 0 0 309 1.00000 1.00000 NA 1.00000 1.00000 1.00000

Step 7 added-predict T cells TC07 56 0 0 166 222 0.25225 0.25225 NA 1.00000 0.25225 0.40287

Step 8 added-predict T cells TC08 97 0 0 213 310 0.31290 0.31290 NA 1.00000 0.31290 0.47665

Step 9 added-predict T cells TC09 6 0 0 319 325 0.01846 0.01846 NA 1.00000 0.01846 0.03625

Step 10 added-predict T cells TC10 7 0 0 375 382 0.01832 0.01832 NA 1.00000 0.01832 0.03598

Step 11 added-predict T cells TC11 10 0 0 274 284 0.03521 0.03521 NA 1.00000 0.03521 0.06802

Step 12 added-predict T cells TC12 9 0 0 195 204 0.04412 0.04412 NA 1.00000 0.04412 0.08451

B cells BC02 1159 11523 0 501 13183 0.96200 0.69819 1.00000 1.00000 0.69819 0.82228

Monocytes MC04 1661 10912 610 0 13183 0.95373 1.00000 0.94706 0.73140 1.00000 0.84487

Dendritic cells DC01 0 0 0 142 13183 0.00000 0.00000 NA NA 0.00000 0.00000

NK cells NK03 1371 9572 2217 23 13183 0.83008 0.98350 0.81194 0.38211 0.98350 0.55038

T cells TC15 6122 4814 43 2204 13183 0.82955 0.73529 0.99115 0.99303 0.73529 0.84494

B cells BC01 10080 78219 11 5 88315 0.99982 0.99950 0.99986 0.99891 0.99950 0.99920

Monocytes MC01-MC03 3406 84825 22 62 88315 0.99905 0.98212 0.99974 0.99358 0.98212 0.98782

NK cells NK01-NK02 8634 79594 27 60 88315 0.99901 0.99310 0.99966 0.99688 0.99310 0.99499

T cells TC01-TC12 66025 22137 110 43 88315 0.99827 0.99935 0.99506 0.99834 0.99935 0.99884

Step 15 added-predict T cells TC13 956 0 0 9 965 0.99067 0.99067 NA 1.00000 0.99067 0.99531

Step 16 added-predict T cells TC14 432 0 0 3 435 0.99310 0.99310 NA 1.00000 0.99310 0.99654

B cells BC02 1431 11523 0 229 13183 0.98263 0.86205 1.00000 1.00000 0.86205 0.92591

Monocytes MC04 1624 11361 161 37 13183 0.98498 0.97772 0.98603 0.90980 0.97772 0.94254

Dendritic cells DC01 0 0 0 142 13183 0.00000 0.00000 NA NA 0.00000 0.00000

NK cells NK03 931 11616 173 463 13183 0.95176 0.66786 0.98533 0.84330 0.66786 0.74540

T cells TC15 8171 4165 692 155 13183 0.93575 0.98138 0.85753 0.92192 0.98138 0.95072

B cells BC01 10081 79615 15 4 89715 0.99979 0.99960 0.99981 0.99851 0.99960 0.99905

Monocytes MC01-MC03 3411 86226 21 57 89715 0.99913 0.98356 0.99976 0.99388 0.98356 0.98869

NK cells NK01-NK02 8642 80991 30 52 89715 0.99909 0.99402 0.99963 0.99654 0.99402 0.99528

T cells TC01-TC14 67419 22151 96 49 89715 0.99838 0.99927 0.99568 0.99858 0.99927 0.99892

Step 19 added-predict B cells BC03 240 0 0 48 288 0.83333 0.83333 NA 1.00000 0.83333 0.90909

Step 20 added-predict T cells TC16 539 0 0 11 550 0.98000 0.98000 NA 1.00000 0.98000 0.98990

Step 21 added-predict Monocytes MC05 640 0 0 0 640 1.00000 1.00000 NA 1.00000 1.00000 1.00000

Step 22 added-predict Monocytes MC06 102 0 0 0 102 1.00000 1.00000 NA 1.00000 1.00000 1.00000

Step 23 added-predict T cells TC17 1108 0 0 66 1174 0.94378 0.94378 NA 1.00000 0.94378 0.97108

Step 24 added-predict Dendritic cells DC02 0 0 0 55 55 0.00000 0.00000 NA 0.00000 0.00000 0.00000

Step 25 added-predict NK cells NK04 128 0 0 38 166 0.77108 0.77108 NA 1.00000 0.77108 0.87075

Step 26 added-predict pDC DC03 0 0 0 26 26 0.00000 0.00000 NA 0.00000 0.00000 0.00000

B cells BC02 1444 11523 0 216 13183 0.98362 0.86988 1.00000 1.00000 0.86988 0.93041

Monocytes MC04 1652 11344 178 9 13183 0.98582 0.99458 0.98455 0.90273 0.99458 0.94643

Dendritic cells DC01 0 0 0 142 13183 0.00000 0.00000 NA NA 0.00000 0.00000

NK cells NK03 1058 11529 260 336 13183 0.95479 0.75897 0.97795 0.80273 0.75897 0.78024

T cells TC15 8100 4366 491 226 13183 0.94561 0.97286 0.89891 0.94285 0.97286 0.95762

0.99865

0.82009

0.81863

0.99842

0.24263

0.99808

0.78230

0.99143

0.92217

0.99819

0.91869

0.92953

Cycle 0

2-fold cross validationStep 1

Step 4 BroadS1-test

Cycle 2

2-fold cross validationStep 5

Cycle 1

Step 13 BroadS1-test

Step 14 2-fold cross validation

Step 17 BroadS1-test

Cycle 3

Step 18 2-fold cross validation

Step 27 BroadS1-test
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B cells BC01, BC03 10364 82308 35 9 92716 0.99953 0.99913 0.99957 0.99663 0.99913 0.99788

Monocytes MC01-MC03, MC05-MC06 4150 88435 71 60 92716 0.99859 0.98575 0.99920 0.98318 0.98575 0.98446

Dendritic cells DC02-DC03 0 92635 0 81 92716 0.99913 0.00000 1.00000 NA 0.00000 0.00000

NK cells NK01-NK02, NK04 8724 83795 61 136 92716 0.99788 0.98465 0.99927 0.99306 0.98465 0.98884

T cells TC01-TC14, TC16-TC17 69118 23331 193 74 92716 0.99712 0.99893 0.99180 0.99722 0.99893 0.99807

Step 29 added-predict B cells BC04 377 0 0 11 388 0.97165 0.97165 NA 1.00000 0.97165 0.98562

Step 30 added-predict T cells TC18 903 0 0 5 908 0.99449 0.99449 NA 1.00000 0.99449 0.99724

Step 31 added-predict Monocytes MC07 378 0 0 1 379 0.99736 0.99736 NA 1.00000 0.99736 0.99868

Step 32 added-predict Monocytes MC08 73 0 0 0 73 1.00000 1.00000 NA 1.00000 1.00000 1.00000

Step 33 added-predict T cells TC19 942 0 0 12 954 0.98742 0.98742 NA 1.00000 0.98742 0.99367

Step 34 added-predict Dendritic cells DC04 24 0 0 9 33 0.72727 0.72727 NA 1.00000 0.72727 0.84210

Step 35 added-predict NK cells NK05 113 0 0 150 263 0.42966 0.42966 NA 1.00000 0.42966 0.60107

Step 36 added-predict pDC DC05 11 0 0 1 12 0.91667 0.91667 NA 1.00000 0.91667 0.95652

B cells BC02 1501 11521 2 159 13183 0.98779 0.90422 0.99983 0.99867 0.90422 0.94910

Monocytes MC04 1637 11389 133 24 13183 0.98809 0.98555 0.98846 0.92486 0.98555 0.95424

Dendritic cells DC01 90 13022 19 52 13183 0.99461 0.63380 0.99854 0.82569 0.63380 0.71713

NK cells NK03 853 11659 130 541 13183 0.94910 0.61191 0.98897 0.86775 0.61191 0.71771

T cells TC15 8195 4234 623 131 13183 0.94281 0.98427 0.87173 0.92935 0.98427 0.95602

B cells BC01, BC03-BC04 10744 84952 13 17 95726 0.99969 0.99842 0.99985 0.99879 0.99842 0.99860

Monocytes MC01-MC03, MC05-MC08 4607 90982 82 55 95726 0.99857 0.98820 0.99910 0.98251 0.98820 0.98535

Dendritic cells DC02-DC05 70 95598 2 56 95726 0.99939 0.55556 0.99998 0.97222 0.55556 0.70707

NK cells NK01-NK02, NK04-NK05 8908 86534 69 215 95726 0.99703 0.97643 0.99920 0.99231 0.97643 0.98431

T cells TC01-TC14, TC16-TC19 70957 24398 274 97 95726 0.99612 0.99863 0.98889 0.99615 0.99863 0.99739

Step 39 added-predict B cells BC05 344 0 0 2 346 0.99422 0.99422 NA 1.00000 0.99422 0.99710

Step 40 added-predict T cells TC20 946 0 0 14 960 0.98542 0.98542 NA 1.00000 0.98542 0.99266

Step 41 added-predict Monocytes MC09 353 0 0 1 354 0.99718 0.99718 NA 1.00000 0.99718 0.99859

Step 42 added-predict Monocytes MC10 98 0 0 0 98 1.00000 1.00000 NA 1.00000 1.00000 1.00000

Step 43 added-predict T cells TC21 938 0 0 24 962 0.97505 0.97505 NA 1.00000 0.97505 0.98737

Step 44 added-predict Dendritic cells DC06 30 0 0 8 38 0.78947 0.78947 NA 1.00000 0.78947 0.88235

Step 45 added-predict NK cells NK06 152 0 0 42 194 0.78351 0.78351 NA 1.00000 0.78351 0.87862

B cells BC02 1526 11517 6 134 13183 0.98938 0.91928 0.99948 0.99608 0.91928 0.95614

Monocytes MC04 1610 11457 65 51 13183 0.99120 0.96930 0.99436 0.96119 0.96930 0.96523

Dendritic cells DC01 6 13032 9 136 13183 0.98900 0.04225 0.99931 0.40000 0.04225 0.07643

NK cells NK03 1083 11436 353 311 13183 0.94963 0.77690 0.97006 0.75418 0.77690 0.76537

T cells TC15 8107 4439 418 219 13183 0.95168 0.97370 0.91394 0.95097 0.97370 0.96220

B cells BC01, BC03-BC05 11090 87551 20 17 98678 0.99963 0.99847 0.99977 0.99820 0.99847 0.99833

Monocytes MC01-MC03, MC05-MC10 5060 93470 94 54 98678 0.99850 0.98944 0.99900 0.98176 0.98944 0.98559

Dendritic cells DC02-DC06 65 98512 2 99 98678 0.99898 0.39634 0.99998 0.97015 0.39634 0.56277

NK cells NK01-NK02, NK04-NK06 9066 89237 124 251 98678 0.99620 0.97306 0.99861 0.98651 0.97306 0.97974

T cells TC01-TC14, TC16-TC21 72839 25384 318 137 98678 0.99539 0.99812 0.98763 0.99565 0.99812 0.99688

Step 48 added-predict B cells BC06 854 0 0 8 862 0.99072 0.99072 NA 1.00000 0.99072 0.99534

Step 49 added-predict T cells TC22 951 0 0 11 962 0.98857 0.98857 NA 1.00000 0.98857 0.99425

Step 50 added-predict Monocytes MC11 435 0 0 1 436 0.99771 0.99771 NA 1.00000 0.99771 0.99885

Step 51 added-predict Monocytes MC12 50 0 0 0 50 1.00000 1.00000 NA 1.00000 1.00000 1.00000

Step 52 added-predict T cells TC23 654 0 0 40 694 0.94236 0.94236 NA 1.00000 0.94236 0.97032

Step 53 added-predict Dendritic cells DC07 62 0 0 14 76 0.81579 0.81579 NA 1.00000 0.81579 0.89855

Step 54 added-predict NK cells NK07 203 0 0 16 219 0.92694 0.92694 NA 1.00000 0.92694 0.96208

Step 55 added-predict pDC DC08 26 0 0 4 30 0.86667 0.86667 NA 1.00000 0.86667 0.92857

B cells BC02 1530 11523 0 130 13183 0.99014 0.92169 1.00000 1.00000 0.92169 0.95925

Monocytes MC04 1635 11430 92 26 13183 0.99105 0.98435 0.99202 0.94673 0.98435 0.96517

Dendritic cells DC01 80 13025 16 62 13183 0.99408 0.56338 0.99877 0.83333 0.56338 0.67227

NK cells NK03 1158 11397 392 236 13183 0.95236 0.83070 0.96675 0.74710 0.83070 0.78669

T cells TC15 7963 4540 317 363 13183 0.94842 0.95640 0.93473 0.96171 0.95640 0.95905

B cells BC01, BC03-BC06 11949 90001 37 20 102007 0.99944 0.99833 0.99959 0.99691 0.99833 0.99762

Monocytes MC01-MC03, MC05-MC12 5533 96284 123 67 102007 0.99814 0.98804 0.99872 0.97825 0.98804 0.98312

Dendritic cells DC02-DC08 93 101736 1 177 102007 0.99826 0.34444 0.99999 0.98936 0.34444 0.51098

NK cells NK01-NK02, NK04-NK07 9245 92308 163 291 102007 0.99555 0.96948 0.99824 0.98267 0.96948 0.97603

T cells TC01-TC14, TC16-TC23 74450 26962 413 182 102007 0.99417 0.99756 0.98491 0.99448 0.99756 0.99602

… … … … (future data) … … … … … … … … … … … … … … … … … … … … … … … … … … … …

B cells BC02 1544 11520 3 116 13183 0.99097 0.93012 0.99974 0.99806 0.93012 0.96289

Monocytes MC04 1615 11511 11 46 13183 0.99568 0.97231 0.99905 0.99323 0.97231 0.98266

Dendritic cells DC01 136 13010 31 6 13183 0.99719 0.95775 0.99762 0.81437 0.95775 0.88026

NK cells NK03 1072 11511 278 322 13183 0.95449 0.76901 0.97642 0.79407 0.76901 0.78134

T cells TC15 8106 4470 387 220 13183 0.95396 0.97358 0.92032 0.95443 0.97358 0.96391

B cells BC01-BC02 11713 91103 50 32 102898 0.99920 0.99728 0.99945 0.99575 0.99728 0.99651

Monocytes MC01-MC04 5041 97707 88 62 102898 0.99854 0.98785 0.99910 0.98284 0.98785 0.98534

Dendritic cells DC01 71 102756 71 0 102898 0.99931 1.00000 0.99931 0.50000 1.00000 0.66667

NK cells NK01-NK03 9801 92432 287 378 102898 0.99354 0.96286 0.99690 0.97155 0.96286 0.96719

T cells TC01-TC15 75420 26742 374 362 102898 0.99285 0.99522 0.98621 0.99507 0.99522 0.99514

B cells BC03-BC06 1875 10269 139 9 12292 0.98796 0.99522 0.98664 0.93098 0.99522 0.96203

Monocytes MC05-MC12 2123 9985 175 9 12292 0.98503 0.99578 0.98278 0.92385 0.99578 0.95847

Dendritic cells DC02-DC08 0 12021 1 270 12292 0.97795 0.00000 0.99992 0.00000 0.00000 0.00000

NK cells NK04-NK07 780 10826 624 62 12292 0.94419 0.92637 0.94550 0.55556 0.92637 0.69457

T cells TC16-TC23 6498 5051 77 666 12292 0.93955 0.90704 0.98498 0.98829 0.90704 0.94592

TP TN FP FN # of Cells ACC SE SP PR RE F1

0.99612

0.91734

0.93721

0.93120

0.99540

0.96917

0.93545

0.99435

0.97176

0.93803

0.99278

0.94614

0.99189

Step 28 2-fold cross validation

Step 37 BroadS1-test

Step 60Swapping BroadS2-test

Cycle 6

Step 47 2-fold cross validation

Step 56 BroadS1-test

Cycle 7

Step 58 BroadS1-test

2-fold cross validation, 

(10x+GEO+BroadS2)
Step 57

Swapping Step 59
2-fold cross validation, 

(10x+GEO+BroadS1)

Cycle 5

Step 38 2-fold cross validation

Step 46 BroadS1-test

Cycle 4



Page | 192  

 

❖ Supplemental Table 4. Confusion matrices for incremental learning by cycles and 

steps. 

 

 

 

 

 

LEGEND

2-fold cross-validation

New set classification

Test Result (BroadS1)

Final Result - BroadS1

Final Result - BroadS2

Nan - not analyzed

CYCLES STEPS TRAINING SETS TESTING SETS

Cycle 0

Step 1 10x dataset 10x dataset Accuracy: 0.9987 2-fold cross-validation

Precision: 0.9998 0.9837 0.9968 0.9994

Recall/Sensitivity: 0.9990 0.9922 0.9973 0.9991

Specificity: 1.0000 0.9995 0.9997 0.9981

F1_Score: 0.9994 0.9880 0.9971 0.9992

B_cells Monocytes NK_cells T_cells All-true

B_cells 4979 3 0 2 4984

Monocytes 0 1271 1 9 1281

NK_cells 0 2 4101 9 4112

T_cells 1 16 12 32306 32335

All-predicted 4980 1292 4114 32326 42712

Accuracy: 0.9986

Precision: 0.9986 0.9924 0.9979 0.9989

Recall/Sensitivity: 0.9996 0.9850 0.9963 0.9993

Specificity: 0.9998 0.9998 0.9998 0.9968

F1_Score: 0.9991 0.9887 0.9971 0.9991

B_cells Monocytes NK_cells T_cells All-true

B_cells 5099 0 0 2 5101

Monocytes 3 1311 0 17 1331

NK_cells 0 1 4257 15 4273

T_cells 4 9 9 31984 32006

All-predicted 5106 1321 4266 32018 42711

Accuracy: 0.9987

Precision: 0.9992 0.9881 0.9974 0.9992

Recall/Sensitivity: 0.9993 0.9886 0.9968 0.9992

Specificity: 0.9999 0.9996 0.9997 0.9974

F1_Score: 0.9993 0.9883 0.9971 0.9992

B_cells Monocytes NK_cells T_cells All-true

B_cells 10078 3 0 4 10085

Monocytes 3 2582 1 26 2612

NK_cells 0 3 8358 24 8385

T_cells 5 25 21 64290 64341

All-predicted 10086 2613 8380 64344 85423

Step 2 10x dataset GEO_1a Accuracy: 0.8800 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.8800 0.0000

Specificity: Nan 0.8800

F1_Score: 0.9362 0.0000

Monocytes NK_cells All-true

Monocytes 374 51 425

All-predicted 374 51 425

Step 3 10x dataset GEO_1b Accuracy: 0.7610 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.7610 0.0000

Specificity: Nan 0.7610

F1_Score: 0.8643 0.0000

Monocytes NK_cells All-true

Monocytes 328 103 431

All-predicted 328 103 431

Step 4 10x dataset BroadS1 (test) Accuracy: 0.8186 Test Result (BroadS1)

Precision: 1.0000 0.0000 0.9257 0.3804 0.9956

Recall/Sensitivity: 0.8301 0.0000 0.8928 0.9878 0.7872

Specificity: 1.0000 1.0000 0.9897 0.8097 0.9940

F1_Score: 0.9072 0.0000 0.9090 0.5493 0.8792

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1378 0 8 262 12 1660

Dendritic_cells 0 0 111 31 0 142

Monocytes 0 0 1483 178 0 1661

NK_cells 0 0 0 1377 17 1394

T_cells 0 0 0 1772 6554 8326

All-predicted 1378 0 1602 3620 6583 13183
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Cycle 1

Step 5 10x+GEO_1 10x+GEO_1 Accuracy: 0.9986 2-fold cross-validation

Precision: 0.9998 0.9898 0.9974 0.9990

Recall/Sensitivity: 0.9986 0.9922 0.9957 0.9993

Specificity: 1.0000 0.9996 0.9997 0.9970

F1_Score: 0.9992 0.9910 0.9965 0.9991

B_cells Monocytes NK_cells T_cells All-true

B_cells 4981 1 1 5 4988

Monocytes 0 1654 1 12 1667

NK_cells 0 3 4145 15 4163

T_cells 1 13 9 32299 32322

All-predicted 4982 1671 4156 32331 43140

Accuracy: 0.9983

Precision: 0.9988 0.9867 0.9995 0.9987

Recall/Sensitivity: 0.9992 0.9895 0.9938 0.9992

Specificity: 0.9998 0.9994 0.9999 0.9961

F1_Score: 0.9990 0.9881 0.9967 0.9989

Predicted B_cells Monocytes NK_cells T_cells All-true

B_cells 5093 1 0 3 5097

Monocytes 3 1782 1 15 1801

NK_cells 0 1 4196 25 4222

T_cells 3 22 1 31993 32019

All-predicted 5099 1806 4198 32036 43139

Accuracy: 0.9984

Precision: 0.9993 0.9883 0.9984 0.9988

Recall/Sensitivity: 0.9989 0.9908 0.9948 0.9992

Specificity: 0.9999 0.9995 0.9998 0.9966

F1_Score: 0.9991 0.9895 0.9966 0.9990

Predicted B_cells Monocytes NK_cells T_cells All-true

B_cells 10074 2 1 8 10085

Monocytes 3 3436 2 27 3468

NK_cells 0 4 8341 40 8385

T_cells 4 35 10 64292 64341

All-predicted 10081 3477 8354 64367 86279

Step 6 10x+GEO_1 GEO_2a Accuracy: 1.0000 New set classification

Precision: 1.0000

Recall/Sensitivity: 1.0000

Specificity: Nan

F1_Score: 1.0000

NK_cells All-true

NK_cells 309 309

All-predicted 309 309

Step 7 10x+GEO_1 GEO_2b Accuracy: 0.2523 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.2523

Specificity: 0.3514 0.9009 Nan

F1_Score: 0.0000 0.0000 0.4029

Monocytes NK_cells T_cells All-true

T_cells 144 22 56 222

All-predicted 144 22 56 222

Step 8 10x+GEO_1 GEO_2c Accuracy: 0.3129 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.3129

Specificity: 0.5355 0.7774 Nan

F1_Score: 0.0000 0.0000 0.4767

Monocytes NK_cells T_cells All-true

T_cells 144 69 97 310

All-predicted 144 69 97 310

Step 9 10x+GEO_1 GEO_2d Accuracy: 0.0185 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.0185

Specificity: 0.7169 0.3015 Nan

F1_Score: 0.0000 0.0000 0.0363

Monocytes NK_cells T_cells All-true

T_cells 92 227 6 325

All-predicted 92 227 6 325

Step 10 10x+GEO_1 GEO_2e Accuracy: 0.0183 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.0183

Specificity: 0.5733 0.4450 Nan

F1_Score: 0.0000 0.0000 0.0360

Monocytes NK_cells T_cells All-true

T_cells 163 212 7 382

All-predicted 163 212 7 382

Step 11 10x+GEO_1 GEO_2f Accuracy: 0.0352 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.0352

Specificity: 0.8697 0.1655 Nan

F1_Score: 0.0000 0.0000 0.0680

Monocytes NK_cells T_cells All-true

T_cells 37 237 10 284

All-predicted 37 237 10 284

Step 12 10x+GEO_1 GEO_2g Accuracy: 0.0441 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.0441

Specificity: 0.8186 0.2255 Nan

F1_Score: 0.0000 0.0000 0.0845

Monocytes NK_cells T_cells All-true

T_cells 37 158 9 204

All-predicted 37 158 9 204
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Step 13 10x+GEO_1 BroadS1 (test) Accuracy: 0.7823 Test Result (BroadS1)

Precision: 1.0000 0.0000 0.7314 0.3821 0.9930

Recall/Sensitivity: 0.6982 0.0000 1.0000 0.9835 0.7353

Specificity: 1.0000 1.0000 0.9471 0.8119 0.9911

F1_Score: 0.8223 0.0000 0.8449 0.5504 0.8449

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1159 0 52 422 27 1660

Dendritic_cells 0 0 142 0 0 142

Monocytes 0 0 1661 0 0 1661

NK_cells 0 0 7 1371 16 1394

T_cells 0 0 409 1795 6122 8326

All-predicted 1159 0 2271 3588 6165 13183

Cycle 2

Step 14 10x+GEO_1+2 10x+GEO_1+2 Accuracy: 0.9982 2-fold cross-validation

Precision: 0.9988 0.9928 0.9977 0.9984

Recall/Sensitivity: 0.9992 0.9828 0.9933 0.9994

Specificity: 0.9998 0.9997 0.9997 0.9952

F1_Score: 0.9990 0.9878 0.9955 0.9989

B_cells Monocytes NK_cells T_cells All-true

B_cells 4967 1 0 3 4971

Monocytes 2 1653 2 25 1682

NK_cells 1 3 4286 25 4315

T_cells 3 8 8 33171 33190

All-predicted 4973 1665 4296 33224 44158

Accuracy: 0.9980

Precision: 0.9990 0.9943 0.9961 0.9983

Recall/Sensitivity: 0.9998 0.9815 0.9929 0.9993

Specificity: 0.9999 0.9998 0.9996 0.9949

F1_Score: 0.9994 0.9879 0.9945 0.9988

B_cells Monocytes NK_cells T_cells All-true

B_cells 5113 0 0 1 5114

Monocytes 5 1753 3 25 1786

NK_cells 0 0 4348 31 4379

T_cells 0 10 14 32854 32878

All-predicted 5118 1763 4365 32911 44157

Accuracy: 0.9981

Precision: 0.9989 0.9936 0.9969 0.9983

Recall/Sensitivity: 0.9995 0.9821 0.9931 0.9993

Specificity: 0.9999 0.9997 0.9997 0.9951

F1_Score: 0.9992 0.9878 0.9950 0.9988

B_cells Monocytes NK_cells T_cells All-true

B_cells 10080 1 0 4 10085

Monocytes 7 3406 5 50 3468

NK_cells 1 3 8634 56 8694

T_cells 3 18 22 66025 66068

All-predicted 10091 3428 8661 66135 88315

Step 15 10x+GEO_1+2 GEO_3a Accuracy: 0.9907 New set classification

Precision: 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.9907

Specificity: 0.9907 Nan

F1_Score: 0.0000 0.9953

NK_cells T_cells All-true

T_cells 9 956 965

All-predicted 9 956 965

Step 16 10x+GEO_1+2 GEO_3b Accuracy: 0.9931 New set classification

Precision: 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.9931

Specificity: 0.9931 Nan

F1_Score: 0.0000 0.9965

NK_cells T_cells All-true

T_cells 3 432 435

All-predicted 3 432 435

Step 17 10x+GEO_1+2 BroadS1 (test) Accuracy: 0.9222 Test Result (BroadS1)

Precision: 1.0000 0.0000 0.9098 0.8433 0.9219

Recall/Sensitivity: 0.8620 0.0000 0.9777 0.6679 0.9814

Specificity: 1.0000 1.0000 0.9860 0.9853 0.8575

F1_Score: 0.9259 0.0000 0.9425 0.7454 0.9507   

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1431 0 22 17 190 1660

Dendritic_cells 0 0 138 0 4 142

Monocytes 0 0 1624 1 36 1661

NK_cells 0 0 1 931 462 1394

T_cells 0 0 0 155 8171 8326

All-predicted 1431 0 1785 1104 8863 13183
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Cycle 3

Step 18 10x+GEO 10x+GEO Accuracy: 0.9982 2-fold cross-validation

Precision: 0.9990 0.9917 0.9970 0.9985

Recall/Sensitivity: 0.9994 0.9840 0.9938 0.9993

Specificity: 0.9999 0.9997 0.9997 0.9955

F1_Score: 0.9992 0.9878 0.9954 0.9989

B_cells Monocytes NK_cells T_cells All-true

B_cells 4981 1 0 2 4984

Monocytes 1 1663 1 25 1690

NK_cells 1 3 4302 23 4329

T_cells 3 10 12 33830 33855

All-predicted 4986 1677 4315 33880 44858

Accuracy: 0.9982

Precision: 0.9980 0.9960 0.9961 0.9986

Recall/Sensitivity: 0.9998 0.9831 0.9943 0.9993

Specificity: 0.9997 0.9998 0.9996 0.9959

F1_Score: 0.9989 0.9895 0.9952 0.9990

B_cells Monocytes NK_cells T_cells All-true

B_cells 5100 0 0 1 5101

Monocytes 7 1748 3 20 1778

NK_cells 0 0 4340 25 4365

T_cells 3 7 14 33589 33613

All-predicted 5110 1755 4357 33635 44857

Accuracy: 0.9982

Precision: 0.9985 0.9938 0.9965 0.9986

Recall/Sensitivity: 0.9996 0.9836 0.9940 0.9993

Specificity: 0.9998 0.9998 0.9996 0.9957

F1_Score: 0.9991 0.9887 0.9953 0.9989

B_cells Monocytes NK_cells T_cells All-true

B_cells 10081 1 0 3 10085

Monocytes 8 3411 4 45 3468

NK_cells 1 3 8642 48 8694

T_cells 6 17 26 67419 67468

All-predicted 10096 3432 8672 67515 89715

Step 19 10x+GEO BroadS2_1a Accuracy: 0.8333 New set classification

Precision: 1.0000 0.0000 0.0000

Recall/Sensitivity: 0.8333 0.0000 0.0000

Specificity: Nan 0.9722 0.8611

F1_Score: 0.9091 0.0000 0.0000

B_cells Monocytes T_cells All-true

B_cells 240 8 40 288

All-predicted 240 8 40 288

Step 20 10x+GEO BroadS2_1b Accuracy: 0.9800 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.9800

Specificity: 0.9855 0.9945 Nan

F1_Score: 0.0000 0.0000 0.9899

Monocytes NK_cells T_cells All-true

T_cells 8 3 539 550

All-predicted 8 3 539 550

Step 21 10x+GEO BroadS2_1c Accuracy: 1.0000 New set classification

Precision: 1.0000

Recall/Sensitivity: 1.0000

Specificity: Nan

F1_Score: 1.0000

Monocytes All-true

Monocytes 640 640

All-predicted 640 640

Step 22 10x+GEO BroadS2_1d Accuracy: 1.0000 New set classification

Precision: 1.0000

Recall/Sensitivity: 1.0000

Specificity: Nan

F1_Score: 1.0000

Monocytes All-true

Monocytes 102 102

All-predicted 102 102

Step 23 10x+GEO BroadS2_1e Accuracy: 0.9438 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.9438

Specificity: 0.9821 0.9617 Nan

F1_Score: 0.0000 0.0000 0.9711

Monocytes NK_cells T_cells All-true

T_cells 21 45 1108 1174

All-predicted 21 45 1108 1174

Step 24 10x+GEO BroadS2_1f Accuracy: 0.0000 New set classification

Precision: 0.0000 0.0000

Recall/Sensitivity: 0.0000 0.0000

Specificity: Nan 0.0000

F1_Score: 0.0000 0.0000

Dendritic_cells Monocytes All-true

Dendritic_cells 0 55 55

All-predicted 0 55 55

Step 25 10x+GEO BroadS2_1g Accuracy: 0.7711 New set classification

Precision: 0.0000 1.0000 0.0000

Recall/Sensitivity: 0.0000 0.7711 0.0000

Specificity: 0.9699 Nan 0.8012

F1_Score: 0.0000 0.8707 0.0000

Monocytes NK_cells T_cells All-true

NK_cells 5 128 33 166

All-predicted 5 128 33 166



Page | 196  

 

 

Step 26 10x+GEO BroadS2_1h Accuracy: 0.0000 New set classification

Precision: 0.0000 0.0000

Recall/Sensitivity: 0.0000 0.0000

Specificity: Nan 0.0000

F1_Score: 0.0000 0.0000

Dendritic_cells Monocytes All-true

Dendritic_cells 0 26 26

All-predicted 0 26 26

Step 27 10x+GEO BroadS1 (test) Accuracy: 0.9295 Test Result (BroadS1)

Precision: 1.0000 0.0000 0.9027 0.8027 0.9428

Recall/Sensitivity: 0.8699 0.0000 0.9946 0.7590 0.9729

Specificity: 1.0000 1.0000 0.9846 0.9779 0.8989

F1_Score: 0.9304 0.0000 0.9464 0.7802 0.9576

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1444 0 31 37 148 1660

Dendritic_cells 0 0 142 0 0 142

Monocytes 0 0 1652 0 9 1661

NK_cells 0 0 2 1058 334 1394

T_cells 0 0 3 223 8100 8326

All-predicted 1444 0 1830 1318 8591 13183

Cycle 4

Step 28 10x+GEO+BroadS2_1 10x+GEO+BroadS2_1 Accuracy: 0.9964 2-fold cross-validation

Precision: 0.9988 0.0000 0.9842 0.9897 0.9976

Recall/Sensitivity: 0.9984 0.0000 0.9894 0.9876 0.9987

Specificity: 0.9999 1.0000 0.9993 0.9989 0.9929

F1_Score: 0.9986 0.0000 0.9868 0.9886 0.9982

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5101 0 1 4 3 5109

Dendritic_cells 2 0 19 10 6 37

Monocytes 2 0 2053 0 20 2075

NK_cells 0 0 1 4309 53 4363

T_cells 2 0 12 31 34729 34774

All-predicted 5107 0 2086 4354 34811 46358

Accuracy: 0.9958

Precision: 0.9945 0.0000 0.9822 0.9964 0.9968

Recall/Sensitivity: 0.9998 0.0000 0.9822 0.9818 0.9992

Specificity: 0.9993 1.0000 0.9991 0.9996 0.9907

F1_Score: 0.9972 0.0000 0.9822 0.9890 0.9980

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5263 0 0 0 1 5264

Dendritic_cells 11 0 28 1 4 44

Monocytes 10 0 2097 0 28 2135

NK_cells 3 0 1 4415 78 4497

T_cells 5 0 9 15 34389 34418

All-predicted 5292 0 2135 4431 34500 46358

Accuracy: 0.9961

Precision: 0.9967 0.0000 0.9832 0.9930 0.9972

Recall/Sensitivity: 0.9991 0.0000 0.9858 0.9847 0.9989

Specificity: 0.9996 1.0000 0.9992 0.9993 0.9918

F1_Score: 0.9979 0.0000 0.9845 0.9888 0.9981

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 10364 0 1 4 4 10373

Dendritic_cells 13 0 47 11 10 81

Monocytes 12 0 4150 0 48 4210

NK_cells 3 0 2 8724 131 8860

T_cells 7 0 21 46 69118 69192

All-predicted 10399 0 4221 8785 69311 92716

Step 29 10x+GEO+BroadS2_1 BroadS2_2a Accuracy: 0.9716 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.9716 0.0000

Specificity: Nan 0.9716

F1_Score: 0.9856 0.0000

B_cells T_cells All-true

B_cells 377 11 388

All-predicted 377 11 388

Step 30 10x+GEO+BroadS2_1 BroadS2_2b Accuracy: 0.9945 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.9945

Specificity: 0.9956 0.9989 Nan

F1_Score: 0.0000 0.0000 0.9972

Monocytes NK_cells T_cells All-true

T_cells 4 1 903 908

All-predicted 4 1 903 908

Step 31 10x+GEO+BroadS2_1 BroadS2_2c Accuracy: 0.9974 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.9974 0.0000

Specificity: Nan 0.9974

F1_Score: 0.9987 0.0000

Monocytes T_cells All-true

Monocytes 378 1 379

All-predicted 378 1 379

Step 32 10x+GEO+BroadS2_1 BroadS2_2d Accuracy: 1.0000 New set classification

Precision: 1.0000

Recall/Sensitivity: 1.0000

Specificity: Nan

F1_Score: 1.0000

Monocytes All-true

Monocytes 73 73

All-predicted 73 73
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Step 33 10x+GEO+BroadS2_1 BroadS2_2e Accuracy: 0.9874 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.9874

Specificity: 0.9979 0.9895 Nan

F1_Score: 0.0000 0.0000 0.9937

Monocytes NK_cells T_cells All-true

T_cells 2 10 942 954

All-predicted 2 10 942 954

Step 34 10x+GEO+BroadS2_1 BroadS2_2f Accuracy: 0.7273 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.7273 0.0000

Specificity: Nan 0.7273

F1_Score: 0.8421 0.0000

Dendritic_cells Monocytes All-true

Dendritic_cells 24 9 33

All-predicted 24 9 33

Step 35 10x+GEO+BroadS2_1 BroadS2_2g Accuracy: 0.4297 New set classification

Precision: 0.0000 1.0000 0.0000

Recall/Sensitivity: 0.0000 0.4297 0.0000

Specificity: 0.9962 Nan 0.4335

F1_Score: 0.0000 0.6011 0.0000

Dendritic_cells NK_cells T_cells All-true

NK_cells 1 113 149 263

All-predicted 1 113 149 263

Step 36 10x+GEO+BroadS2_1 BroadS2_2h Accuracy: 0.9167 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.9167 0.0000

Specificity: Nan 0.9167

F1_Score: 0.9565 0.0000

Dendritic_cells T_cells All-true

Dendritic_cells 11 1 12

All-predicted 11 1 12

Step 37 10x+GEO+BroadS2_1 BroadS1 (test) Accuracy: 0.9312 Test Result (BroadS1)

Precision: 0.9987 0.8257 0.9249 0.8678 0.9293

Recall/Sensitivity: 0.9042 0.6338 0.9856 0.6119 0.9843

Specificity: 0.9998 0.9985 0.9885 0.9890 0.8717

F1_Score: 0.9491 0.7171 0.9542 0.7177 0.9560

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1501 15 82 0 62 1660

Dendritic_cells 0 90 49 0 3 142

Monocytes 0 4 1637 0 20 1661

NK_cells 2 0 1 853 538 1394

T_cells 0 0 1 130 8195 8326

All-predicted 1503 109 1770 983 8818 13183

Cycle 5

Step 38 10x+GEO+BroadS2_1+2 10x+GEO+BroadS2_1+2 Accuracy: 0.9956 2-fold cross-validation

Precision: 0.9992 0.9744 0.9852 0.9932 0.9960

Recall/Sensitivity: 0.9981 0.6230 0.9882 0.9751 0.9989

Specificity: 0.9999 1.0000 0.9993 0.9993 0.9883

F1_Score: 0.9987 0.7600 0.9867 0.9841 0.9974

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5318 0 1 1 8 5328

Dendritic_cells 0 38 22 0 1 61

Monocytes 2 0 2257 1 24 2284

NK_cells 1 1 0 4392 110 4504

T_cells 1 0 11 28 35646 35686

All-predicted 5322 39 2291 4422 35789 47863

Accuracy: 0.9952

Precision: 0.9983 0.9697 0.9800 0.9914 0.9963

Recall/Sensitivity: 0.9987 0.4923 0.9882 0.9777 0.9984

Specificity: 0.9998 1.0000 0.9989 0.9991 0.9895

F1_Score: 0.9985 0.6531 0.9841 0.9845 0.9973

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5426 0 1 0 6 5433

Dendritic_cells 2 32 29 0 2 65

Monocytes 3 1 2350 0 24 2378

NK_cells 1 0 3 4516 99 4619

T_cells 3 0 15 39 35311 35368

All-predicted 5435 33 2398 4555 35442 47863

Accuracy: 0.9954

Precision: 0.9988 0.9720 0.9826 0.9923 0.9962

Recall/Sensitivity: 0.9984 0.5576 0.9882 0.9764 0.9986

Specificity: 0.9998 1.0000 0.9991 0.9992 0.9889

F1_Score: 0.9986 0.7065 0.9854 0.9843 0.9974

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 10744 0 2 1 14 10761

Dendritic_cells 2 70 51 0 3 126

Monocytes 5 1 4607 1 48 4662

NK_cells 2 1 3 8908 209 9123

T_cells 4 0 26 67 70957 71054

All-predicted 10757 72 4689 8977 71231 95726
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Step 39 10x+GEO+BroadS2_1+2 BroadS2_3a Accuracy: 0.9942 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.9942 0.0000

Specificity: Nan 0.9942

F1_Score: 0.9971 0.0000

B_cells T_cells All-true

B_cells 344 2 346

All-predicted 344 2 346

Step 40 10x+GEO+BroadS2_1+2 BroadS2_3b Accuracy: 0.9854 New set classification

Precision: 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.9854

Specificity: 0.9854 Nan

F1_Score: 0.0000 0.9927

NK_cells T_cells All-true

T_cells 14 946 960

All-predicted 14 946 960

Step 41 10x+GEO+BroadS2_1+2 BroadS2_3c Accuracy: 0.9972 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.9972 0.0000

Specificity: Nan 0.9972

F1_Score: 0.9986 0.0000

Monocytes T_cells All-true

Monocytes 353 1 354

All-predicted 353 1 354

Step 42 10x+GEO+BroadS2_1+2 BroadS2_3d Accuracy: 1.0000 New set classification

Precision: 1.0000

Recall/Sensitivity: 1.0000

Specificity: Nan

F1_Score: 1.0000

Monocytes All-true

Monocytes 98 98

All-predicted 98 98

Step 43 10x+GEO+BroadS2_1+2 BroadS2_3e Accuracy: 0.9751 New set classification

Precision: 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.9751

Specificity: 0.9751 Nan

F1_Score: 0.0000 0.9874

NK_cells T_cells All-true

T_cells 24 938 962

All-predicted 24 938 962

Step 44 10x+GEO+BroadS2_1+2 BroadS2_3f Accuracy: 0.7895 New set classification

Precision: 0.0000 1.0000 0.0000 0.0000

Recall/Sensitivity: 0.0000 0.7895 0.0000 0.0000

Specificity: 0.9737 Nan 0.9737 0.8421

F1_Score: 0.0000 0.8824 0.0000 0.0000

B_cells Dendritic_cells Monocytes T_cells All-true

Dendritic_cells 1 30 1 6 38

All-predicted 1 30 1 6 38

Step 45 10x+GEO+BroadS2_1+2 BroadS2_3g Accuracy: 0.7835 New set classification

Precision: 1.0000 0.0000

Recall/Sensitivity: 0.7835 0.0000

Specificity: Nan 0.7835

F1_Score: 0.8786 0.0000

NK_cells T_cells All-true

NK_cells 152 42 194

All-predicted 152 42 194

Step 46 10x+GEO+BroadS2_1+2 BroadS1 (test) Accuracy: 0.9354 Test Result (BroadS1)

Precision: 0.9961 0.4000 0.9612 0.7542 0.9510

Recall/Sensitivity: 0.9193 0.0423 0.9693 0.7769 0.9737

Specificity: 0.9995 0.9993 0.9944 0.9701 0.9139

F1_Score: 0.9561 0.0764 0.9652 0.7654 0.9622

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1526 9 6 80 39 1660

Dendritic_cells 0 6 58 49 29 142

Monocytes 4 0 1610 5 42 1661

NK_cells 2 0 1 1083 308 1394

T_cells 0 0 0 219 8107 8326

All-predicted 1532 15 1675 1436 8525 13183

Cycle 6

Step 47 10x+GEO+BroadS2_1+2+3 10x+GEO+BroadS2_1+2+3 Accuracy: 0.9954 2-fold cross-validation

Precision: 0.9991 0.9623 0.9882 0.9889 0.9962

Recall/Sensitivity: 0.9985 0.7846 0.9894 0.9754 0.9983

Specificity: 0.9999 1.0000 0.9994 0.9989 0.9890

F1_Score: 0.9988 0.8644 0.9888 0.9821 0.9972

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5492 0 1 0 7 5500

Dendritic_cells 0 51 12 0 2 65

Monocytes 4 1 2510 2 20 2537

NK_cells 0 1 2 4472 110 4585

T_cells 1 0 15 48 36588 36652

All-predicted 5497 53 2540 4522 36727 49339
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Accuracy: 0.9933

Precision: 0.9973 1.0000 0.9755 0.9841 0.9951

Recall/Sensitivity: 0.9984 0.1414 0.9895 0.9708 0.9980

Specificity: 0.9997 1.0000 0.9986 0.9983 0.9862

F1_Score: 0.9979 0.2478 0.9825 0.9774 0.9965

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5598 0 1 0 8 5607

Dendritic_cells 5 14 52 13 15 99

Monocytes 5 0 2550 1 21 2577

NK_cells 2 0 1 4594 135 4732

T_cells 3 0 10 60 36251 36324

All-predicted 5613 14 2614 4668 36430 49339

Accuracy: 0.9943

Precision: 0.9982 0.9811 0.9819 0.9865 0.9957

Recall/Sensitivity: 0.9985 0.4630 0.9894 0.9731 0.9981

Specificity: 0.9998 1.0000 0.9990 0.9986 0.9876

F1_Score: 0.9983 0.5561 0.9856 0.9798 0.9969

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 11090 0 2 0 15 11107

Dendritic_cells 5 65 64 13 17 164

Monocytes 9 1 5060 3 41 5114

NK_cells 2 1 3 9066 245 9317

T_cells 4 0 25 108 72839 72976

All-predicted 11110 67 5154 9190 73157 98678

Step 48 10x+GEO+BroadS2_1+2+3 BroadS2_4a Accuracy: 0.9907 New set classification

Precision: 1.0000 0.0000 0.0000 0.0000

Recall/Sensitivity: 0.9907 0.0000 0.0000 0.0000

Specificity: Nan 0.9988 0.9954 0.9965

F1_Score: 0.9953 0.0000 0.0000 0.0000

B_cells Dendritic_cells Monocytes T_cells All-true

B_cells 854 1 4 3 862

All-predicted 854 1 4 3 862

Step 49 10x+GEO+BroadS2_1+2+3 BroadS2_4b Accuracy: 0.9886 New set classification

Precision: 0.0000 0.0000 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.0000 0.0000 0.9886

Specificity: 0.9979 0.9969 0.9958 0.9979 Nan

F1_Score: 0.0000 0.0000 0.0000 0.0000 0.9942

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

T_cells 2 3 4 2 951 962

All-predicted 2 3 4 2 951 962

Step 50 10x+GEO+BroadS2_1+2+3 BroadS2_4c Accuracy: 0.9977 New set classification

Precision: 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.9977

Specificity: 0.9977 Nan

F1_Score: 0.0000 0.9989

Dendritic_cells Monocytes All-true

Monocytes 1 435 436

All-predicted 1 435 436

Step 51 10x+GEO+BroadS2_1+2+3 BroadS2_4d Accuracy: 1.0000 New set classification

Precision: 1.0000

Recall/Sensitivity: 1.0000

Specificity: Nan

F1_Score: 1.0000

Monocytes All-true

Monocytes 50 50

All-predicted 50 50

Step 52 10x+GEO+BroadS2_1+2+3 BroadS2_4e Accuracy: 0.9424 New set classification

Precision: 0.0000 0.0000 1.0000

Recall/Sensitivity: 0.0000 0.0000 0.9424

Specificity: 0.9986 0.9438 Nan

F1_Score: 0.0000 0.0000 0.9703

B_cells NK_cells T_cells All-true

T_cells 1 39 654 694

All-predicted 1 39 654 694

Step 53 10x+GEO+BroadS2_1+2+3 BroadS2_4f Accuracy: 0.8158 New set classification

Precision: 1.0000 0.0000 0.0000

Recall/Sensitivity: 0.8158 0.0000 0.0000

Specificity: Nan 0.8289 0.9868

F1_Score: 0.8986 0.0000 0.0000

Dendritic_cells Monocytes T_cells All-true

Dendritic_cells 62 13 1 76

All-predicted 62 13 1 76

Step 54 10x+GEO+BroadS2_1+2+3 BroadS2_4g Accuracy: 0.9269 New set classification

Precision: 0.0000 1.0000 0.0000

Recall/Sensitivity: 0.0000 0.9269 0.0000

Specificity: 0.9954 Nan 0.9315

F1_Score: 0.0000 0.9621 0.0000

Monocytes NK_cells T_cells All-true

NK_cells 1 203 15 219

All-predicted 1 203 15 219

Step 55 10x+GEO+BroadS2_1+2+3 BroadS2_4h Accuracy: 0.8667 New set classification

Precision: 1.0000 0.0000 0.0000

Recall/Sensitivity: 0.8667 0.0000 0.0000

Specificity: Nan 0.9000 0.9667

F1_Score: 0.9286 0.0000 0.0000

Dendritic_cells Monocytes T_cells All-true

Dendritic_cells 26 3 1 30

All-predicted 26 3 1 30
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Step 56 10x+GEO+BroadS2_1+2+3 BroadS1 (test) Accuracy: 0.9380 Test Result (BroadS1)

Precision: 1.0000 0.8333 0.9467 0.7471 0.9617

Recall/Sensitivity: 0.9217 0.5634 0.9843 0.8307 0.9564

Specificity: 1.0000 0.9988 0.9920 0.9667 0.9347

F1_Score: 0.9592 0.6723 0.9652 0.7867 0.9591

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1530 13 26 30 61 1660

Dendritic_cells 0 80 61 0 1 142

Monocytes 0 3 1635 0 23 1661

NK_cells 0 0 4 1158 232 1394

T_cells 0 0 1 362 7963 8326

All-predicted 1530 96 1727 1550 8280 13183

Cycle 7

Step 57 10x+GEO+BroadS2 10x+GEO+BroadS2 Accuracy: 0.9936 2-fold cross-validation

Precision: 0.9970 1.0000 0.9772 0.9832 0.9956

Recall/Sensitivity: 0.9981 0.4426 0.9921 0.9732 0.9974

Specificity: 0.9996 1.0000 0.9987 0.9983 0.9878

F1_Score: 0.9975 0.6136 0.9846 0.9782 0.9965

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5895 0 3 0 8 5906

Dendritic_cells 10 54 37 7 14 122

Monocytes 3 0 2749 0 19 2771

NK_cells 1 0 1 4571 124 4697

T_cells 4 0 23 71 37410 37508

All-predicted 5913 54 2813 4649 37575 51004

Accuracy: 0.9919

Precision: 0.9969 0.9750 0.9792 0.9821 0.9933

Recall/Sensitivity: 0.9985 0.2635 0.9841 0.9659 0.9977

Specificity: 0.9996 1.0000 0.9988 0.9982 0.9821

F1_Score: 0.9977 0.4149 0.9817 0.9740 0.9955

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 6054 0 0 0 9 6063

Dendritic_cells 6 39 46 16 41 148

Monocytes 7 0 2784 1 37 2829

NK_cells 2 0 2 4674 161 4839

T_cells 4 1 11 68 37040 37124

All-predicted 6073 40 2843 4759 37288 51003

Accuracy: 0.9928

Precision: 0.9969 0.9875 0.9782 0.9827 0.9945

Recall/Sensitivity: 0.9983 0.3531 0.9881 0.9695 0.9976

Specificity: 0.9996 1.0000 0.9987 0.9982 0.9850

F1_Score: 0.9976 0.5143 0.9831 0.9761 0.9960

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 11949 0 3 0 17 11969

Dendritic_cells 16 93 83 23 55 270

Monocytes 10 0 5533 1 56 5600

NK_cells 3 0 3 9245 285 9536

T_cells 8 1 34 139 74450 74632

All-predicted 11986 94 5656 9408 74863 102007

Step 58 10x+GEO+BroadS2 BroadS1 (test) Accuracy: 0.9461 Final Result - BroadS1

Precision: 0.9981 0.8144 0.9932 0.7941 0.9544

Recall/Sensitivity: 0.9301 0.9577 0.9723 0.7690 0.9736

Specificity: 0.9997 0.9976 0.9990 0.9764 0.9203

F1_Score: 0.9629 0.8803 0.9827 0.7813 0.9639

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1544 20 5 60 31 1660

Dendritic_cells 0 136 5 0 1 142

Monocytes 1 9 1615 0 36 1661

NK_cells 2 0 1 1072 319 1394

T_cells 0 2 0 218 8106 8326

All-predicted 1547 167 1626 1350 8493 13183

Swapping

Step 59 10x+GEO+BroadS1 10x+GEO+BroadS1 Accuracy: 0.9918 2-fold cross-validation

Precision: 0.9967 1.0000 0.9885 0.9643 0.9949

Recall/Sensitivity: 0.9957 0.6133 0.9842 0.9693 0.9954

Specificity: 0.9996 1.0000 0.9994 0.9961 0.9855

F1_Score: 0.9962 0.7603 0.9864 0.9668 0.9952

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5764 0 4 10 11 5789

Dendritic_cells 1 46 18 5 5 75

Monocytes 11 0 2498 0 29 2538

NK_cells 2 0 2 4831 149 4984

T_cells 5 0 5 164 37889 38063

All-predicted 5783 46 2527 5010 38083 51449

Accuracy: 0.9916

Precision: 0.9948 1.0000 0.9872 0.9615 0.9955

Recall/Sensitivity: 0.9988 0.3731 0.9815 0.9737 0.9947

Specificity: 0.9993 1.0000 0.9993 0.9957 0.9878

F1_Score: 0.9968 0.5435 0.9843 0.9676 0.9951

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 5949 0 0 4 3 5956

Dendritic_cells 10 25 19 12 1 67

Monocytes 13 0 2543 2 33 2591

NK_cells 2 0 1 4970 131 5104

T_cells 6 0 13 181 37531 37731

All-predicted 5980 25 2576 5169 37699 51449
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Accuracy: 0.9917

Precision: 0.9958 1.0000 0.9879 0.9629 0.9952

Recall/Sensitivity: 0.9973 0.4932 0.9829 0.9715 0.9951

Specificity: 0.9995 1.0000 0.9994 0.9959 0.9866

F1_Score: 0.9965 0.6519 0.9854 0.9672 0.9951

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 11713 0 4 14 14 11745

Dendritic_cells 11 71 37 17 6 142

Monocytes 24 0 5041 2 62 5129

NK_cells 4 0 3 9801 280 10088

T_cells 11 0 18 345 75420 75794

All-predicted 11763 71 5103 10179 75782 102898

Step 60 10x+GEO+BroadS1 BroadS2 (test) Accuracy: 0.9173 Final Result - BroadS2

Precision: 0.9310 0.0000 0.9238 0.5556 0.9883

Recall/Sensitivity: 0.9952 0.0000 0.9958 0.9264 0.9070

Specificity: 0.9866 0.9999 0.9828 0.9455 0.9850

F1_Score: 0.9620 0.0000 0.9585 0.6946 0.9459

B_cells Dendritic_cells Monocytes NK_cells T_cells All-true

B_cells 1875 0 6 0 3 1884

Dendritic_cells 103 0 152 0 15 270

Monocytes 6 0 2123 0 3 2132

NK_cells 6 0 0 780 56 842

T_cells 24 1 17 624 6498 7164

All-predicted 2014 1 2298 1404 6575 12292
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❖ Supplemental Table 5. The assessment of classification performance for specific 

simulations EXP 1 through EXP 8. 

 

 

 

 

 

 

 

EXP 4 Supersets Training Set Testing Set Accuracy: 0.9461

1 (Cycle 7) 10x ✔ Precision: 0.9981 0.8144 0.9932 0.7941 0.9544

GEO ✔ Recall/Sensitivity: 0.9301 0.9577 0.9723 0.7690 0.9736

BroadS1 ✔ Specificity: 0.9997 0.9976 0.9990 0.9764 0.9203

BroadS2 ✔ F1_Score: 0.9629 0.8803 0.9827 0.7813 0.9639

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1544 20 5 60 31 1660

Dendritic_cells 0 136 5 0 1 142

Monocytes 1 9 1615 0 36 1661

NK_cells 2 0 1 1072 319 1394

T_cells 0 2 0 218 8106 8326

All (predicted) 1547 167 1626 1350 8493 13183

EXP 4 Supersets Training Set Testing Set Accuracy: 0.9173

2a (swapping) 10x ✔ Precision: 0.9310 0.0000 0.9238 0.5556 0.9883

GEO ✔ Recall/Sensitivity: 0.9952 0.0000 0.9958 0.9264 0.9070

BroadS1 ✔ Specificity: 0.9866 0.9999 0.9828 0.9455 0.9850

BroadS2 ✔ F1_Score: 0.9620 0.0000 0.9585 0.6946 0.9459

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1875 0 6 0 3 1884

Dendritic_cells 103 0 152 0 15 270

Monocytes 6 0 2123 0 3 2132

NK_cells 6 0 0 780 56 842

T_cells 24 1 17 624 6498 7164

All (predicted) 2014 1 2298 1404 6575 12292

EXP 4 Supersets Training Set Testing Set Accuracy: 0.9172

2b (swapping) with QC 10x ✔ Precision: 0.9317 0.0000 0.9216 0.5560 0.9884

GEO ✔ Recall/Sensitivity: 0.9957 0.0000 0.9965 0.9264 0.9079

BroadS1 ✔ Specificity: 0.9867 1.0000 0.9832 0.9449 0.9848

BroadS2 (QC) ✔ F1_Score: 0.9627 0.0000 0.9576 0.6949 0.9464

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1869 0 5 0 3 1877

Dendritic_cells 103 0 152 0 15 270

Monocytes 5 0 1997 0 2 2004

NK_cells 6 0 0 780 56 842

T_cells 23 0 13 623 6493 7152

All (predicted) 2006 0 2167 1403 6569 12145

EXP 4 Supersets Training Set Testing Set Accuracy: 0.9829

3 10x ✔ Precision: 0.9769 0.0000 0.8493 0.9851 0.9921

GEO ✔ Recall/Sensitivity: 0.9616 0.0000 0.8978 0.9255 0.9972

BroadS1 ✔ Specificity: 0.9970 0.9978 0.9950 0.9985 0.9759

BroadS2 ✔ F1_Score: 0.9692 0.0000 0.8729 0.9544 0.9947

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 9698 28 356 1 2 10085

Dendritic_cells NA NA NA NA NA NA

Monocytes 202 19 2345 3 43 2612

NK_cells 0 135 27 7760 463 8385

T_cells 27 7 33 113 64161 64341

All (predicted) 9927 189 2761 7877 64669 85423
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EXP 4 Supersets Training Set Testing Set Accuracy: 0.9352

4 10x ✔ Precision: 0.0000 0.0000 0.9976 0.5394 0.9965

GEO ✔ Recall/Sensitivity: 0.0000 0.0000 0.9801 0.9968 0.9169

BroadS1 ✔ Specificity: 0.9993 1.0000 0.9994 0.9340 0.9914

BroadS2 ✔ F1_Score: 0.0000 0.0000 0.9888 0.7000 0.9550

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells NA NA NA NA NA NA

Dendritic_cells NA NA NA NA NA NA

Monocytes 3 0 839 5 9 856

NK_cells 0 0 0 308 1 309

T_cells 0 0 2 258 2867 3127

All (predicted) 3 0 841 571 2877 4292

EXP 2 Sets Training Set Testing Set Accuracy: 0.9447

5 BroadS1 ✔ Precision: 1.0000 0.8609 0.9837 0.8150 0.9488

BroadS2 ✔ Recall/Sensitivity: 0.9102 0.9155 0.9825 0.7712 0.9736

Specificity: 1.0000 0.9984 0.9977 0.9793 0.9100

F1_Score: 0.9530 0.8874 0.9831 0.7925 0.9611

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1511 14 15 25 95 1660

Dendritic_cells 0 130 9 0 3 142

Monocytes 0 7 1632 0 22 1661

NK_cells 0 0 2 1075 317 1394

T_cells 0 0 1 219 8106 8326

All (predicted) 1511 151 1659 1319 8543 13183

EXP 2 Sets Training Set Testing Set Accuracy: 0.8815

6 BroadS1 ✔ Precision: 0.9230 0.0000 0.9482 0.4363 0.9681

BroadS2 ✔ Recall/Sensitivity: 0.8339 0.0000 0.9953 0.9192 0.8889

Specificity: 0.9874 1.0000 0.9886 0.9127 0.9590

F1_Score: 0.8762 0.0000 0.9712 0.5917 0.9268

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1571 0 7 204 102 1884

Dendritic_cells 125 0 100 15 30 270

Monocytes 0 0 2122 0 10 2132

NK_cells 0 0 0 774 68 842

T_cells 6 0 9 781 6368 7164

All (predicted) 1702 0 2238 1774 6578 12292

EXP 4 Sets Training Set Testing Set Accuracy: 0.9232

7 10x ✔ Precision: 1.0000 NA 0.8315 0.8102 0.9502

GEO ✔ Recall/Sensitivity: 0.8769 NA 1.0000 0.7553 0.9671

BroadS1 Specificity: 1.0000 NA 0.9575 0.9870 0.9292

BroadS2 ✔ F1_Score: 0.9344 NA 0.9080 0.7818 0.9586

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1652 NA 57 1 174 1884

Dendritic_cells 0 NA 265 0 5 270

Monocytes 0 NA 2132 0 0 2132

NK_cells 0 NA 22 636 184 842

T_cells 0 NA 88 148 6928 7164

All (predicted) 1652 NA 2564 785 7291 12292

EXP 4 Sets Training Set Testing Set Accuracy: 0.9295

8 (Cycle 3) 10x ✔ Precision: 1.0000 NA 0.9027 0.8027 0.9428

GEO ✔ Recall/Sensitivity: 0.8699 NA 0.9946 0.7590 0.9729

BroadS1 ✔ Specificity: 1.0000 NA 0.9846 0.9779 0.8989

BroadS2 F1_Score: 0.9304 NA 0.9464 0.7802 0.9576

B_cells Dendritic_cells Monocytes NK_cells T_cells All (true)

B_cells 1444 NA 31 37 148 1660

Dendritic_cells 0 NA 142 0 0 142

Monocytes 0 NA 1652 0 9 1661

NK_cells 0 NA 2 1058 334 1394

T_cells 0 NA 3 223 8100 8326

All (predicted) 1444 NA 1830 1318 8591 13183
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❖ Other Supplemental Materials in Study III. 

 

 

• Raw data table of overall accuracy in incremental learning cycles. 

 

 

 

• Raw data tables of other assessment metrics values for each cell type of testing steps in 

cycles. 

 

 

OVERALL ACCURACY Cross Validation Added Data External Validation Total cells Added cells

Cycle 0 0.99865 0.82009 0.81863 85423 0

Cycle 1 0.99842 0.24263 0.78230 86279 856

Cycle 2 0.99808 0.99143 0.92217 88315 2036

Cycle 3 0.99819 0.91869 0.92953 89715 1400

Cycle 4 0.99612 0.93721 0.93120 92716 3001

Cycle 5 0.99540 0.96917 0.93545 95726 3010

Cycle 6 0.99435 0.972 0.93803 98678 2952

Cycle 7 0.993 0 0.946 102007 3329

Swapping 0.992 0 0.917 102898 0

B cell ACC F1 SE SP PR RE

Step 4 0.97861 0.9072 0.8301 1.0000 1.0000 0.8301

Step 13 0.96200 0.8223 0.6982 1.0000 1.0000 0.6982

Step 17 0.98263 0.92591 0.8621 1.0000 1.0000 0.8621

Step 27 0.98362 0.93041 0.8699 1.0000 1.0000 0.8699

Step 37 0.98779 0.9491 0.9042 0.9998 0.9987 0.9042

Step 46 0.98938 0.9561 0.9193 0.9995 0.9961 0.9193

Step 56 0.99014 0.9593 0.9217 1.0000 1.0000 0.9217

Step 58 0.99097 0.9629 0.9301 0.9997 0.9981 0.9301

Step 60* 0.98796 0.9620 0.9952 0.9866 0.9310 0.9952
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DC ACC F1 SE SP PR RE

Step 4 0.00000 0.0000 0.0000 NA NA 0.0000

Step 13 0.00000 0.0000 0.0000 NA NA 0.0000

Step 17 0.00000 0.0000 0.0000 NA NA 0.0000

Step 27 0.0000 0.0000 0.0000 NA NA 0.0000

Step 37 0.99461 0.7171 0.6338 0.9985 0.8257 0.6338

Step 46 0.98900 0.0764 0.0423 0.9993 0.4000 0.0423

Step 56 0.99408 0.6723 0.5634 0.9988 0.8333 0.5634

Step 58 0.99719 0.8803 0.9578 0.9976 0.8144 0.9578

Step 60* 0.97795 0.0000 0.0000 0.9999 0.0000 0.0000

Monocyte ACC F1 SE SP PR RE

Step 4 0.97747 0.9090 0.8928 0.9897 0.9257 0.8928

Step 13 0.95373 0.8449 1.0000 0.9471 0.7314 1.0000

Step 17 0.9850 0.9425 0.9777 0.9860 0.9098 0.9777

Step 27 0.98582 0.9464 0.9946 0.9846 0.9027 0.9946

Step 37 0.98809 0.9542 0.9856 0.9885 0.9249 0.9856

Step 46 0.99120 0.9652 0.9693 0.9944 0.9612 0.9693

Step 56 0.99105 0.9652 0.9844 0.9920 0.9467 0.9844

Step 58 0.99568 0.9827 0.9723 0.9991 0.9932 0.9723

Step 60* 0.98503 0.9585 0.9958 0.9828 0.9239 0.9958

NK cell ACC F1 SE SP PR RE

Step 4 0.82857 0.5493 0.9878 0.8097 0.3804 0.9878

Step 13 0.83008 0.5504 0.9835 0.8119 0.3821 0.9835

Step 17 0.95176 0.7454 0.6679 0.9853 0.8433 0.6679

Step 27 0.95479 0.7802 0.7590 0.9780 0.8027 0.7590

Step 37 0.94910 0.7177 0.6119 0.9890 0.8678 0.6119

Step 46 0.94963 0.7654 0.7769 0.9701 0.7542 0.7769

Step 56 0.95236 0.7867 0.8307 0.9668 0.7471 0.8307

Step 58 0.95449 0.7813 0.7690 0.9764 0.7941 0.7690

Step 60* 0.94419 0.6946 0.9264 0.9455 0.5556 0.9264
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T cell ACC F1 SE SP PR RE

Step 4 0.86338 0.8792 0.7872 0.9940 0.9956 0.7872

Step 13 0.82955 0.8449 0.7353 0.9912 0.9930 0.7353

Step 17 0.93575 0.9507 0.9814 0.8575 0.9219 0.9814

Step 27 0.94561 0.9576 0.9729 0.8989 0.9429 0.9729

Step 37 0.94281 0.9560 0.9843 0.8717 0.9294 0.9843

Step 46 0.95168 0.9622 0.9737 0.9139 0.9510 0.9737

Step 56 0.94842 0.9591 0.9564 0.9347 0.9617 0.9564

Step 58 0.95396 0.9639 0.9736 0.9203 0.9544 0.9736

Step 60* 0.93955 0.9459 0.9070 0.9850 0.9883 0.9070

ACC B cell Monocyte DC NK cell T cell

Step 4 0.97861 0.97747 0.00000 0.82857 0.86338

Step 13 0.96200 0.95373 0.00000 0.83008 0.82955

Step 17 0.98263 0.9850 0.00000 0.95176 0.93575

Step 27 0.98362 0.98582 0.0000 0.95479 0.94561

Step 37 0.98779 0.98809 0.99461 0.94910 0.94281

Step 46 0.98938 0.99120 0.98900 0.94963 0.95168

Step 56 0.99014 0.99105 0.99408 0.95236 0.94842

Step 58 0.99097 0.99568 0.99719 0.95449 0.95396

Step 60* 0.98796 0.98503 0.97795 0.94419 0.93955

F1 B cell Monocyte DC NK cell T cell

Step 4 0.9072 0.9090 0.0000 0.5493 0.8792

Step 13 0.8223 0.8449 0.0000 0.5504 0.8449

Step 17 0.92591 0.9425 0.0000 0.7454 0.9507

Step 27 0.93041 0.9464 0.0000 0.7802 0.9576

Step 37 0.9491 0.9542 0.7171 0.7177 0.9560

Step 46 0.9561 0.9652 0.0764 0.7654 0.9622

Step 56 0.9593 0.9652 0.6723 0.7867 0.9591

Step 58 0.9629 0.9827 0.8803 0.7813 0.9639

Step 60* 0.9620 0.9585 0.0000 0.6946 0.9459
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• The accuracy of each cell type of testing steps during incremental learning cycles. 

 

 

• The F1 score of each cell type of testing steps during incremental learning cycles. 
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• Raw data tables of confusion matrix values for each cell type of testing steps in 

incremental learning cycles. 

 

 

 

 

 

 

TP TN FP FN Total#

B cells Step 4 1378 11523 0 282 13183

Step 13 1159 11523 0 501 13183

Step 17 1431 11523 0 229 13183

Step 27 1444 11523 0 216 13183

Step 37 1501 11521 2 159 13183

Step 46 1526 11517 6 134 13183

Step 56 1530 11523 0 130 13183

Step 58 1544 11520 3 116 13183

swapping 1875 10269 139 9 12292

TP TN FP FN Total#

Monocytes Step 4 1483 11403 119 178 13183

Step 13 1661 10912 610 0 13183

Step 17 1624 11361 161 37 13183

Step 27 1652 11344 178 9 13183

Step 37 1637 11389 133 24 13183

Step 46 1610 11457 65 51 13183

Step 56 1635 11430 92 26 13183

Step 58 1615 11511 11 46 13183

swapping 2123 9985 175 9 12292

TP TN FP FN Total#

Dendritic cells Step 4 0 0 0 142

Step 13 0 0 0 142

Step 17 0 0 0 142

Step 27 0 0 0 142

Step 37 90 13022 19 52 13183

Step 46 6 13032 9 136 13183

Step 56 80 13025 16 62 13183

Step 58 136 13010 31 6 13183

swapping 0 12021 1 270 12292



Page | 209  

 

 

 

 

 

 

 

 

 

 

 

 

 

TP TN FP FN Total#

NK cells Step 4 1377 9546 2243 17 13183

Step 13 1371 9572 2217 23 13183

Step 17 931 11616 173 463 13183

Step 27 1058 11529 260 336 13183

Step 37 853 11659 130 541 13183

Step 46 1083 11436 353 311 13183

Step 56 1158 11397 392 236 13183

Step 58 1072 11511 278 322 13183

swapping 780 10826 624 62 12292

TP TN FP FN Total#

T cells Step 4 6554 4828 29 1772 13183

Step 13 6122 4814 43 2204 13183

Step 17 8171 4165 692 155 13183

Step 27 8100 4366 491 226 13183

Step 37 8195 4234 623 131 13183

Step 46 8107 4439 418 219 13183

Step 56 7963 4540 317 363 13183

Step 58 8106 4470 387 220 13183

swapping 6498 5051 77 666 12292



Page | 210  

 

• Raw data tables of confusion matrix values in each cell type of cross validation and 

added prediction in cycles. 

 

 

 

 

B cells TP TN FP FN Total#

(2-fold) Step 1 10078 75330 8 7 85423

(2-fold) Step 5 10074 76187 7 11 86279

(2-fold) Step 14 10080 78219 11 5 88315

(2-fold) Step 18 10081 79615 15 4 89715

(added-predict-BC) Step 19 240 0 0 48 288

(2-fold) Step 28 10364 82308 35 9 92716

(added-predict-BC) Step 29 377 0 0 11 388

(2-fold) Step 38 10744 84952 13 17 95726

(added-predict-BC) Step 39 344 0 0 2 346

(2-fold) Step 47 11090 87551 20 17 98678

(added-predict-BC) Step 48 854 0 0 8 862

(2-fold) Step 57 11949 90001 37 20 102007

Swapping Step 59 11713 91103 50 32 102898

Monocytes TP TN FP FN Total#

(2-fold) Step 1 2582 82780 31 30 85423

(added-predict-MC) Step 2 374 0 0 51 425

(added-predict-MC) Step 3 328 0 0 103 431

(2-fold) Step 5 3436 82770 41 32 86279

(2-fold) Step 14 3406 84825 22 62 88315

(2-fold) Step 18 3411 86226 21 57 89715

(added-predict-MC) Step 21 640 0 0 0 640

(added-predict-MC) Step 22 102 0 0 0 102

(2-fold) Step 28 4150 88435 71 60 92716

(added-predict-MC) Step 31 378 0 0 1 379

(added-predict-MC) Step 32 73 0 0 0 73

(2-fold) Step 38 4607 90982 82 55 95726

(added-predict-MC) Step 41 353 0 0 1 354

(added-predict-MC) Step 42 98 0 0 0 98

(2-fold) Step 47 5060 93470 94 54 98678

(added-predict-MC) Step 50 435 0 0 1 436

(added-predict-MC) Step 51 50 0 0 0 50

(2-fold) Step 57 5533 96284 123 67 102007

Swapping Step 59 5041 97707 88 62 102898
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Dendritic cells TP TN FP FN Total#

(added-predict-DC) Step 24 0 0 0 55 55

(added-predict-DC) Step 26 0 0 0 26 26

(2-fold) Step 28 0 92635 0 81 92716

(added-predict-DC) Step 34 24 0 0 9 33

(added-predict-DC) Step 36 11 0 0 1 12

(2-fold) Step 38 70 95598 2 56 95726

(added-predict-DC) Step 44 30 0 0 8 38

(2-fold) Step 47 65 98512 2 99 98678

(added-predict-DC) Step 53 62 0 0 14 76

(added-predict-DC) Step 55 26 0 0 4 30

(2-fold) Step 57 93 101736 1 177 102007

Swapping Step 59 71 102756 71 0 102898

NK cells TP TN FP FN Total#

(2-fold) Step 1 8358 77016 22 27 85423

(2-fold) Step 5 8341 77881 13 44 86279

(added-predict-NK) Step 6 309 0 0 0 309

(2-fold) Step 14 8634 79594 27 60 88315

(2-fold) Step 18 8642 80991 30 52 89715

(added-predict-NK) Step 25 128 0 0 38 166

(2-fold) Step 28 8724 83795 61 136 92716

(added-predict-NK) Step 35 113 0 0 150 263

(2-fold) Step 38 8908 86534 69 215 95726

(added-predict-NK) Step 45 152 0 0 42 194

(2-fold) Step 47 9066 89237 124 251 98678

(added-predict-NK) Step 54 203 0 0 16 219

(2-fold) Step 57 9245 92308 163 291 102007

Swapping Step 59 9801 92432 287 378 102898
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T cells TP TN FP FN Total#

(2-fold) Step 1 64290 21028 54 51 85423

(2-fold) Step 5 64292 21863 75 49 86279

(added-predict-TC) Step 7 56 0 0 166 222

(added-predict-TC) Step 8 97 0 0 213 310

(added-predict-TC) Step 9 6 0 0 319 325

(added-predict-TC) Step 10 7 0 0 375 382

(added-predict-TC) Step 11 10 0 0 274 284

(added-predict-TC) Step 12 9 0 0 195 204

(2-fold) Step 14 66025 22137 110 43 88315

(added-predict-TC) Step 15 956 0 0 9 965

(added-predict-TC) Step 16 432 0 0 3 435

(2-fold) Step 18 67419 22151 96 49 89715

(added-predict-TC) Step 20 539 0 0 11 550

(added-predict-TC) Step 23 1108 0 0 66 1174

(2-fold) Step 28 69118 23331 193 74 92716

(added-predict-TC) Step 30 903 0 0 5 908

(added-predict-TC) Step 33 942 0 0 12 954

(2-fold) Step 38 70957 24398 274 97 95726

(added-predict-TC) Step 40 946 0 0 14 960

(added-predict-TC) Step 43 938 0 0 24 962

(2-fold) Step 47 72839 25384 318 137 98678

(added-predict-TC) Step 49 951 0 0 11 962

(added-predict-TC) Step 52 654 0 0 40 694

(2-fold) Step 57 74450 26962 413 182 102007

Swapping Step 59 75420 26742 374 362 102898
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• ANN predication performance (SE and SP) on each cell type (B cells, Monocytes, NK 

cells, T cells, and Dendritic cells) in the incremental learning experiment. 
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Appendix 8 Raw Results in Study IV 

 

• Raw results of confusion matrix during 17 rounds of four-supersets-swapping external 

cross-validation experiments. 

 

 

 

 

TestWith-Source-BroadS1Accuracy: 0.933323 Accuracy: 0.940605

Precision: 0.99934 0.570776 0.97976 0.753272 0.955041 Precision: 0.996154 0.80597 0.95399 0.776259 0.956932

Recall/Sensitivity:0.911446 0.880282 0.932571 0.825681 0.956762 Recall/Sensitivity:0.936145 0.760563 0.986153 0.774032 0.963368

Specificity: 0.999913 0.992792 0.997223 0.968021 0.922792 Specificity: 0.999479 0.998006 0.993144 0.973619 0.925674

F1_Score: 0.953371 0.692521 0.955583 0.787817 0.955901 F1_Score: 0.965217 0.782609 0.969805 0.775144 0.960139

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1513 25 16 18 88 1660 B_cells 1554 17 36 16 37 1660

Dendritic_cells 0 125 14 0 3 142 Dendritic_cells 0 108 32 0 2 142

Monocytes 0 68 1549 0 44 1661 Monocytes 4 8 1638 0 11 1661

NK_cells 1 0 2 1151 240 1394 NK_cells 2 0 2 1079 311 1394

T_cells 0 1 0 359 7966 8326 T_cells 0 1 9 295 8021 8326

All 1514 219 1581 1528 8341 13183 All 1560 134 1717 1390 8382 13183

TestWith-Source-BroadS2Accuracy: 0.897169 Accuracy: 0.934429

Precision: 0.976719 0.592593 0.92548 0.492395 0.963328 Precision: 0.963141 0.780612 0.943675 0.73057 0.950041

Recall/Sensitivity:0.957537 0.059259 0.972796 0.922803 0.887353 Recall/Sensitivity:0.957006 0.566667 0.958724 0.669834 0.96622

Specificity: 0.995869 0.999085 0.983563 0.930044 0.952808 Specificity: 0.99337 0.996423 0.987992 0.981834 0.929017

F1_Score: 0.967033 0.107744 0.948548 0.642149 0.923781 F1_Score: 0.960064 0.656652 0.95114 0.698885 0.958062

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1804 0 32 0 48 1884 B_cells 1803 1 22 0 58 1884

Dendritic_cells 15 16 116 11 112 270 Dendritic_cells 22 153 86 1 8 270

Monocytes 17 10 2074 11 20 2132 Monocytes 24 39 2044 0 25 2132

NK_cells 0 0 3 777 62 842 NK_cells 4 0 1 564 273 842

T_cells 11 1 16 779 6357 7164 T_cells 19 3 13 207 6922 7164

All 1847 27 2241 1578 6599 12292 All 1872 196 2166 772 7286 12292

TestWith-Source-10x Accuracy: 0.059281 Accuracy: 0.14509

Precision: 0.686747 0.03145 1 0.96851 Precision: 0.300725 0 0.028666 0.997672 0.928715

Recall/Sensitivity:0.005652 0.997703 0.000239 0.037286 Recall/Sensitivity:0.01646 0 0.812021 0.102206 0.143765

Specificity: 0.999655 0.030865 1 0.9963 Specificity: 0.994876 0.999262 0.132144 0.999974 0.966322

F1_Score: 0.011212 0.060978 0.000477 0.071807 F1_Score: 0.031212 0 0.055378 0.185418 0.248987

Predicted B_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 57 10028 0 0 10085 B_cells 166 2 9914 0 3 10085

Monocytes 1 2606 0 5 2612 Monocytes 2 59 2121 0 430 2612

NK_cells 20 8290 2 73 8385 NK_cells 13 1 7237 857 277 8385

T_cells 5 61937 0 2399 64341 T_cells 371 1 54717 2 9250 64341

All 83 82861 2 2477 85423 All 552 63 73989 859 9960 85423

TestWith-Source-GEODB Accuracy: 0.751758 Accuracy: 0.752156

Precision: 0.674718 0.196078 0.36102 0.099451 0.961145 Precision: 0.674718 0.192308 0.36102 0.099451 0.961145

Recall/Sensitivity:0.699889 0.002293 0.731199 0.965517 0.886721 Recall/Sensitivity:0.701843 0.001148 0.732305 0.980892 0.886899

Specificity: 0.981583 0.998649 0.863487 0.91888 0.908766 Specificity: 0.981572 0.999307 0.8634 0.918832 0.908579

F1_Score: 0.687073 0.004532 0.483378 0.180328 0.922434 F1_Score: 0.688013 0.002282 0.48362 0.180592 0.922531

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 11 204 79 245 1796 B_cells 1257 6 204 79 245 1791

Dendritic_cells 132 10 3748 176 296 4362 Dendritic_cells 132 5 3748 176 296 4357

Monocytes 64 10 2421 465 351 3311 Monocytes 64 5 2421 465 351 3306

NK_cells 0 10 0 308 1 319 NK_cells 0 5 0 308 1 314

T_cells 410 10 333 2069 22090 24912 T_cells 410 5 333 2069 22090 24907

All 1863 51 6706 3097 22983 34700 All 1863 26 6706 3097 22983 34675

Round1-AllSets+10*5EC Round2-AllSets+5*5EC
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Accuracy: 0.931882 Accuracy: 0.936964

Precision: 0.99605 0.698324 0.985267 0.749307 0.946267 Precision: 0.991525 0.661202 0.980296 0.821718 0.94145

Recall/Sensitivity:0.911446 0.880282 0.966285 0.776184 0.956041 Recall/Sensitivity:0.916265 0.852113 0.958459 0.727403 0.973337

Specificity: 0.999479 0.995859 0.997917 0.969293 0.906938 Specificity: 0.998872 0.995246 0.997223 0.981339 0.896232

F1_Score: 0.951872 0.778816 0.975684 0.762509 0.951129 F1_Score: 0.952411 0.744615 0.969254 0.77169 0.957128

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1513 17 7 0 123 1660 B_cells 1521 37 6 0 96 1660

Dendritic_cells 0 125 14 0 3 142 Dendritic_cells 0 121 19 0 2 142

Monocytes 1 37 1605 0 18 1661 Monocytes 11 25 1592 0 33 1661

NK_cells 2 0 2 1082 308 1394 NK_cells 2 0 5 1014 373 1394

T_cells 3 0 1 362 7960 8326 T_cells 0 0 2 220 8104 8326

All 1519 179 1629 1444 8412 13183 All 1534 183 1624 1234 8608 13183

Accuracy: 0.891555 Accuracy: 0.898226

Precision: 0.936056 0.860465 0.830196 0.558603 0.961133 Precision: 0.976164 0.90625 0.942492 0.463306 0.964746

Recall/Sensitivity:0.924628 0.137037 0.951689 0.7981 0.904383 Recall/Sensitivity:0.934713 0.214815 0.968574 0.862233 0.897683

Specificity: 0.988566 0.999501 0.959154 0.953624 0.948908 Specificity: 0.995869 0.999501 0.987598 0.92655 0.954173

F1_Score: 0.930307 0.236422 0.886801 0.657213 0.931895 F1_Score: 0.954989 0.347305 0.955355 0.60274 0.930007

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1742 1 121 4 16 1884 B_cells 1761 0 5 18 100 1884

Dendritic_cells 19 37 80 1 133 270 Dendritic_cells 23 58 90 90 9 270

Monocytes 62 2 2029 0 39 2132 Monocytes 5 6 2065 35 21 2132

NK_cells 16 0 80 672 74 842 NK_cells 0 0 11 726 105 842

T_cells 22 3 134 526 6479 7164 T_cells 15 0 20 698 6431 7164

All 1861 43 2444 1203 6741 12292 All 1804 64 2191 1567 6666 12292

Accuracy: 0.053896 Accuracy: 0.081828

Precision: 0.433526 0 0.031056 1 0.56944 Precision: 0.404506 0 0.031378 1 0.794106

Recall/Sensitivity:0.02231 0 0.970904 0.000239 0.028613 Recall/Sensitivity:0.037382 0 0.952527 0.000239 0.06408

Specificity: 0.996098 0.999895 0.044523 1 0.933972 Specificity: 0.992633 0.999941 0.072539 1 0.949293

F1_Score: 0.042437 0 0.060186 0.000477 0.054488 F1_Score: 0.06844 0 0.060754 0.000477 0.118591

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 225 0 9856 0 4 10085 B_cells 377 0 9702 0 6 10085

Monocytes 7 6 2536 0 63 2612 Monocytes 8 5 2488 0 111 2612

NK_cells 33 2 7023 2 1325 8385 NK_cells 3 0 7428 2 952 8385

T_cells 254 1 62245 0 1841 64341 T_cells 544 0 59674 0 4123 64341

All 519 9 81660 2 3233 85423 All 932 5 79292 2 5192 85423

Accuracy: 0.752395 Accuracy: 0.752474

Precision: 0.674718 0.181818 0.36102 0.099451 0.961145 Precision: 0.674718 0.166667 0.36102 0.099451 0.961145

Recall/Sensitivity:0.70302 0.000459 0.73297 0.990354 0.887006 Recall/Sensitivity:0.703414 0.00023 0.733192 0.993548 0.887042

Specificity: 0.981565 0.999703 0.863348 0.918804 0.908467 Specificity: 0.981563 0.999835 0.86333 0.918795 0.908429

F1_Score: 0.688578 0.000916 0.483765 0.180751 0.922589 F1_Score: 0.688767 0.000459 0.483813 0.180804 0.922608

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 3 204 79 245 1788 B_cells 1257 2 204 79 245 1787

Dendritic_cells 132 2 3748 176 296 4354 Dendritic_cells 132 1 3748 176 296 4353

Monocytes 64 2 2421 465 351 3303 Monocytes 64 1 2421 465 351 3302

NK_cells 0 2 0 308 1 311 NK_cells 0 1 0 308 1 310

T_cells 410 2 333 2069 22090 24904 T_cells 410 1 333 2069 22090 24903

All 1863 11 6706 3097 22983 34660 All 1863 6 6706 3097 22983 34655

Round3-AllSets+2*5EC Round4-AllSets+1*5EC
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Accuracy: 0.936888 Accuracy: 0.911553

Precision: 0.996078 0.801527 0.947093 0.796467 0.947765 Precision: 0.945075 0 0.936738 0.675258 0.937819

Recall/Sensitivity:0.918072 0.739437 0.980735 0.743902 0.967571 Recall/Sensitivity:0.953614 0 0.971704 0.657819 0.949195

Specificity: 0.999479 0.998006 0.992102 0.977521 0.908586 Specificity: 0.992016 1 0.99054 0.962592 0.892114

F1_Score: 0.955486 0.769231 0.96362 0.769288 0.957566 F1_Score: 0.949325 0 0.953901 0.666424 0.943473

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1524 16 42 2 76 1660 B_cells 1583 0 25 26 26 1660

Dendritic_cells 0 105 35 0 2 142 Dendritic_cells 65 0 76 0 1 142

Monocytes 4 9 1629 0 19 1661 Monocytes 14 0 1614 0 33 1661

NK_cells 2 0 8 1037 347 1394 NK_cells 10 0 3 917 464 1394

T_cells 0 1 6 263 8056 8326 T_cells 3 0 5 415 7903 8326

All 1530 131 1720 1302 8500 13183 All 1675 0 1723 1358 8427 13183

Accuracy: 0.910023 Accuracy: 0.932232

Precision: 0.94925 0.714286 0.898032 0.671218 0.938041 Precision: 0.946623 0.823077 0.940514 0.797637 0.940377

Recall/Sensitivity:0.873673 0.240741 0.941839 0.758907 0.953099 Recall/Sensitivity:0.922505 0.396296 0.978893 0.64133 0.975293

Specificity: 0.991545 0.997837 0.977559 0.972664 0.912051 Specificity: 0.990584 0.998087 0.987008 0.988035 0.913612

F1_Score: 0.909895 0.360111 0.919414 0.712375 0.94551 F1_Score: 0.934409 0.535 0.95932 0.710994 0.957517

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1646 10 45 0 183 1884 B_cells 1738 9 31 1 105 1884

Dendritic_cells 17 65 166 4 18 270 Dendritic_cells 70 107 78 1 14 270

Monocytes 62 12 2008 0 50 2132 Monocytes 9 5 2087 0 31 2132

NK_cells 0 1 2 639 200 842 NK_cells 1 2 6 540 293 842

T_cells 9 3 15 309 6828 7164 T_cells 18 7 17 135 6987 7164

All 1734 91 2236 952 7279 12292 All 1836 130 2219 677 7430 12292

Accuracy: 0.128162 Accuracy: 0.072077

Precision: 0.499219 0 0.031808 1 0.945082 Precision: 0.325893 0 0.028899 1 0.903218

Recall/Sensitivity:0.095092 0 0.918836 0.030769 0.11394 Recall/Sensitivity:1.45E-02 0 0.892802 0.000239 5.71E-02

Specificity: 0.987231 0.99959 0.117847 1 0.979793 Specificity: 0.995991 0.997588 0.053701 1 0.981311

F1_Score: 0.159753 0 0.061488 0.059701 0.203362 F1_Score: 0.027722 0 0.055985 0.000477 0.107496

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 959 0 9121 0 5 10085 B_cells 146 1 9936 0 2 10085

Monocytes 3 34 2400 0 175 2612 Monocytes 9 140 2332 0 131 2612

NK_cells 6 0 7875 258 246 8385 NK_cells 0 35 8087 2 261 8385

T_cells 953 1 56056 0 7331 64341 T_cells 293 30 60341 0 3677 64341

All 1921 35 75452 258 7757 85423 All 448 206 80696 2 4071 85423

Accuracy: 0.752554 Accuracy: 0.789297

Precision: 0.674718 0 0.36102 0.099451 0.961145 Precision: 0.711778 0 0.451006 0.104442 0.962401

Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.887077 Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.887077

Specificity: 0.98156 0.999967 0.863313 0.918785 0.908391 Specificity: 0.983713 0.999967 0.900895 0.919305 0.893915

F1_Score: 0.688956 0 0.483861 0.180857 0.922627 F1_Score: 0.70777 0 0.558542 0.189073 0.923206

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786

Dendritic_cells 132 0 3748 176 296 4352 Dendritic_cells 35 0 2410 28 266 2739

Monocytes 64 0 2421 465 351 3301 Monocytes 64 0 2421 465 351 3301

NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309

T_cells 410 0 333 2069 22090 24902 T_cells 410 0 333 2069 22090 24902

All 1863 1 6706 3097 22983 34650 All 1766 1 5368 2949 22953 33037

Round5-r'1*5EC Round6-r'tumor_DC
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Accuracy: 0.941136 Accuracy: 0.936509

Precision: 0.99737 0.83871 0.970238 0.743742 0.962932 Precision: 0.996053 0.611111 0.973292 0.777385 0.953811

Recall/Sensitivity:0.913855 0.915493 0.981337 0.8099 0.960966 Recall/Sensitivity:0.912048 0.929577 0.943408 0.789096 0.964809

Specificity: 0.999653 0.998083 0.99566 0.967003 0.936586 Specificity: 0.999479 0.993559 0.996268 0.97328 0.919909

F1_Score: 0.953788 0.875421 0.975756 0.775412 0.961948 F1_Score: 0.952201 0.73743 0.958117 0.783197 0.959279

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1517 14 37 67 25 1660 B_cells 1514 16 30 30 70 1660

Dendritic_cells 0 130 10 0 2 142 Dendritic_cells 0 132 7 0 3 142

Monocytes 1 10 1630 0 20 1661 Monocytes 1 67 1567 0 26 1661

NK_cells 2 0 2 1129 261 1394 NK_cells 2 0 2 1100 290 1394

T_cells 1 1 1 322 8001 8326 T_cells 3 1 4 285 8033 8326

All 1521 155 1680 1518 8309 13183 All 1520 216 1610 1415 8422 13183

Accuracy: 0.929873 Accuracy: 0.913358

Precision: 0.983778 0.96 0.947628 0.699264 0.941354 Precision: 0.964365 0.886792 0.870632 0.619782 0.961799

Recall/Sensitivity:0.901274 0.355556 0.992964 0.789786 0.956728 Recall/Sensitivity:0.919321 0.174074 0.981707 0.811164 0.931323

Specificity: 0.99731 0.999667 0.988484 0.975022 0.916732 Specificity: 0.993851 0.999501 0.96939 0.963406 0.948323

F1_Score: 0.94072 0.518919 0.969766 0.741774 0.948979 F1_Score: 0.941304 0.291022 0.92284 0.702675 0.946316

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1698 0 10 2 174 1884 B_cells 1732 0 51 0 101 1884

Dendritic_cells 19 96 89 1 65 270 Dendritic_cells 8 47 204 0 11 270

Monocytes 0 2 2117 0 13 2132 Monocytes 26 3 2093 0 10 2132

NK_cells 2 0 0 665 175 842 NK_cells 3 0 13 683 143 842

T_cells 7 2 18 283 6854 7164 T_cells 27 3 43 419 6672 7164

All 1726 100 2234 951 7281 12292 All 1796 53 2404 1102 6937 12292

Accuracy: 0.198401 Accuracy: 0.127589

Precision: 0.465875 0.028737 1 0.914184 Precision: 0.838028 0 0.031333 0.833333 0.949289

Recall/Sensitivity:1.56E-02 0.75804 0.020751 0.227491 Recall/Sensitivity:3.54E-02 0 0.916539 0.000596 1.27E-01

Specificity: 0.997611 0.191883 1 0.934826 Specificity: 0.999084 0.999895 0.106278 0.999987 0.979366

F1_Score: 0.030129 0.055375 0.040659 0.364322 F1_Score: 0.067929 0 0.060595 0.001192 0.223344

Predicted B_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 157 9906 0 22 10085 B_cells 357 1 9720 0 7 10085

Monocytes 6 1980 0 626 2612 Monocytes 25 8 2394 1 184 2612

NK_cells 1 7484 174 726 8385 NK_cells 24 0 8112 5 244 8385

T_cells 173 49531 0 14637 64341 T_cells 20 0 56178 0 8143 64341

All 337 68901 174 16011 85423 All 426 9 76404 6 8578 85423

Accuracy: 0.860651 Accuracy: 0.890194

Precision: 0.72617 0 0.818458 0.105443 0.973685 Precision: 0.812016 0 0.846504 0.172549 0.969149

Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.887077 Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.930766

Specificity: 0.983375 0.999967 0.980109 0.912868 0.889362 Specificity: 0.987752 0.999961 0.980264 0.941473 0.889362

F1_Score: 0.714814 0 0.773606 0.190712 0.928366 F1_Score: 0.754049 0 0.785911 0.294174 0.94957

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786

Monocytes 64 0 2421 465 351 3301 Monocytes 64 0 2421 465 351 3301

NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309

T_cells 410 0 333 2069 22090 24902 T_cells 227 0 235 933 18754 20149

All 1731 1 2958 2921 22687 30298 All 1548 1 2860 1785 19351 25545

Round7-r'tonsil_DC Round8-r'methanol_T8
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Accuracy: 0.938785 Accuracy: 0.942047

Precision: 0.996667 0.702128 0.963702 0.772161 0.95749 Precision: 0.992935 0.685864 0.9895 0.792398 0.953598

Recall/Sensitivity:0.900602 0.929577 0.959061 0.799857 0.96577 Recall/Sensitivity:0.931325 0.922535 0.964479 0.777618 0.967571

Specificity: 0.999566 0.995706 0.994793 0.972093 0.926498 Specificity: 0.999045 0.995399 0.998525 0.97591 0.919292

F1_Score: 0.946203 0.8 0.961376 0.785765 0.961612 F1_Score: 0.961144 0.786787 0.976829 0.784938 0.960534

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1495 14 51 46 54 1660 B_cells 1546 43 5 17 49 1660

Dendritic_cells 0 132 7 0 3 142 Dendritic_cells 0 131 9 0 2 142

Monocytes 1 40 1593 0 27 1661 Monocytes 9 16 1602 0 34 1661

NK_cells 3 1 2 1115 273 1394 NK_cells 2 0 1 1084 307 1394

T_cells 1 1 0 283 8041 8326 T_cells 0 1 2 267 8056 8326

All 1500 188 1653 1444 8398 13183 All 1557 191 1619 1368 8448 13183

Accuracy: 0.907419 Accuracy: 0.866173

Precision: 0.972425 0.869565 0.862696 0.584769 0.95783 Precision: 0.989785 0 0.911803 0.372631 0.989087

Recall/Sensitivity:0.917197 0.148148 0.978424 0.766033 0.92895 Recall/Sensitivity:0.977176 0 0.989212 0.957245 0.822306

Specificity: 0.995292 0.999501 0.967323 0.96 0.942863 Specificity: 0.998174 1 0.979921 0.881485 0.987324

F1_Score: 0.944004 0.253165 0.916923 0.663239 0.943169 F1_Score: 0.98344 0 0.948931 0.536439 0.898018

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsMonocytes NK_cells T_cells All

B_cells 1728 4 108 17 27 1884 B_cells 1841 3 11 29 1884

Dendritic_cells 17 40 150 3 60 270 Dendritic_cells 4 159 103 4 270

Monocytes 23 0 2086 2 21 2132 Monocytes 3 2109 14 6 2132

NK_cells 0 0 12 645 185 842 NK_cells 1 9 806 26 842

T_cells 9 2 62 436 6655 7164 T_cells 11 33 1229 5891 7164

All 1777 46 2418 1103 6948 12292 All 1860 2313 2163 5956 12292

Accuracy: 0.217389 Accuracy: 0.095677

Precision: 0.749655 0 0.034255 0.991892 0.95405 Precision: 0.828423 0 0.029671 1 0.916967

Recall/Sensitivity:1.08E-01 0 0.893185 0.043769 2.30E-01 Recall/Sensitivity:4.74E-02 0 0.896248 0.001073 8.31E-02

Specificity: 0.995182 0.999988 0.205734 0.999961 0.966227 Specificity: 0.998686 0.998724 0.075509 1 0.977042

F1_Score: 0.18847 0 0.065979 0.083838 0.370334 F1_Score: 0.089664 0 0.05744 0.002144 0.152344

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1087 1 8982 0 15 10085 B_cells 478 0 9599 0 8 10085

Monocytes 15 0 2333 2 262 2612 Monocytes 9 96 2341 0 166 2612

NK_cells 0 0 7583 367 435 8385 NK_cells 12 3 8051 9 310 8385

T_cells 348 0 49209 1 14783 64341 T_cells 78 10 58908 0 5345 64341

All 1450 1 68107 370 15495 85423 All 577 109 78899 9 5829 85423

Accuracy: 0.884805 Accuracy: 0.875603

Precision: 0.812016 0 0.846504 0.173131 0.967035 Precision: 0.81254 0 0.846504 0.174307 0.963196

Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.926516 Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.919059

Specificity: 0.987074 0.999959 0.979092 0.93868 0.889362 Specificity: 0.985929 0.999955 0.97701 0.933943 0.889362

F1_Score: 0.754049 0 0.785911 0.295019 0.946342 F1_Score: 0.754275 0 0.785911 0.296724 0.94061

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786

Monocytes 64 0 2421 465 351 3301 Monocytes 64 0 2421 465 351 3301

NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309

T_cells 227 0 235 927 17513 18902 T_cells 226 0 235 915 15624 17000

All 1548 1 2860 1779 18110 24298 All 1547 1 2860 1767 16221 22396

Round9-r'IL_10_T4_d1 Round10-r'IL-10_T4_d2
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Accuracy: 0.940605 Accuracy: 0.938254

Precision: 0.998689 0.785714 0.991985 0.809561 0.943407 Precision: 0.994167 0.795181 0.95283 0.787994 0.951312

Recall/Sensitivity:0.918072 0.929577 0.968694 0.753228 0.971055 Recall/Sensitivity:0.924096 0.929577 0.972908 0.743902 0.966851

Specificity: 0.999826 0.997239 0.998872 0.979048 0.900144 Specificity: 0.999219 0.997393 0.993057 0.976334 0.915174

F1_Score: 0.956686 0.851613 0.980201 0.780379 0.957031 F1_Score: 0.957852 0.857143 0.962764 0.765314 0.959018

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1524 18 6 7 105 1660 B_cells 1534 24 53 16 33 1660

Dendritic_cells 0 132 5 0 5 142 Dendritic_cells 0 132 9 0 1 142

Monocytes 1 17 1609 0 34 1661 Monocytes 7 9 1616 0 29 1661

NK_cells 1 0 2 1050 341 1394 NK_cells 2 0 6 1037 349 1394

T_cells 0 1 0 240 8085 8326 T_cells 0 1 12 263 8050 8326

All 1526 168 1622 1297 8570 13183 All 1543 166 1696 1316 8462 13183

Accuracy: 0.924585 Accuracy: 0.898226

Precision: 0.955739 0.967742 0.88805 0.619592 0.984049 Precision: 0.968421 0.5 0.867555 0.549801 0.954872

Recall/Sensitivity:0.985669 0.111111 0.993433 0.901425 0.921413 Recall/Sensitivity:0.927813 0.011111 0.977017 0.819477 0.909687

Specificity: 0.991737 0.999917 0.97372 0.959301 0.979134 Specificity: 0.994523 0.99975 0.968701 0.950655 0.939938

F1_Score: 0.970473 0.199336 0.937791 0.734398 0.951701 F1_Score: 0.947682 0.021739 0.919038 0.658083 0.931732

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1857 0 9 0 18 1884 B_cells 1748 0 111 15 10 1884

Dendritic_cells 19 30 213 4 4 270 Dendritic_cells 4 3 120 2 141 270

Monocytes 8 0 2118 0 6 2132 Monocytes 31 0 2083 0 18 2132

NK_cells 2 0 2 759 79 842 NK_cells 4 0 9 690 139 842

T_cells 57 1 43 462 6601 7164 T_cells 18 3 78 548 6517 7164

All 1943 31 2385 1225 6708 12292 All 1805 6 2401 1255 6825 12292

Accuracy: 0.143708 Accuracy: 0.10208

Precision: 0.695946 0.03151 1 0.945449 Precision: 0.642857 0 0.032306 0.992411 0.968488

Recall/Sensitivity:2.04E-02 0.903139 0.017174 0.148692 Recall/Sensitivity:7.23E-02 0 0.973201 0.14037 6.64E-02

Specificity: 0.998805 0.124452 1 0.973817 Specificity: 0.994624 0.999906 0.080533 0.999883 0.993407

F1_Score: 0.039688 0.060896 0.033767 0.25697 F1_Score: 0.129958 0 0.062537 0.245951 0.124273

Predicted B_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 206 9871 0 8 10085 B_cells 729 0 9354 0 2 10085

Monocytes 5 2359 0 248 2612 Monocytes 6 6 2542 3 55 2612

NK_cells 0 7945 144 296 8385 NK_cells 1 0 7125 1177 82 8385

T_cells 85 54689 0 9567 64341 T_cells 398 2 59663 6 4272 64341

All 296 74864 144 10119 85423 All 1134 8 78684 1186 4411 85423

Accuracy: 0.846175 Accuracy: 0.806556

Precision: 0.813066 0 0.853066 0.175099 0.949261 Precision: 0.815704 0 0.853066 0.175699 0.925857

Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.89252 Recall/Sensitivity:0.703807 0 0.733414 0.996764 0.848219

Specificity: 0.982076 0.999944 0.971456 0.917562 0.889362 Specificity: 0.977095 0.99993 0.961687 0.895863 0.889362

F1_Score: 0.754502 0 0.788728 0.297872 0.920016 F1_Score: 0.755636 0 0.788728 0.298739 0.885339

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786

Monocytes 64 0 2421 465 351 3301 Monocytes 64 0 2421 465 351 3301

NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309

T_cells 225 0 213 907 11169 12514 T_cells 220 0 213 901 7455 8789

All 1546 1 2838 1759 11766 17910 All 1541 1 2838 1753 8052 14185

Round11-r'nonma_T4 Round12-r'nonma_T4_afth
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Accuracy: 0.934916 Accuracy: 0.939923

Precision: 0.997374 0.5 0.915501 0.785359 0.952848 Precision: 0.996034 0.716578 0.970838 0.785509 0.954282

Recall/Sensitivity:0.91506 0.014085 0.984949 0.792683 0.968412 Recall/Sensitivity:0.907831 0.943662 0.962071 0.785509 0.967692

Specificity: 0.999653 0.999847 0.986895 0.974383 0.917851 Specificity: 0.999479 0.995936 0.995834 0.974637 0.920527

F1_Score: 0.954445 0.027397 0.948956 0.789004 0.960567 F1_Score: 0.94989 0.81459 0.966435 0.785509 0.96094

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1519 2 31 41 67 1660 B_cells 1507 19 39 33 62 1660

Dendritic_cells 0 2 113 3 24 142 Dendritic_cells 0 134 7 0 1 142

Monocytes 2 0 1636 0 23 1661 Monocytes 2 33 1598 0 28 1661

NK_cells 2 0 2 1105 285 1394 NK_cells 2 0 2 1095 295 1394

T_cells 0 0 5 258 8063 8326 T_cells 2 1 0 266 8057 8326

All 1523 4 1787 1407 8462 13183 All 1513 187 1646 1394 8443 13183

Accuracy: 0.934348 Accuracy: 0.941019

Precision: 0.967658 0.966667 0.912688 0.641187 0.9795 Precision: 0.962474 0.95122 0.969599 0.679918 0.962451

Recall/Sensitivity:0.984607 0.214815 0.99531 0.846793 0.940396 Recall/Sensitivity:0.966561 0.577778 0.987336 0.792162 0.951703

Specificity: 0.994043 0.999834 0.98002 0.965153 0.972504 Specificity: 0.993178 0.999335 0.993504 0.972576 0.948128

F1_Score: 0.976059 0.351515 0.95221 0.729785 0.95955 F1_Score: 0.964513 0.718894 0.978387 0.731761 0.957047

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1855 0 15 2 12 1884 B_cells 1821 1 6 0 56 1884

Dendritic_cells 43 58 142 19 8 270 Dendritic_cells 48 156 43 0 23 270

Monocytes 4 0 2122 2 4 2132 Monocytes 8 6 2105 0 13 2132

NK_cells 2 0 10 713 117 842 NK_cells 1 0 0 667 174 842

T_cells 13 2 36 376 6737 7164 T_cells 14 1 17 314 6818 7164

All 1917 60 2325 1112 6878 12292 All 1892 164 2171 981 7084 12292

Accuracy: 0.195228 Accuracy: 0.749143

Precision: 0.516402 0 0.034598 1 0.957132 Precision: 0.36071 0 1 0.99863 0.956204

Recall/Sensitivity:4.84E-02 0 0.928025 0.006679 2.13E-01 Recall/Sensitivity:9.98E-01 0 0.154288 0.608587 7.53E-01

Specificity: 0.993934 0.999567 0.183224 1 0.970876 Specificity: 0.763293 0.98395 1 0.999909 0.894792

F1_Score: 0.088486 0 0.066709 0.013269 0.348546 F1_Score: 0.529858 0 0.26733 0.75628 0.842301

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 488 0 9590 0 7 10085 B_cells 10062 1 0 0 22 10085

Monocytes 17 36 2424 0 135 2612 Monocytes 76 1179 403 1 953 2612

NK_cells 0 1 7856 56 472 8385 NK_cells 1866 173 0 5103 1243 8385

T_cells 440 0 50192 0 13709 64341 T_cells 15891 18 0 6 48426 64341

All 945 37 70062 56 14323 85423 All 27895 1371 403 5110 50644 85423

Accuracy: 0.80696 Accuracy: 0.839779

Precision: 0.818359 0 0.851337 0.176 0.926663 Precision: 0.849324 0 0.667994 0.238206 0.966926

Recall/Sensitivity:0.703807 0 0.734092 0.996764 0.848219 Recall/Sensitivity:0.703807 0 0.98014 0.996764 0.848219

Specificity: 0.977411 0.999929 0.961687 0.895719 0.889678 Specificity: 0.977597 0.999915 0.961687 0.913831 0.913589

F1_Score: 0.756773 0 0.788379 0.299174 0.885708 F1_Score: 0.769749 0 0.794508 0.384519 0.903691

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786

Monocytes 59 0 2388 462 344 3253 Monocytes 3 0 839 5 9 856

NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309

T_cells 220 0 213 901 7455 8789 T_cells 220 0 213 901 7455 8789

All 1536 1 2805 1750 8045 14137 All 1480 1 1256 1293 7710 11740

Round13-r'HLADR_48 Round14-r'HLADR_2397
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Accuracy: 0.944626 Accuracy: 0.942426

Precision: 0.994325 0.832061 0.950839 0.768763 0.967062 Precision: 0.998692 0.794118 0.978274 0.783297 0.954373

Recall/Sensitivity:0.95 0.767606 0.989765 0.815638 0.959164 Recall/Sensitivity:0.91988 0.950704 0.975918 0.780488 0.967211

Specificity: 0.999219 0.998313 0.992623 0.97099 0.943998 Specificity: 0.999826 0.997316 0.996876 0.974468 0.920733

F1_Score: 0.971657 0.798535 0.969912 0.791507 0.963097 F1_Score: 0.957667 0.865385 0.977095 0.78189 0.960749

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1577 15 50 8 10 1660 B_cells 1527 22 26 29 56 1660

Dendritic_cells 0 109 32 0 1 142 Dendritic_cells 0 135 7 0 0 142

Monocytes 4 5 1644 0 8 1661 Monocytes 0 13 1621 0 27 1661

NK_cells 2 1 1 1137 253 1394 NK_cells 2 0 2 1088 302 1394

T_cells 3 1 2 334 7986 8326 T_cells 0 0 1 272 8053 8326

All 1586 131 1729 1479 8258 13183 All 1529 170 1657 1389 8438 13183

Accuracy: 0.9363 Accuracy: 0.904653

Precision: 0.966475 0.965753 0.960927 0.611529 0.976166 Precision: 0.927228 0 0.939019 0.492932 0.99044

Recall/Sensitivity:0.979299 0.522222 0.992026 0.869359 0.931882 Recall/Sensitivity:0.994161 0 0.996717 0.952494 0.882189

Specificity: 0.993851 0.999584 0.991535 0.959389 0.968214 Specificity: 0.985876 0.999917 0.986417 0.927948 0.988105

F1_Score: 0.972845 0.677885 0.976229 0.717999 0.95351 F1_Score: 0.959529 0 0.967008 0.649656 0.933186

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 1845 0 5 0 34 1884 B_cells 1873 0 2 1 8 1884

Dendritic_cells 58 141 59 4 8 270 Dendritic_cells 125 0 122 12 11 270

Monocytes 2 3 2115 0 12 2132 Monocytes 2 0 2125 0 5 2132

NK_cells 0 1 0 732 109 842 NK_cells 2 0 1 802 37 842

T_cells 4 1 22 461 6676 7164 T_cells 18 1 13 812 6320 7164

All 1909 146 2201 1197 6839 12292 All 2020 1 2263 1627 6381 12292

Accuracy: 0.879365 Accuracy: 0.877328

Precision: 0.609836 0 0.995839 0.999627 0.946481 Precision: 0.996643 0 1 0.998844 0.861523

Recall/Sensitivity:9.82E-01 0 0.274885 0.638521 9.19E-01 Recall/Sensitivity:5.00E-01 0 0.148545 0.618485 1.00E+00

Specificity: 0.915859 0.992777 0.999964 0.999974 0.841381 Specificity: 0.999774 0.99863 1 0.999922 0.509582

F1_Score: 0.752544 0 0.430843 0.779274 0.932607 F1_Score: 0.666315 0 0.258667 0.763939 0.925491

Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

B_cells 9908 3 0 0 174 10085 B_cells 5047 1 0 0 5037 10085

Monocytes 114 583 718 0 1197 2612 Monocytes 14 104 388 3 2103 2612

NK_cells 1046 10 2 5354 1973 8385 NK_cells 0 0 0 5186 3199 8385

T_cells 5179 21 1 2 59138 64341 T_cells 3 12 0 3 64323 64341

All 16247 617 721 5356 62482 85423 All 5064 117 388 5192 74662 85423

Accuracy: 0.84096 Accuracy: 0.864175

Precision: 0.848505 0.671737 0.238206 0.968182 Precision: 0 0.797529 0.253707 0.99866

Recall/Sensitivity:0.709659 0.98014 0.996764 0.848219 Recall/Sensitivity: 0 0.98014 0.996764 0.848219

Specificity: 0.977597 0.96224 0.913634 0.916239 Specificity: 0.977597 0.976588 0.906065 0.991416

F1_Score: 0.772896 0.79715 0.384519 0.904239 F1_Score: 0 0.879455 0.404465 0.917313

Predicted B_cellsMonocytes NK_cells T_cells All Predicted B_cellsMonocytes NK_cells T_cells All

B_cells 1249 197 79 235 1760 Monocytes 3 839 5 9 856

Monocytes 3 839 5 9 856 NK_cells 0 0 308 1 309

NK_cells 0 0 308 1 309 T_cells 220 213 901 7455 8789

T_cells 220 213 901 7455 8789 All 223 1052 1214 7465 9954

All 1472 1249 1293 7700 11714

Round15-r'CD19_26 Round16-r'CD19_1760
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Accuracy: 0.94614276

Precision: 0.99806076 0.81437126 0.99323493 0.79407407 0.95443306

Recall/Sensitivity: 0.93012048 0.95774648 0.97230584 0.76901004 0.97357675

Specificity: 0.99973965 0.99762288 0.9990453 0.9764187 0.92032119

F1_Score: 0.96289367 0.8802589 0.98265896 0.78134111 0.96390986

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

B_cells 1544 20 5 60 31 1660

Dendritic_cells 0 136 5 0 1 142

Monocytes 1 9 1615 0 36 1661

NK_cells 2 0 1 1072 319 1394

T_cells 0 2 0 218 8106 8326

All 1547 167 1626 1350 8493 13183

Accuracy: 0.917344614

Precision: 0.93098312 0 0.92384682 0.55555556 0.98828897

Recall/Sensitivity: 0.99522293 0 0.99577861 0.9263658 0.90703518

Specificity: 0.98664489 0.99991682 0.98277559 0.94550218 0.9849844

F1_Score: 0.96203181 0 0.95846501 0.69456812 0.94592037

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

B_cells 1875 0 6 0 3 1884

Dendritic_cells 103 0 152 0 15 270

Monocytes 6 0 2123 0 3 2132

NK_cells 6 0 0 780 56 842

T_cells 24 1 17 624 6498 7164

All 2014 1 2298 1404 6575 12292

Accuracy: 0.982920291

Precision: 0.9769316 0 0.84932995 0.98514663 0.99214461

Recall/Sensitivity: 9.62E-01 0 0.89777948 0.92546213 9.97E-01

Specificity: 0.99696037 0.99778748 0.99497651 0.99848127 0.97590361

F1_Score: 0.96921847 0 0.87288293 0.95437216 0.99466708

Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

B_cells 9698 28 356 1 2 10085

Monocytes 202 19 2345 3 43 2612

NK_cells 0 135 27 7760 463 8385

T_cells 27 7 33 113 64161 64341

All 9927 189 2761 7877 64669 85423

Accuracy: 0.935228332

Precision: 0 0.99762188 0.53940455 0.99652416

Recall/Sensitivity: 0 0.98014019 0.99676375 0.91685321

Specificity: 0.99930103 0.99941793 0.93396937 0.99141631

F1_Score: 0 0.98880377 0.7 0.95502998

Predicted B_cells Monocytes NK_cells T_cells All

Monocytes 3 839 5 9 856

NK_cells 0 0 308 1 309

T_cells 0 2 258 2867 3127

All 3 841 571 2877 4292

Round17-r'CD8_5662
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• Subtype classification performance (1-Sensitivity) during group comparison. 

 

 

 

 

 

 

 

TestWithBroadS1 R1 R5 R7 R8 R12 R17

Bn 0.082121 0.079555 0.083832 0.084688 0.071856 0.063302

Bm 0.103870 0.087576 0.091650 0.095723 0.085540 0.085540

DC 0.119718 0.260563 0.084507 0.070423 0.070423 0.042254

M14 0.063341 0.018211 0.015835 0.053048 0.024545 0.026920

M16 0.080402 0.022613 0.027638 0.067839 0.035176 0.030151

NK 0.174319 0.256098 0.190100 0.210904 0.256098 0.230990

aTreg 0.001086 0.001086 0.001086 0.002172 0.001086 0.001086

nonT 0.549296 0.448357 0.485915 0.448357 0.427230 0.422535

rTreg 0.003731 0.004664 0.002799 0.003731 0.003731 0.000000

T4em 0.005128 0.007179 0.009231 0.009231 0.004103 0.000000

T4naive 0.002646 0.001764 0.000882 0.002646 0.003527 0.000882

T8em 0.075655 0.039767 0.068865 0.053346 0.050436 0.028128

T8naive 0.000749 0.000000 0.000000 0.000000 0.000000 0.000000

Tncl 0.023760 0.016073 0.023061 0.020266 0.020266 0.006289

TestWithBroadS2 R1 R5 R7 R8 R12 R17

BC 0.042463 0.126327 0.098726 0.080679 0.072187 0.004777

DC 0.925743 0.698020 0.559406 0.767327 0.985149 1.000000

pDC 0.985294 0.941176 0.897059 1.000000 1.000000 1.000000

M14 0.027640 0.064124 0.004422 0.018242 0.021559 0.003870

M16 0.024768 0.024768 0.021672 0.018576 0.030960 0.006192

NK 0.077197 0.241093 0.210214 0.188836 0.180523 0.073634

T4 0.036982 0.013314 0.009763 0.015680 0.019527 0.021006

T8 0.180233 0.076903 0.073203 0.116015 0.153541 0.157241

TestWith10x R1 R5 R7 R8 R12 R17

BC 0.994348 0.904908 0.984432 0.964601 0.927714 0.038374

M14 0.002297 0.081164 0.241960 0.083461 0.026799 0.102221

NK 0.999761 0.969231 0.979249 0.999404 0.859630 0.074538

CD45RA+CD25-T4naive 0.997233 0.958393 0.885390 0.929478 0.971371 0.004199

T4 0.977704 0.945242 0.835191 0.910818 0.957906 0.002140

CD45RA+T8naive 0.998159 0.948297 0.926378 0.958086 0.979670 0.000920

T8 0.963855 0.802723 0.687335 0.845626 0.917034 0.007934

CD45RO+T4mem 0.942293 0.835290 0.673807 0.812696 0.898963 0.000293

CD4+CD25+Treg 0.889019 0.808536 0.592614 0.764981 0.865829 0.001656
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TestWithGEO R1-17

empty_cells 1.000000

tumor_ascites_DC 1.000000

tonsil_DC 1.000000

T8_methanol_SSC 0.298127

donor1_ IL-10-producing_Foxp3-_T4 0.004812

donor2_ IL-10-producing_Foxp3-_T4 0.006835

nonmalignant_P5_CD3+CD5intSSCint_T4 0.006910

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 0.002953

HLA-DR 0.312500

HLA-DR_control 0.353776

CD19 0.692308

CD19_control 0.290341

CD8 0.189686

R1-17

M14_d1 0.011765

M14_d2 0.027842

NK 0.003236

T4 0.000000

T8 0.016129

iNKT 0.113846

MAIT 0.052356

Vd1 0.454225

Vd2 0.215686

T4 0.016580

CCR5+CD69-T4 0.020690
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• F1-score of each cell type during 17 rounds of four-supersets-swapping external cross-

validation experiments. 

 

 

 

 

 

 

 

 

 

 

TestWith-Source-BroadS1 Round1-AllSets+10*5ECRound2-AllSets+5*5ECRound3-AllSets+2*5ECRound4-AllSets+1*5ECRound5-r'1*5ECRound6-r'tumor_DCRound7-r'tonsil_DCRound8-r'methanol_T8Round9-r'IL_10_T4_d1

B_cells 0.953371 0.965217 0.951872 0.952411 0.955486 0.949325 0.953788 0.952201 0.946203

Dendritic_cells 0.692521 0.782609 0.778816 0.744615 0.769231 0 0.875421 0.73743 0.8

Monocytes 0.955583 0.969805 0.975684 0.969254 0.96362 0.953901 0.975756 0.958117 0.961376

NK_cells 0.787817 0.775144 0.762509 0.77169 0.769288 0.666424 0.775412 0.783197 0.785765

T_cells 0.955901 0.960139 0.951129 0.957128 0.957566 0.943473 0.961948 0.959279 0.961612

Round10-r'IL-10_T4_d2Round11-r'nonma_T4Round12-r'nonma_T4_afthRound13-r'HLADR_48Round14-r'HLADR_2397Round15-r'CD19_26Round16-r'CD19_1760Round17-r'CD8_5662

0.961144 0.956686 0.957852 0.954445 0.94989 0.971657 0.957667 0.962894

0.786787 0.851613 0.857143 0.027397 0.81459 0.798535 0.865385 0.880259

0.976829 0.980201 0.962764 0.948956 0.966435 0.969912 0.977095 0.982659

0.784938 0.780379 0.765314 0.789004 0.785509 0.791507 0.78189 0.781341

0.960534 0.957031 0.959018 0.960567 0.96094 0.963097 0.960749 0.96391

TestWith-Source-BroadS2 Round1-AllSets+10*5ECRound2-AllSets+5*5ECRound3-AllSets+2*5ECRound4-AllSets+1*5ECRound5-r'1*5ECRound6-r'tumor_DCRound7-r'tonsil_DCRound8-r'methanol_T8Round9-r'IL_10_T4_d1

B_cells 0.967033 0.960064 0.930307 0.954989 0.909895 0.934409 0.94072 0.941304 0.944004

Dendritic_cells 0.107744 0.656652 0.236422 0.347305 0.360111 0.535 0.518919 0.291022 0.253165

Monocytes 0.948548 0.95114 0.886801 0.955355 0.919414 0.95932 0.969766 0.92284 0.916923

NK_cells 0.642149 0.698885 0.657213 0.60274 0.712375 0.710994 0.741774 0.702675 0.663239

T_cells 0.923781 0.958062 0.931895 0.930007 0.94551 0.957517 0.948979 0.946316 0.943169

Round10-r'IL-10_T4_d2Round11-r'nonma_T4Round12-r'nonma_T4_afthRound13-r'HLADR_48Round14-r'HLADR_2397Round15-r'CD19_26Round16-r'CD19_1760Round17-r'CD8_5662

0.98344 0.970473 0.947682 0.976059 0.964513 0.972845 0.959529 0.962032

0 0.199336 0.021739 0.351515 0.718894 0.677885 0 0

0.948931 0.937791 0.919038 0.95221 0.978387 0.976229 0.967008 0.958465

0.536439 0.734398 0.658083 0.729785 0.731761 0.717999 0.649656 0.694568

0.898018 0.951701 0.931732 0.95955 0.957047 0.95351 0.933186 0.94592
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TestWith-Source-10x Round1-AllSets+10*5ECRound2-AllSets+5*5ECRound3-AllSets+2*5ECRound4-AllSets+1*5ECRound5-r'1*5ECRound6-r'tumor_DCRound7-r'tonsil_DCRound8-r'methanol_T8Round9-r'IL_10_T4_d1

B_cells 0.011212 0.031212 0.042437 0.06844 0.159753 0.027722 0.030129 0.067929 0.18847

Dendritic_cells 0 0 0 0 0 0 0 0 0

Monocytes 0.060978 0.055378 0.060186 0.060754 0.061488 0.055985 0.055375 0.060595 0.065979

NK_cells 0.000477 0.185418 0.000477 0.000477 0.059701 0.000477 0.040659 0.001192 0.083838

T_cells 0.071807 0.248987 0.054488 0.118591 0.203362 0.107496 0.364322 0.223344 0.370334

Round10-r'IL-10_T4_d2Round11-r'nonma_T4Round12-r'nonma_T4_afthRound13-r'HLADR_48Round14-r'HLADR_2397Round15-r'CD19_26Round16-r'CD19_1760Round17-r'CD8_5662

0.089664 0.039688 0.129958 0.088486 0.529858 0.752544 0.666315 0.969218

0 0 0 0 0 0 0 0

0.05744 0.060896 0.062537 0.066709 0.26733 0.430843 0.258667 0.872883

0.002144 0.033767 0.245951 0.013269 0.75628 0.779274 0.763939 0.954372

0.152344 0.25697 0.124273 0.348546 0.842301 0.932607 0.925491 0.994667

TestWith-Source-GEODB Round1-AllSets+10*5ECRound2-AllSets+5*5ECRound3-AllSets+2*5ECRound4-AllSets+1*5ECRound5-r'1*5ECRound6-r'tumor_DCRound7-r'tonsil_DCRound8-r'methanol_T8Round9-r'IL_10_T4_d1

B_cells 0.687073 0.688013 0.688578 0.688767 0.688956 0.70777 0.714814 0.754049 0.754049

Dendritic_cells 0.004532 0.002282 0.000916 0.000459 0 0

Monocytes 0.483378 0.48362 0.483765 0.483813 0.483861 0.558542 0.773606 0.785911 0.785911

NK_cells 0.180328 0.180592 0.180751 0.180804 0.180857 0.189073 0.190712 0.294174 0.295019

T_cells 0.922434 0.922531 0.922589 0.922608 0.922627 0.923206 0.928366 0.94957 0.946342

Round10-r'IL-10_T4_d2Round11-r'nonma_T4Round12-r'nonma_T4_afthRound13-r'HLADR_48Round14-r'HLADR_2397Round15-r'CD19_26Round16-r'CD19_1760Round17-r'CD8_5662

0.754275 0.754502 0.755636 0.756773 0.769749 0.772896

0.785911 0.788728 0.788728 0.788379 0.794508 0.79715 0.879455 0.988804

0.296724 0.297872 0.298739 0.299174 0.384519 0.384519 0.404465 0.7

0.94061 0.920016 0.885339 0.885708 0.903691 0.904239 0.917313 0.95503
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• Split confusion matrix results of group comparison. 

 

 

 

 

 

 

 

 

SplitConfusionMatrix-R1(10EC*5)
(R1 included ALL groups: all non-representative GEO datasets, and 10EC*5 in GEO 5-classes.)

Train: 10xall(Clean)+GEOall+BroadS2all(Clean)+++10EC-x-five

Test: BroadS1

EXP DataSets Subtype SubtypeN TotalCellN Training Testing Accuracy: 0.933323219

BC 10085 √ Precision: 0.9993395 0.57077626 0.97975965 0.75327225 0.9550414

M14 2612 √ Recall/Sensitivity: 0.91144578 0.88028169 0.93257074 0.82568149 0.956762

NK 8385 √ Specificity: 0.99991322 0.99279196 0.9972227 0.96802104 0.9227919

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.95337114 0.69252078 0.95558297 0.78781656 0.9559009

T4 11213 √ Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1513 25 16 18 88 1660

T8 10209 √ Dendritic_cells 0 125 14 0 3 142

CD45RO+T4mem 10224 √ Monocytes 0 68 1549 0 44 1661

CD4+CD25+Treg 10263 √ NK_cells 1 0 2 1151 240 1394

M14_d1 425 √ T_cells 0 1 0 359 7966 8326

M14_d2 431 √ All 1514 219 1581 1528 8341 13183

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

10-empty-cells-in-BC 10 √

10-empty-cells-in-DC 10 √

10-empty-cells-in-MC 10 √

10-empty-cells-in-NK 10 √

10-empty-cells-in-TC 10 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

BroadS1

12292BroadS2 (Clean)

10x (Clean) 85423

13183

GEO (ALL+10EC*5)

1

34700
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

BT580 Bn_aTreg_BT580___BC 4

BT860 Bn_aTreg_BT860___BC 6

NY860 Bn_aTreg_NY860___BC 3

Bn_nonT_BT580___BC 234

Bn_nonT_BT580___DC 2

Bn_nonT_BT580___MC 1

Bn_nonT_BT580___NK 2

Bn_nonT_BT580___TC 8

Bn_nonT_BT860___BC 511

Bn_nonT_BT860___DC 6

Bn_nonT_BT860___MC 7

Bn_nonT_BT860___NK 3

Bn_nonT_BT860___TC 26

Bn_nonT_NY580___BC 148

Bn_nonT_NY580___DC 2

Bn_nonT_NY580___MC 2

Bn_nonT_NY580___NK 1

Bn_nonT_NY580___TC 11

Bn_nonT_NY860___BC 165

Bn_nonT_NY860___DC 6

Bn_nonT_NY860___NK 6

Bn_nonT_NY860___TC 13

Bn_T4em BT860 Bn_T4em_BT860___BC 1

Bn_Tncl BT860 Bn_Tncl_BT860___BC 1

BT860 Bm_aTreg_BT860___BC 6

NY580 Bm_aTreg_NY580___BC 1

NY860 Bm_aTreg_NY860___BC 2

Bm_nonT_BT580___BC 86

Bm_nonT_BT580___MC 1

Bm_nonT_BT580___TC 1

Bm_nonT_BT860___BC 206

Bm_nonT_BT860___DC 2

Bm_nonT_BT860___MC 2

Bm_nonT_BT860___NK 1

Bm_nonT_BT860___TC 12

Bm_nonT_NY580___BC 58

Bm_nonT_NY580___DC 1

Bm_nonT_NY580___NK 1

Bm_nonT_NY580___TC 3

Bm_nonT_NY860___BC 81

Bm_nonT_NY860___DC 6

Bm_nonT_NY860___MC 3

Bm_nonT_NY860___NK 4

Bm_nonT_NY860___TC 14

BT860 DC_aTreg_BT860___DC 1

NY580 DC_aTreg_NY580___DC 1

DC_nonT_BT580___DC 46

DC_nonT_BT580___MC 7

DC_nonT_BT580___TC 1

DC_nonT_BT860___DC 17

DC_nonT_BT860___MC 1

DC_nonT_BT860___TC 1

DC_nonT_NY580___DC 43

DC_nonT_NY580___MC 3

DC_nonT_NY860___DC 17

DC_nonT_NY860___MC 3

DC_nonT_NY860___TC 1

BT580 M14_aTreg_BT580___MC 1

BT860 M14_aTreg_BT860___MC 4

NY580 M14_aTreg_NY580___MC 2

NY860 M14_aTreg_NY860___MC 2

M14_nonT_BT580___DC 19

M14_nonT_BT580___MC 215

M14_nonT_BT580___TC 4

M14_nonT_BT860___DC 15

M14_nonT_BT860___MC 315

M14_nonT_BT860___TC 8

M14_nonT_NY580___DC 8

M14_nonT_NY580___MC 328

M14_nonT_NY580___TC 5

M14_nonT_NY860___DC 8

M14_nonT_NY860___MC 314

M14_nonT_NY860___TC 13

M14_rTreg NY580 M14_rTreg_NY580___MC 1

M14_Tncl BT580 M14_Tncl_BT580___MC 1

BT580 M16_aTreg_BT580___MC 4

BT860 M16_aTreg_BT860___MC 5

NY580 M16_aTreg_NY580___MC 7

NY860 M16_aTreg_NY860___MC 7

M16_nonT_BT580___DC 2

M16_nonT_BT580___MC 57

M16_nonT_BT860___DC 6

M16_nonT_BT860___MC 92

M16_nonT_BT860___TC 9

M16_nonT_NY580___DC 3

M16_nonT_NY580___MC 75

M16_nonT_NY580___TC 3

M16_nonT_NY860___DC 7

M16_nonT_NY860___MC 117

M16_nonT_NY860___TC 2

M16_T8em BT580 M16_T8em_BT580___MC 1

M16_T8em NY860 M16_T8em_NY860___MC 1

M16

M16_nonT

Dendritic_cells 142 0.1197 142

Bm_aTreg

DC_aTreg

BT580

Bn_aTreg

NY860

Bn

1660

Bm_nonT

Bm

BT580

BT860

NY580

Bn_nonT
0.08211169

B_cells

NY860

BT860

NY580

BT860

1661

0.0633M14

BT580

NY580

NY860

BT580

BT860

NY580

NY860

491 0.1039

BT860

398 0.0804

M14_aTreg

NY580

M16_aTreg

BT580

NY860

DC_nonT

DC

Monocytes

M14_nonT

1263
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BT580 NK_aTreg_BT580___TC 2

NY580 NK_aTreg_NY580___TC 3

NY860 NK_aTreg_NY860___TC 1

NK_nonT_BT580___MC 1

NK_nonT_BT580___NK 242

NK_nonT_BT580___TC 11

NK_nonT_BT860___BC 1

NK_nonT_BT860___NK 374

NK_nonT_BT860___TC 50

NK_nonT_NY580___MC 1

NK_nonT_NY580___NK 180

NK_nonT_NY580___TC 7

NK_nonT_NY860___NK 240

NK_nonT_NY860___TC 24

NK_T4em NY860 NK_T4em_NY860___NK 1

NK_T4naive NY860 NK_T4naive_NY860___TC 1

NK_T8em_BT580___NK 20

NK_T8em_BT580___TC 20

NK_T8em_BT860___NK 37

NK_T8em_BT860___TC 49

NK_T8em_NY580___NK 13

NK_T8em_NY580___TC 5

NK_T8em_NY860___NK 33

NK_T8em_NY860___TC 35

NK_Tncl_BT580___NK 2

NK_Tncl_BT580___TC 8

NK_Tncl_BT860___NK 3

NK_Tncl_BT860___TC 7

NK_Tncl_NY580___NK 2

NK_Tncl_NY580___TC 9

NK_Tncl_NY860___NK 4

NK_Tncl_NY860___TC 8

BT580 T_aTreg_BT580___TC 241

BT860 T_aTreg_BT860___TC 243

T_aTreg_NY580___NK 1

T_aTreg_NY580___TC 221

NY860 T_aTreg_NY860___TC 215

T_nonT_BT580___NK 56

T_nonT_BT580___TC 40

T_nonT_BT860___NK 61

T_nonT_BT860___TC 73

T_nonT_NY580___NK 59

T_nonT_NY580___TC 26

T_nonT_NY860___NK 58

T_nonT_NY860___TC 53

T_rTreg_BT580___NK 2

T_rTreg_BT580___TC 311

T_rTreg_BT860___NK 1

T_rTreg_BT860___TC 233

NY580 T_rTreg_NY580___TC 337

T_rTreg_NY860___NK 1

T_rTreg_NY860___TC 187

T_T4em_BT580___NK 2

T_T4em_BT580___TC 328

T_T4em_BT860___NK 2

T_T4em_BT860___TC 257

T_T4em_NY580___NK 1

T_T4em_NY580___TC 253

NY860 T_T4em_NY860___TC 132

T_T4naive_BT580___DC 1

T_T4naive_BT580___NK 1

T_T4naive_BT580___TC 480

BT860 T_T4naive_BT860___TC 265

T_T4naive_NY580___NK 1

T_T4naive_NY580___TC 290

NY860 T_T4naive_NY860___TC 96

T_T8em_BT580___NK 20

T_T8em_BT580___TC 246

T_T8em_BT860___NK 21

T_T8em_BT860___TC 283

T_T8em_NY580___NK 19

T_T8em_NY580___TC 247

T_T8em_NY860___NK 18

T_T8em_NY860___TC 177

BT580 T_T8naive_BT580___TC 318

BT860 T_T8naive_BT860___TC 486

T_T8naive_NY580___NK 1

T_T8naive_NY580___TC 255

NY860 T_T8naive_NY860___TC 276

T_Tncl_BT580___NK 8

T_Tncl_BT580___TC 193

T_Tncl_BT860___NK 5

T_Tncl_BT860___TC 361

T_Tncl_NY580___NK 8

T_Tncl_NY580___TC 371

T_Tncl_NY860___NK 13

T_Tncl_NY860___TC 472

All (predicted) 1514 219 1581 1528 8341 13183 13183

T_TnclTncl

975 0.0051T_T4emT4em

1431 0.0238

NY860

NY580

BT860

BT580

NY580
1336 0.0007T_T8naive

T8em

BT580

BT860

T_T8em

BT580

NY860

NY580

426 0.5493

921 0.0011T_aTreg

0.07571031

BT860

NY580

BT860

NK_nonT

NKNK_cells 1394 0.1743 1394

BT580

NK_T8em

NK_Tncl

NK_aTreg

NY580

NY860

BT580

BT860

NY860

NY580

NY860

BT580

BT860

NY580

T8naive

T_cells 8326

aTreg

BT860
T_rTregrTreg 1072 0.0037

BT580

NY580

1134 0.0026T_T4naiveT4naive

NY580

BT580

T_nonT

NY580

NY860

nonT

BT580

BT860

NY860
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.897169

BC 10085 √ Precision: 0.976719 0.592593 0.9254797 0.49239544 0.963328

M14 2612 √ Recall/Sensitivity:0.957537 0.059259 0.9727955 0.92280285 0.887353

NK 8385 √ Specificity: 0.995869 0.999085 0.98356299 0.93004367 0.952808

CD45RA+CD25-T4naive10479 √ F1_Score: 0.967033 0.107744 0.94854791 0.64214876 0.923781

T4 11213 √ Predicted B_cellsDendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1804 0 32 0 48 1884

T8 10209 √ Dendritic_cells 15 16 116 11 112 270

CD45RO+T4mem 10224 √ Monocytes 17 10 2074 11 20 2132

CD4+CD25+Treg 10263 √ NK_cells 0 0 3 777 62 842

M14_d1 425 √ T_cells 11 1 16 779 6357 7164

M14_d2 431 √ All 1847 27 2241 1578 6599 12292

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T41247 √

donor2_ IL-10-producing_Foxp3-_T41902 √

nonmalignant_P5_CD3+CD5intSSCint_T44486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

10-empty-cells-in-BC10 √

10-empty-cells-in-DC10 √

10-empty-cells-in-MC10 √

10-empty-cells-in-NK10 √

10-empty-cells-in-TC10 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292

GEO (ALL+10EC*5) 34700

2
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

pbmc1_v2_A_BC___BC 271

pbmc1_v2_A_BC___MC 5

pbmc1_v2_A_BC___TC 12

pbmc1_v2_B_BC___BC 356

pbmc1_v2_B_BC___MC 8

pbmc1_v2_B_BC___TC 24

pbmc1_v3_BC___BC 324

pbmc1_v3_BC___MC 15

pbmc1_v3_BC___TC 7

pbmc2_V2_BC___BC 853

pbmc2_V2_BC___MC 4

pbmc2_V2_BC___TC 5

pbmc1_v2_A_DC___BC 4

pbmc1_v2_A_DC___DC 2

pbmc1_v2_A_DC___MC 29

pbmc1_v2_A_DC___TC 20

pbmc1_v2_B_DC___MC 18

pbmc1_v2_B_DC___TC 15

pbmc1_v3_DC___MC 10

pbmc1_v3_DC___NK 4

pbmc1_v3_DC___TC 24

pbmc2_V2_DC___BC 4

pbmc2_V2_DC___DC 13

pbmc2_V2_DC___MC 15

pbmc2_V2_DC___TC 44

pbmc1_v2_A_pDC___BC 1

pbmc1_v2_A_pDC___MC 21

pbmc1_v2_A_pDC___NK 4

pbmc1_v2_B_pDC___MC 7

pbmc1_v2_B_pDC___NK 2

pbmc1_v2_B_pDC___TC 3

pbmc2_V2_pDC___BC 6

pbmc2_V2_pDC___DC 1

pbmc2_V2_pDC___MC 16

pbmc2_V2_pDC___NK 1

pbmc2_V2_pDC___TC 6

pbmc1_v2_A_M14___BC 9

pbmc1_v2_A_M14___DC 6

pbmc1_v2_A_M14___MC 609

pbmc1_v2_A_M14___NK 6

pbmc1_v2_A_M14___TC 10

pbmc1_v2_B_M14___BC 3

pbmc1_v2_B_M14___MC 373

pbmc1_v2_B_M14___NK 2

pbmc1_v2_B_M14___TC 1

pbmc1_v3_M14___BC 1

pbmc1_v3_M14___DC 1

pbmc1_v3_M14___MC 350

pbmc1_v3_M14___NK 1

pbmc1_v3_M14___TC 1

pbmc2_V2_M14___BC 4

pbmc2_V2_M14___DC 2

pbmc2_V2_M14___MC 427

pbmc2_V2_M14___TC 3

pbmc1_v2_A_M16___DC 1

pbmc1_v2_A_M16___MC 94

pbmc1_v2_A_M16___NK 2

pbmc1_v2_A_M16___TC 5

B pbmc1_v2_B_M16___MC 73

v3 pbmc1_v3_M16___MC 98

pbmc2 V2 pbmc2_V2_M16___MC 50

pbmc1_v2_A_NK___NK 157

pbmc1_v2_A_NK___TC 9

pbmc1_v2_B_NK___MC 3

pbmc1_v2_B_NK___NK 230

pbmc1_v2_B_NK___TC 30

pbmc1_v3_NK___NK 177

pbmc1_v3_NK___TC 17

pbmc2_V2_NK___NK 213

pbmc2_V2_NK___TC 6

pbmc1_v2_A_T4___BC 2

pbmc1_v2_A_T4___NK 25

pbmc1_v2_A_T4___TC 523

pbmc1_v2_B_T4___BC 1

pbmc1_v2_B_T4___MC 1

pbmc1_v2_B_T4___NK 31

pbmc1_v2_B_T4___TC 875

pbmc1_v3_T4___NK 48

pbmc1_v3_T4___TC 912

pbmc2_V2_T4___BC 5

pbmc2_V2_T4___DC 1

pbmc2_V2_T4___MC 4

pbmc2_V2_T4___NK 7

pbmc2_V2_T4___TC 945

pbmc1_v2_A_T8___BC 1

pbmc1_v2_A_T8___MC 5

pbmc1_v2_A_T8___NK 250

pbmc1_v2_A_T8___TC 918

pbmc1_v2_B_T8___MC 2

pbmc1_v2_B_T8___NK 185

pbmc1_v2_B_T8___TC 767

pbmc1_v3_T8___NK 148

pbmc1_v3_T8___TC 814

pbmc2_V2_T8___BC 2

pbmc2_V2_T8___MC 4

pbmc2_V2_T8___NK 85

pbmc2_V2_T8___TC 603

All (predicted) 1847 27 2241 1578 6599 12292 12292

0.0248

v3

V2pbmc2

v2

B

v2

pbmc2

M16

A

B

v3

v2

pbmc1

v2pbmc2

BCB_cells

v2

A

pbmc1

A

A

v3

pDC 68 0.9853

1884 0.0425 1884

A

B

v2

v3

pbmc1

270

Monocytes 2132

A

v2

pbmc1

Dendritic_cells

B

v2

v3

pbmc1

V2pbmc2

M14

DC 202 0.9257

B

v2pbmc1

V2pbmc2

pbmc1

T8 3784 0.1802

T_cells 7164

V2pbmc2

NKNK_cells 842 0.0772 842

A

V2pbmc2

pbmc1

T4 3380 0.0370

B

B

v3

1809 0.0276

A
v2

323
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.059281458

BC 10085 √ Precision: 0.68674699 0.03145026 1 0.96851

M14 2612 √ Recall/Sensitivity:0.005651958 0.99770291 0.000239 0.037286

NK 8385 √ Specificity: 0.99965489 0.03086546 1 0.9963

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.01121164 0.06097832 0.000477 0.071807

T4 11213 √ Predicted B_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 57 10028 0 0 10085

T8 10209 √ Monocytes 1 2606 0 5 2612

CD45RO+T4mem 10224 √ NK_cells 20 8290 2 73 8385

CD4+CD25+Treg 10263 √ T_cells 5 61937 0 2399 64341

M14_d1 425 √ All 83 82861 2 2477 85423

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

10-empty-cells-in-BC 10 √

10-empty-cells-in-DC 10 √

10-empty-cells-in-MC 10 √

10-empty-cells-in-NK 10 √

10-empty-cells-in-TC 10 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

GEO (ALL+10EC*5) 34700

3

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

021-CD19+B___BC 57

021-CD19+B___MC 10028

003-M14___BC 1

003-M14___MC 2606

003-M14___TC 5

018-CD56+NK___BC 20

018-CD56+NK___MC 8290

018-CD56+NK___NK 2

018-CD56+NK___TC 73

025-CD4+CD45RA+CD25-NaiveT___BC 1

025-CD4+CD45RA+CD25-NaiveT___MC 10449

025-CD4+CD45RA+CD25-NaiveT___TC 29

026-T4___BC 1

026-T4___MC 10962

026-T4___TC 250

027-CD8+CD45RA+NaiveCytotoxicT___MC 11931

027-CD8+CD45RA+NaiveCytotoxicT___TC 22

022-T8___MC 9840

022-T8___TC 369

023-CD4+CD45RO+MemoryT___MC 9634

023-CD4+CD45RO+MemoryT___TC 590

024-CD4+CD25+RegulatoryT___BC 3

024-CD4+CD25+RegulatoryT___MC 9121

024-CD4+CD25+RegulatoryT___TC 1139

All (predicted) 83 0 82861 2 2477 85423 85423

CD4+CD25+Treg 10263 0.8890

64341T_cells

8385

10085

2612

10209 0.9639T8

CD45RO+T4mem 10224 0.9423

NK

0.9777

11953 0.9982

8385 0.9998

CD45RA+T8naive

NK_cells

B_cells BC 10085 0.9943

M14Monocytes 2612 0.0023

CD45RA+CD25-T4naive 10479 0.9972

T4 11213
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.751757925

BC 10085 √ Precision: 0.6747182 0.19607843 0.36102 0.099451 0.961145

M14 2612 √ Recall/Sensitivity:0.69988864 0.00229253 0.731199 0.965517 0.886721

NK 8385 √ Specificity: 0.98158279 0.99864856 0.863487 0.91888 0.908766

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.68707297 0.00453206 0.483378 0.180328 0.922434

T4 11213 √ Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1257 11 204 79 245 1796

T8 10209 √ Dendritic_cells 132 10 3748 176 296 4362

CD45RO+T4mem 10224 √ Monocytes 64 10 2421 465 351 3311

CD4+CD25+Treg 10263 √ NK_cells 0 10 0 308 1 319

M14_d1 425 √ T_cells 410 10 333 2069 22090 24912

M14_d2 431 √ All 1863 51 6706 3097 22983 34700

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

10-empty-cells-in-BC 10 √

10-empty-cells-in-DC 10 √

10-empty-cells-in-MC 10 √

10-empty-cells-in-NK 10 √

10-empty-cells-in-TC 10 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

34700GEO (ALL+10EC*5)

4

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

GEO_GSM3258348_CD19_control___BC 1249

GEO_GSM3258348_CD19_control___MC 197

GEO_GSM3258348_CD19_control___NK 79

GEO_GSM3258348_CD19_control___TC 235

GEO_GSM3258346_CD19___BC 8

GEO_GSM3258346_CD19___DC 1

GEO_GSM3258346_CD19___MC 7

GEO_GSM3258346_CD19___TC 10

10-empty-cells-in-BC 10EC-in-BC___DC 10 10 1.0000

GEO_GSM3162630_tonsil_DC_BC 18

GEO_GSM3162630_tonsil_DC_MC 1420

GEO_GSM3162630_tonsil_DC_NK 17

GEO_GSM3162630_tonsil_DC_TC 158

GEO_GSM3162632_tumor_ascites_DC_BC 114

GEO_GSM3162632_tumor_ascites_DC_MC 2328

GEO_GSM3162632_tumor_ascites_DC_NK 159

GEO_GSM3162632_tumor_ascites_DC_TC 138

10-empty-cells-in-DC 10EC-in-DC___DC 10 10 1.0000

GEO_GSM2773408_M14_d1___MC 420

GEO_GSM2773408_M14_d1___NK 1

GEO_GSM2773408_M14_d1___TC 4

GEO_GSM2773409_M14_d2___BC 3

GEO_GSM2773409_M14_d2___MC 419

GEO_GSM2773409_M14_d2___NK 4

GEO_GSM2773409_M14_d2___TC 5

GEO_GSM3258345_HLA-DR_BC 5

GEO_GSM3258345_HLA-DR_MC 33

GEO_GSM3258345_HLA-DR_NK 3

GEO_GSM3258345_HLA-DR_TC 7

GEO_GSM3258347_HLA-DR_control_BC 56

GEO_GSM3258347_HLA-DR_control_MC 1549

GEO_GSM3258347_HLA-DR_control_NK 457

GEO_GSM3258347_HLA-DR_control_TC 335

10-empty-cells-in-MC 10EC-in-MC___DC 10 10 1.0000

GEO_GSM3544603_NK___NK 308

GEO_GSM3544603_NK___TC 1

10-empty-cells-in-NK 10EC-in-NK___DC 10 10 1.0000

T4 GEO_20190108_GSM3544603_T4___TC 222 222 0.0000

GEO_20190108_GSM3544603_T8___MC 1

GEO_20190108_GSM3544603_T8___NK 4

GEO_20190108_GSM3544603_T8___TC 305

GEO_20190108_GSM3544603_iNKT___NK 37

GEO_20190108_GSM3544603_iNKT___TC 288

GEO_20190108_GSM3544603_MAIT___NK 20

GEO_20190108_GSM3544603_MAIT___TC 362

GEO_20190108_GSM3544603_Vd1___MC 1

GEO_20190108_GSM3544603_Vd1___NK 128

GEO_20190108_GSM3544603_Vd1___TC 155

GEO_20190108_GSM3544603_Vd2___NK 44

GEO_20190108_GSM3544603_Vd2___TC 160

GEO_20190620_GSM3209407_T4___NK 16

GEO_20190620_GSM3209407_T4___TC 949

GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9

GEO_20190620_GSM3209408_CCR5+CD69-T4___TC 426

GEO_GSM3087629_T8_methanol_SSC_BC 183

GEO_GSM3087629_T8_methanol_SSC_MC 98

GEO_GSM3087629_T8_methanol_SSC_NK 1136

GEO_GSM3087629_T8_methanol_SSC_TC 3336

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_NK 6

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_TC 1241

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_BC 1

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_NK 12

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_TC 1889

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_BC 1

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_MC 22

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_NK 8

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_TC 4455

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_BC 5

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_NK 6

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_TC 3714

GEO_GSM3087628_CD8___BC 220

GEO_GSM3087628_CD8___MC 211

GEO_GSM3087628_CD8___NK 643

GEO_GSM3087628_CD8___TC 4588

10-empty-cells-in-TC 10EC-in-TC___DC 10 10 1.0000

All (predicted) 1863 51 6706 3097 22983 34700 34700

CD19_control 1760 0.2903

CD19 26 0.6923

204 0.2157

T4 965

1.0000

tumor_ascites_DC 2739 1.0000

M14_d1 425 0.0118

M14_d2 431 0.0278

HLA-DR 48 0.3125

HLA-DR_control 2397 0.3538

tonsil_DC 1613

435 0.0207

T8_methanol_SSC 4753 0.2981

donor1_ IL-10-producing_Foxp3-_T4 1247 0.0048

NK 309 0.0032

T8 310 0.0161

iNKT 325 0.1138

MAIT 382 0.0524

Vd1 284 0.4542

Vd2

CD8 5662 0.1897

B_cells 1796

Dendritic_cells 4362

Monocytes

T_cells

NK_cells

3311

319

24912

donor2_ IL-10-producing_Foxp3-_T4 1902 0.0068

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 0.0069

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 0.0030

0.0166

CCR5+CD69-T4
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SplitConfusionMatrix-R5
(Compared to R1 (R1 included ALL groups - as the first round), R5 removed the 'EC' group.)

Train: 10x(Clean)+GEO(of R5)+BroadS2(Clean)

Test: BroadS1

EXP DataSets Subtype SubtypeN TotalCellN Training Testing Accuracy: 0.936888417

BC 10085 √ Precision: 0.99607843 0.80152672 0.94709302 0.79646697 0.9477647

M14 2612 √ Recall/Sensitivity: 0.91807229 0.73943662 0.9807345 0.74390244 0.9675715

NK 8385 √ Specificity: 0.9994793 0.99800629 0.99210207 0.97752142 0.9085856

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.95548589 0.76923077 0.96362023 0.76928783 0.9575657

T4 11213 √ Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1524 16 42 2 76 1660

T8 10209 √ Dendritic_cells 0 105 35 0 2 142

CD45RO+T4mem 10224 √ Monocytes 4 9 1629 0 19 1661

CD4+CD25+Treg 10263 √ NK_cells 2 0 8 1037 347 1394

M14_d1 425 √ T_cells 0 1 6 263 8056 8326

M14_d2 431 √ All 1530 131 1720 1302 8500 13183

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

BroadS1

12292BroadS2 (Clean)

10x (Clean) 85423

34650GEO (of R5)

1

13183
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

BT580 Bn_aTreg_BT580___BC 4

BT860 Bn_aTreg_BT860___BC 6

NY860 Bn_aTreg_NY860___BC 3

Bn_nonT_BT580___BC 233

Bn_nonT_BT580___DC 1

Bn_nonT_BT580___MC 8

Bn_nonT_BT580___TC 5

Bn_nonT_BT860___BC 512

Bn_nonT_BT860___DC 4

Bn_nonT_BT860___MC 17

Bn_nonT_BT860___TC 20

Bn_nonT_NY580___BC 150

Bn_nonT_NY580___DC 2

Bn_nonT_NY580___MC 1

Bn_nonT_NY580___TC 11

Bn_nonT_NY860___BC 166

Bn_nonT_NY860___DC 3

Bn_nonT_NY860___MC 5

Bn_nonT_NY860___NK 1

Bn_nonT_NY860___TC 15

Bn_T4em BT860 Bn_T4em_BT860___BC 1

Bn_Tncl BT860 Bn_Tncl_BT860___BC 1

BT860 Bm_aTreg_BT860___BC 6

NY580 Bm_aTreg_NY580___BC 1

NY860 Bm_aTreg_NY860___BC 2

Bm_nonT_BT580___BC 85

Bm_nonT_BT580___MC 3

Bm_nonT_BT860___BC 208

Bm_nonT_BT860___DC 2

Bm_nonT_BT860___MC 4

Bm_nonT_BT860___TC 9

Bm_nonT_NY580___BC 59

Bm_nonT_NY580___DC 1

Bm_nonT_NY580___TC 3

Bm_nonT_NY860___BC 87

Bm_nonT_NY860___DC 3

Bm_nonT_NY860___MC 4

Bm_nonT_NY860___NK 1

Bm_nonT_NY860___TC 13

BT860 DC_aTreg_BT860___DC 1

NY580 DC_aTreg_NY580___DC 1

DC_nonT_BT580___DC 36

DC_nonT_BT580___MC 18

DC_nonT_BT860___DC 14

DC_nonT_BT860___MC 4

DC_nonT_BT860___TC 1

DC_nonT_NY580___DC 38

DC_nonT_NY580___MC 8

DC_nonT_NY860___DC 15

DC_nonT_NY860___MC 5

DC_nonT_NY860___TC 1

BT580 M14_aTreg_BT580___MC 1

BT860 M14_aTreg_BT860___MC 4

NY580 M14_aTreg_NY580___MC 2

NY860 M14_aTreg_NY860___MC 2

M14_nonT_BT580___BC 1

M14_nonT_BT580___DC 1

M14_nonT_BT580___MC 234

M14_nonT_BT580___TC 2

M14_nonT_BT860___BC 2

M14_nonT_BT860___DC 4

M14_nonT_BT860___MC 328

M14_nonT_BT860___TC 4

M14_nonT_NY580___MC 339

M14_nonT_NY580___TC 2

M14_nonT_NY860___MC 328

M14_nonT_NY860___TC 7

M14_rTreg NY580 M14_rTreg_NY580___MC 1

M14_Tncl BT580 M14_Tncl_BT580___MC 1

BT580 M16_aTreg_BT580___MC 4

BT860 M16_aTreg_BT860___MC 5

NY580 M16_aTreg_NY580___MC 7

NY860 M16_aTreg_NY860___MC 7

M16_nonT_BT580___DC 2

M16_nonT_BT580___MC 57

M16_nonT_BT860___BC 1

M16_nonT_BT860___DC 1

M16_nonT_BT860___MC 101

M16_nonT_BT860___TC 4

NY580 M16_nonT_NY580___MC 81

M16_nonT_NY860___DC 1

M16_nonT_NY860___MC 125

M16_T8em BT580 M16_T8em_BT580___MC 1

M16_T8em NY860 M16_T8em_NY860___MC 1

M14_nonT

Bn_aTreg

NY860

Bn_nonT
Bn

Bm

B_cells

M16_aTreg

Bm_nonT

Bm_aTreg

DCDendritic_cells

M14

DC_aTreg

Monocytes

M16_nonT

BT580

DC_nonT

NY860

M16

BT580

BT860

NY580

BT580

NY580

BT860

491

1169 0.0796

1660

142

NY860

M14_aTreg

BT860

BT860
142

NY580

398

1263 0.0182

NY860

BT580

BT860
0.0226

0.2606

1661

0.0876

NY860

BT580

NY580
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BT580 NK_aTreg_BT580___TC 2

NY580 NK_aTreg_NY580___TC 3

NY860 NK_aTreg_NY860___TC 1

NK_nonT_BT580___MC 3

NK_nonT_BT580___NK 225

NK_nonT_BT580___TC 26

NK_nonT_BT860___BC 2

NK_nonT_BT860___MC 1

NK_nonT_BT860___NK 340

NK_nonT_BT860___TC 82

NK_nonT_NY580___MC 2

NK_nonT_NY580___NK 157

NK_nonT_NY580___TC 29

NK_nonT_NY860___NK 219

NK_nonT_NY860___TC 45

NK_T4em NY860 NK_T4em_NY860___TC 1

NK_T4naive NY860 NK_T4naive_NY860___TC 1

NK_T8em_BT580___MC 1

NK_T8em_BT580___NK 13

NK_T8em_BT580___TC 26

NK_T8em_BT860___MC 1

NK_T8em_BT860___NK 28

NK_T8em_BT860___TC 57

NK_T8em_NY580___NK 11

NK_T8em_NY580___TC 7

NK_T8em_NY860___NK 33

NK_T8em_NY860___TC 35

NK_Tncl_BT580___NK 3

NK_Tncl_BT580___TC 7

NK_Tncl_BT860___NK 4

NK_Tncl_BT860___TC 6

NK_Tncl_NY580___NK 1

NK_Tncl_NY580___TC 10

NK_Tncl_NY860___NK 3

NK_Tncl_NY860___TC 9

T_aTreg_BT580___NK 1

T_aTreg_BT580___TC 240

BT860 T_aTreg_BT860___TC 243

NY580 T_aTreg_NY580___TC 222

NY860 T_aTreg_NY860___TC 215

T_nonT_BT580___MC 1

T_nonT_BT580___NK 45

T_nonT_BT580___TC 50

T_nonT_BT860___MC 1

T_nonT_BT860___NK 51

T_nonT_BT860___TC 82

T_nonT_NY580___NK 48

T_nonT_NY580___TC 37

T_nonT_NY860___NK 45

T_nonT_NY860___TC 66

T_rTreg_BT580___MC 1

T_rTreg_BT580___NK 1

T_rTreg_BT580___TC 311

T_rTreg_BT860___MC 1

T_rTreg_BT860___NK 1

T_rTreg_BT860___TC 232

NY580 T_rTreg_NY580___TC 337

T_rTreg_NY860___NK 1

T_rTreg_NY860___TC 187

T_T4em_BT580___MC 1

T_T4em_BT580___NK 4

T_T4em_BT580___TC 325

T_T4em_BT860___NK 1

T_T4em_BT860___TC 258

T_T4em_NY580___NK 1

T_T4em_NY580___TC 253

NY860 T_T4em_NY860___TC 132

T_T4naive_BT580___DC 1

T_T4naive_BT580___NK 1

T_T4naive_BT580___TC 480

BT860 T_T4naive_BT860___TC 265

NY580 T_T4naive_NY580___TC 291

NY860 T_T4naive_NY860___TC 96

T_T8em_BT580___NK 12

T_T8em_BT580___TC 254

T_T8em_BT860___NK 13

T_T8em_BT860___TC 291

T_T8em_NY580___NK 9

T_T8em_NY580___TC 257

T_T8em_NY860___NK 7

T_T8em_NY860___TC 188

BT580 T_T8naive_BT580___TC 318

BT860 T_T8naive_BT860___TC 486

NY580 T_T8naive_NY580___TC 256

NY860 T_T8naive_NY860___TC 276

T_Tncl_BT580___MC 1

T_Tncl_BT580___NK 5

T_Tncl_BT580___TC 195

T_Tncl_BT860___NK 3

T_Tncl_BT860___TC 363

T_Tncl_NY580___NK 7

T_Tncl_NY580___TC 372

T_Tncl_NY860___NK 7

T_Tncl_NY860___TC 478

All (predicted) 1530 131 1720 1302 8500 13183 13183

NK_nonT

BT580

NKNK_cells 1394

NK_Tncl

NK_aTreg

NK_T8em

BT580

BT860

BT580

NY860

NY860

BT860

1394 0.2561

426 0.4484

T4naive 1134 0.0018T_T4naive

NY580

NY860

NY860

NY580

NY860

BT580

BT860

NY580

BT580

BT580

BT580

BT580

1431 0.0161

NY860

NY580

BT860

T8em

T8naive

BT580

BT860

T_T8naive

T_T8em

NY580

NY860

1336

0.0398

0.0000

1031

T_cells 8326

T_TnclTncl

1072 0.0047BT860T_rTregrTreg

975 0.0072

BT580

T_T4emT4em

921 0.0011T_aTregaTreg

nonT
BT860

T_nonT

NY580

BT860

NY580
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.910023

BC 10085 √ Precision: 0.94925 0.714286 0.8980322 0.67121849 0.938041

M14 2612 √ Recall/Sensitivity:0.873673 0.240741 0.94183865 0.75890736 0.953099

NK 8385 √ Specificity: 0.991545 0.997837 0.97755906 0.97266376 0.912051

CD45RA+CD25-T4naive10479 √ F1_Score: 0.909895 0.360111 0.91941392 0.71237458 0.94551

T4 11213 √ Predicted B_cellsDendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1646 10 45 0 183 1884

T8 10209 √ Dendritic_cells 17 65 166 4 18 270

CD45RO+T4mem 10224 √ Monocytes 62 12 2008 0 50 2132

CD4+CD25+Treg 10263 √ NK_cells 0 1 2 639 200 842

M14_d1 425 √ T_cells 9 3 15 309 6828 7164

M14_d2 431 √ All 1734 91 2236 952 7279 12292

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T41247 √

donor2_ IL-10-producing_Foxp3-_T41902 √

nonmalignant_P5_CD3+CD5intSSCint_T44486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292

GEO (of R5) 34650

2
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

pbmc1_v2_A_BC___BC 227

pbmc1_v2_A_BC___DC 4

pbmc1_v2_A_BC___MC 11

pbmc1_v2_A_BC___TC 46

pbmc1_v2_B_BC___BC 287

pbmc1_v2_B_BC___MC 15

pbmc1_v2_B_BC___TC 86

pbmc1_v3_BC___BC 303

pbmc1_v3_BC___MC 14

pbmc1_v3_BC___TC 29

pbmc2_V2_BC___BC 829

pbmc2_V2_BC___DC 6

pbmc2_V2_BC___MC 5

pbmc2_V2_BC___TC 22

pbmc1_v2_A_DC___BC 1

pbmc1_v2_A_DC___DC 11

pbmc1_v2_A_DC___MC 41

pbmc1_v2_A_DC___TC 2

pbmc1_v2_B_DC___DC 1

pbmc1_v2_B_DC___MC 31

pbmc1_v2_B_DC___TC 1

pbmc1_v3_DC___BC 1

pbmc1_v3_DC___DC 1

pbmc1_v3_DC___MC 32

pbmc1_v3_DC___NK 1

pbmc1_v3_DC___TC 3

pbmc2_V2_DC___BC 2

pbmc2_V2_DC___DC 48

pbmc2_V2_DC___MC 23

pbmc2_V2_DC___TC 3

pbmc1_v2_A_pDC___BC 7

pbmc1_v2_A_pDC___MC 13

pbmc1_v2_A_pDC___NK 1

pbmc1_v2_A_pDC___TC 5

pbmc1_v2_B_pDC___MC 9

pbmc1_v2_B_pDC___TC 3

pbmc2_V2_pDC___BC 6

pbmc2_V2_pDC___DC 4

pbmc2_V2_pDC___MC 17

pbmc2_V2_pDC___NK 2

pbmc2_V2_pDC___TC 1

pbmc1_v2_A_M14___BC 22

pbmc1_v2_A_M14___DC 6

pbmc1_v2_A_M14___MC 601

pbmc1_v2_A_M14___TC 11

pbmc1_v2_B_M14___BC 2

pbmc1_v2_B_M14___MC 372

pbmc1_v2_B_M14___TC 5

pbmc1_v3_M14___BC 5

pbmc1_v3_M14___MC 340

pbmc1_v3_M14___TC 9

pbmc2_V2_M14___BC 31

pbmc2_V2_M14___DC 5

pbmc2_V2_M14___MC 380

pbmc2_V2_M14___TC 20

pbmc1_v2_A_M16___BC 1

pbmc1_v2_A_M16___DC 1

pbmc1_v2_A_M16___MC 96

pbmc1_v2_A_M16___TC 4

B pbmc1_v2_B_M16___MC 73

pbmc1_v3_M16___BC 1

pbmc1_v3_M16___MC 96

pbmc1_v3_M16___TC 1

pbmc2 V2 pbmc2_V2_M16___MC 50

pbmc1_v2_A_NK___MC 1

pbmc1_v2_A_NK___NK 131

pbmc1_v2_A_NK___TC 34

pbmc1_v2_B_NK___MC 1

pbmc1_v2_B_NK___NK 169

pbmc1_v2_B_NK___TC 93

pbmc1_v3_NK___NK 130

pbmc1_v3_NK___TC 64

pbmc2_V2_NK___DC 1

pbmc2_V2_NK___NK 209

pbmc2_V2_NK___TC 9

pbmc1_v2_A_T4___BC 2

pbmc1_v2_A_T4___DC 1

pbmc1_v2_A_T4___NK 8

pbmc1_v2_A_T4___TC 539

pbmc1_v2_B_T4___MC 4

pbmc1_v2_B_T4___NK 6

pbmc1_v2_B_T4___TC 898

pbmc1_v3_T4___NK 14

pbmc1_v3_T4___TC 946

pbmc2_V2_T4___BC 1

pbmc2_V2_T4___DC 2

pbmc2_V2_T4___MC 6

pbmc2_V2_T4___NK 1

pbmc2_V2_T4___TC 952

pbmc1_v2_A_T8___BC 3

pbmc1_v2_A_T8___MC 3

pbmc1_v2_A_T8___NK 114

pbmc1_v2_A_T8___TC 1054

pbmc1_v2_B_T8___MC 2

pbmc1_v2_B_T8___NK 57

pbmc1_v2_B_T8___TC 895

pbmc1_v3_T8___NK 28

pbmc1_v3_T8___TC 934

pbmc2_V2_T8___BC 3

pbmc2_V2_T8___NK 81

pbmc2_V2_T8___TC 610

All (predicted) 1734 91 2236 952 7279 12292 12292

7164

v3

pbmc1

V2pbmc2

T8 3784

v2

A

B
0.0769

pbmc2

A

v3

pbmc1
M16

Monocytes

323 0.0248

T4

pbmc1

v2

A

3380 0.0133

B

v3

pbmc2 V2

T_cells

1809 0.0641

0.9412

2132

A

v2

pbmc1

NKNK_cells 842 0.2411 842

A

B

v2

pbmc1

B

v3

V2pbmc2

V2

v2

0.1263 1884

A

B

v3

pbmc1

DC 202 0.6980

270

B

v2

v3

pbmc1

v2pbmc2

v2

68

v3

pDC

v2pbmc2

v2pbmc1

V2pbmc2

BCB_cells

Dendritic_cells

A

1884

M14

A

B
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.128162205

BC 10085 √ Precision: 0.49921916 0 0.031808 1 0.945082

M14 2612 √ Recall/Sensitivity:0.09509172 0 0.918836 0.030769 0.11394

NK 8385 √ Specificity: 0.98723088 0.99959027 0.117847 1 0.979793

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.15975346 0 0.061488 0.059701 0.203362

T4 11213 √ Predicted B_cells Dendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 959 0 9121 0 5 10085

T8 10209 √ Monocytes 3 34 2400 0 175 2612

CD45RO+T4mem 10224 √ NK_cells 6 0 7875 258 246 8385

CD4+CD25+Treg 10263 √ T_cells 953 1 56056 0 7331 64341

M14_d1 425 √ All 1921 35 75452 258 7757 85423

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292

34650GEO (of R5)

3
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

021-CD19+B___BC 959

021-CD19+B___MC 9121

021-CD19+B___TC 5

003-M14___BC 3

003-M14___DC 34

003-M14___MC 2400

003-M14___TC 175

018-CD56+NK___BC 6

018-CD56+NK___MC 7875

018-CD56+NK___NK 258

018-CD56+NK___TC 246

025-CD4+CD45RA+CD25-NaiveT___BC 270

025-CD4+CD45RA+CD25-NaiveT___MC 9773

025-CD4+CD45RA+CD25-NaiveT___TC 436

026-T4___BC 241

026-T4___MC 10358

026-T4___TC 614

027-CD8+CD45RA+NaiveCytotoxicT___BC 9

027-CD8+CD45RA+NaiveCytotoxicT___MC 11326

027-CD8+CD45RA+NaiveCytotoxicT___TC 618

022-T8___BC 8

022-T8___MC 8187

022-T8___TC 2014

023-CD4+CD45RO+MemoryT___BC 18

023-CD4+CD45RO+MemoryT___DC 1

023-CD4+CD45RO+MemoryT___MC 8521

023-CD4+CD45RO+MemoryT___TC 1684

024-CD4+CD25+RegulatoryT___BC 407

024-CD4+CD25+RegulatoryT___MC 7891

024-CD4+CD25+RegulatoryT___TC 1965

All (predicted) 1921 35 75452 258 7757 85423 85423

BCB_cells 10085 0.9049 10085

NK_cells

M14Monocytes 2612 0.0812 2612

T8 10209 0.8027

CD45RO+T4mem 0.8353

64341T_cells

83858385 0.9692

CD4+CD25+Treg 10263 0.8085

CD45RA+CD25-T4naive 10479 0.9584

T4 11213 0.9452

NK

CD45RA+T8naive 11953 0.9483

10224
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.75255411

BC 10085 √ Precision: 0.6747182 0 0.36102 0.099451 0.961145

M14 2612 √ Recall/Sensitivity:0.70380739 0 0.733414 0.996764 0.887077

NK 8385 √ Specificity: 0.98156037 0.999967 0.863313 0.918785 0.908391

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.68895588 0 0.483861 0.180857 0.922627

T4 11213 √ Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1257 1 204 79 245 1786

T8 10209 √ Dendritic_cells 132 0 3748 176 296 4352

CD45RO+T4mem 10224 √ Monocytes 64 0 2421 465 351 3301

CD4+CD25+Treg 10263 √ NK_cells 0 0 0 308 1 309

M14_d1 425 √ T_cells 410 0 333 2069 22090 24902

M14_d2 431 √ All 1863 1 6706 3097 22983 34650

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

tumor_ascites_DC 1613 √

tonsil_DC 2739 √

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292

GEO (of R5)

4

34650
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

GEO_GSM3258348_CD19_control___BC 1249

GEO_GSM3258348_CD19_control___MC 197

GEO_GSM3258348_CD19_control___NK 79

GEO_GSM3258348_CD19_control___TC 235

GEO_GSM3258346_CD19___BC 8

GEO_GSM3258346_CD19___DC 1

GEO_GSM3258346_CD19___MC 7

GEO_GSM3258346_CD19___TC 10

GEO_GSM3162630_tonsil_DC_BC 18

GEO_GSM3162630_tonsil_DC_MC 1420

GEO_GSM3162630_tonsil_DC_NK 17

GEO_GSM3162630_tonsil_DC_TC 158

GEO_GSM3162632_tumor_ascites_DC_BC 114

GEO_GSM3162632_tumor_ascites_DC_MC 2328

GEO_GSM3162632_tumor_ascites_DC_NK 159

GEO_GSM3162632_tumor_ascites_DC_TC 138

GEO_GSM2773408_M14_d1___MC 420

GEO_GSM2773408_M14_d1___NK 1

GEO_GSM2773408_M14_d1___TC 4

GEO_GSM2773409_M14_d2___BC 3

GEO_GSM2773409_M14_d2___MC 419

GEO_GSM2773409_M14_d2___NK 4

GEO_GSM2773409_M14_d2___TC 5

GEO_GSM3258345_HLA-DR_BC 5

GEO_GSM3258345_HLA-DR_MC 33

GEO_GSM3258345_HLA-DR_NK 3

GEO_GSM3258345_HLA-DR_TC 7

GEO_GSM3258347_HLA-DR_control_BC 56

GEO_GSM3258347_HLA-DR_control_MC 1549

GEO_GSM3258347_HLA-DR_control_NK 457

GEO_GSM3258347_HLA-DR_control_TC 335

GEO_GSM3544603_NK___NK 308

GEO_GSM3544603_NK___TC 1

T4 GEO_20190108_GSM3544603_T4___TC 222 222 0.0000

GEO_20190108_GSM3544603_T8___MC 1

GEO_20190108_GSM3544603_T8___NK 4

GEO_20190108_GSM3544603_T8___TC 305

GEO_20190108_GSM3544603_iNKT___NK 37

GEO_20190108_GSM3544603_iNKT___TC 288

GEO_20190108_GSM3544603_MAIT___NK 20

GEO_20190108_GSM3544603_MAIT___TC 362

GEO_20190108_GSM3544603_Vd1___MC 1

GEO_20190108_GSM3544603_Vd1___NK 128

GEO_20190108_GSM3544603_Vd1___TC 155

GEO_20190108_GSM3544603_Vd2___NK 44

GEO_20190108_GSM3544603_Vd2___TC 160

GEO_20190620_GSM3209407_T4___NK 16

GEO_20190620_GSM3209407_T4___TC 949

GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9

GEO_20190620_GSM3209408_CCR5+CD69-T4___TC 426

GEO_GSM3087629_T8_methanol_SSC_BC 183

GEO_GSM3087629_T8_methanol_SSC_MC 98

GEO_GSM3087629_T8_methanol_SSC_NK 1136

GEO_GSM3087629_T8_methanol_SSC_TC 3336

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_NK 6

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_TC 1241

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_BC 1

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_NK 12

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_TC 1889

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_BC 1

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_MC 22

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_NK 8

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_TC 4455

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_BC 5

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_NK 6

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_TC 3714

GEO_GSM3087628_T8___BC 220

GEO_GSM3087628_T8___MC 211

GEO_GSM3087628_T8___NK 643

GEO_GSM3087628_T8___TC 4588

All (predicted) 1863 1 6706 3097 22983 34650 5.0906 34650

4352

tumor_ascites_DC 2739 1.0000

CD19

B_cells

26 0.6923

1786

Monocytes

M14_d1 425 0.0118

CD19_control 1760 0.2903

Dendritic_cells

tonsil_DC 1613 1.0000

309

M14_d2 431 0.0278

HLA-DR 48 0.3125

HLA-DR_control 2397 0.3538

3301

3725 0.0030

T8_methanol_SSC 4753 0.2981

NK_cells NK 309 0.0032

284 0.4542

Vd2 204 0.2157

donor2_ IL-10-producing_Foxp3-_T4

T8 310 0.0161

iNKT 325 0.1138

24902T_cells

T4 965 0.0166

CCR5+CD69-T4 435 0.0207

donor1_ IL-10-producing_Foxp3-_T4 1247 0.0048

CD8 5662 0.1897

MAIT 382 0.0524

Vd1

1902 0.0068

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 0.0069

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy
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SplitConfusionMatrix-R7
(Compared to R1 (R1 included ALL groups), R7 removed the 'EC' group and the 'Other Tissue' group.)

Train: 10x(Clean)+GEO(of R7)+BroadS2(Clean)

Test: BroadS1

EXP DataSets Subtype SubtypeN TotalCellN Training Testing Accuracy: 0.941136312

BC 10085 √ Precision: 0.99737015 0.83870968 0.9702381 0.74374177 0.9629318

M14 2612 √ Recall/Sensitivity: 0.91385542 0.91549296 0.98133654 0.80989957 0.9609657

NK 8385 √ Specificity: 0.99965287 0.99808297 0.99566048 0.96700314 0.9365864

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.95378812 0.87542088 0.97575576 0.77541209 0.9619477

T4 11213 √ Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1517 14 37 67 25 1660

T8 10209 √ Dendritic_cells 0 130 10 0 2 142

CD45RO+T4mem 10224 √ Monocytes 1 10 1630 0 20 1661

CD4+CD25+Treg 10263 √ NK_cells 2 0 2 1129 261 1394

M14_d1 425 √ T_cells 1 1 1 322 8001 8326

M14_d2 431 √ All 1521 155 1680 1518 8309 13183

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

BroadS1

12292BroadS2 (Clean)

GEO (of R7) 30298

10x (Clean) 85423

13183

1
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

BT580 Bn_aTreg_BT580___BC 4

BT860 Bn_aTreg_BT860___BC 6

Bn_aTreg_NY860___BC 2

Bn_aTreg_NY860___MC 1

Bn_nonT_BT580___BC 237

Bn_nonT_BT580___DC 1

Bn_nonT_BT580___MC 2

Bn_nonT_BT580___NK 5

Bn_nonT_BT580___TC 2

Bn_nonT_BT860___BC 509

Bn_nonT_BT860___DC 4

Bn_nonT_BT860___MC 17

Bn_nonT_BT860___NK 19

Bn_nonT_BT860___TC 4

Bn_nonT_NY580___BC 147

Bn_nonT_NY580___DC 2

Bn_nonT_NY580___MC 4

Bn_nonT_NY580___NK 6

Bn_nonT_NY580___TC 5

Bn_nonT_NY860___BC 164

Bn_nonT_NY860___DC 2

Bn_nonT_NY860___MC 3

Bn_nonT_NY860___NK 16

Bn_nonT_NY860___TC 5

Bn_T4em BT860 Bn_T4em_BT860___BC 1

Bn_Tncl BT860 Bn_Tncl_BT860___BC 1

BT860 Bm_aTreg_BT860___BC 6

NY580 Bm_aTreg_NY580___BC 1

NY860 Bm_aTreg_NY860___BC 2

Bm_nonT_BT580___BC 87

Bm_nonT_BT580___MC 1

Bm_nonT_BT860___BC 205

Bm_nonT_BT860___DC 2

Bm_nonT_BT860___MC 6

Bm_nonT_BT860___NK 5

Bm_nonT_BT860___TC 5

Bm_nonT_NY580___BC 59

Bm_nonT_NY580___DC 1

Bm_nonT_NY580___NK 1

Bm_nonT_NY580___TC 2

Bm_nonT_NY860___BC 86

Bm_nonT_NY860___DC 2

Bm_nonT_NY860___MC 3

Bm_nonT_NY860___NK 15

Bm_nonT_NY860___TC 2

BT860 DC_aTreg_BT860___DC 1

NY580 DC_aTreg_NY580___DC 1

DC_nonT_BT580___DC 51

DC_nonT_BT580___MC 3

DC_nonT_BT860___DC 16

DC_nonT_BT860___MC 2

DC_nonT_BT860___TC 1

DC_nonT_NY580___DC 44

DC_nonT_NY580___MC 2

DC_nonT_NY860___DC 17

DC_nonT_NY860___MC 3

DC_nonT_NY860___TC 1

BT580 M14_aTreg_BT580___MC 1

BT860 M14_aTreg_BT860___MC 4

NY580 M14_aTreg_NY580___MC 2

NY860 M14_aTreg_NY860___MC 2

M14_nonT_BT580___DC 1

M14_nonT_BT580___MC 235

M14_nonT_BT580___TC 2

M14_nonT_BT860___BC 1

M14_nonT_BT860___DC 4

M14_nonT_BT860___MC 328

M14_nonT_BT860___TC 5

M14_nonT_NY580___MC 339

M14_nonT_NY580___TC 2

M14_nonT_NY860___MC 330

M14_nonT_NY860___TC 5

M14_rTreg NY580 M14_rTreg_NY580___MC 1

M14_Tncl BT580 M14_Tncl_BT580___MC 1

BT580 M16_aTreg_BT580___MC 4

BT860 M16_aTreg_BT860___MC 5

NY580 M16_aTreg_NY580___MC 7

NY860 M16_aTreg_NY860___MC 7

M16_nonT_BT580___DC 3

M16_nonT_BT580___MC 56

M16_nonT_BT860___DC 2

M16_nonT_BT860___MC 100

M16_nonT_BT860___TC 5

M16_nonT_NY580___MC 80

M16_nonT_NY580___TC 1

NY860 M16_nonT_NY860___MC 126

M16_T8em BT580 M16_T8em_BT580___MC 1

M16_T8em NY860 M16_T8em_NY860___MC 1

BT860

NY580

398 0.0276

M16_nonT

M16

Monocytes

NY860

Bn

Bm

DCDendritic_cells 142 0.0845

M16_aTreg

M14_aTreg

BT860

NY860

NY580

NY860

BT580

BT580

BT860

B_cells

BT580

1263 0.0158

M14_nonT

M14

1660

NY580

Bn_nonT

Bn_aTreg

BT860

NY580

Bm_nonT

Bm_aTreg

NY860

142

1169 0.0838

491 0.0916

NY580

DC_aTreg

NY860

BT580

1661

BT860

BT580

DC_nonT
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NK_aTreg_BT580___NK 1

NK_aTreg_BT580___TC 1

NY580 NK_aTreg_NY580___TC 3

NY860 NK_aTreg_NY860___TC 1

NK_nonT_BT580___MC 1

NK_nonT_BT580___NK 236

NK_nonT_BT580___TC 17

NK_nonT_BT860___BC 2

NK_nonT_BT860___NK 358

NK_nonT_BT860___TC 65

NK_nonT_NY580___MC 1

NK_nonT_NY580___NK 177

NK_nonT_NY580___TC 10

NK_nonT_NY860___NK 238

NK_nonT_NY860___TC 26

NK_T4em NY860 NK_T4em_NY860___NK 1

NK_T4naive NY860 NK_T4naive_NY860___TC 1

NK_T8em_BT580___NK 15

NK_T8em_BT580___TC 25

NK_T8em_BT860___NK 39

NK_T8em_BT860___TC 47

NK_T8em_NY580___NK 13

NK_T8em_NY580___TC 5

NK_T8em_NY860___NK 41

NK_T8em_NY860___TC 27

NK_Tncl_BT580___NK 2

NK_Tncl_BT580___TC 8

NK_Tncl_BT860___NK 3

NK_Tncl_BT860___TC 7

NK_Tncl_NY580___NK 1

NK_Tncl_NY580___TC 10

NK_Tncl_NY860___NK 4

NK_Tncl_NY860___TC 8

T_aTreg_BT580___DC 1

T_aTreg_BT580___TC 240

BT860 T_aTreg_BT860___TC 243

NY580 T_aTreg_NY580___TC 222

NY860 T_aTreg_NY860___TC 215

T_nonT_BT580___NK 50

T_nonT_BT580___TC 46

T_nonT_BT860___NK 55

T_nonT_BT860___TC 79

T_nonT_NY580___NK 52

T_nonT_NY580___TC 33

T_nonT_NY860___NK 50

T_nonT_NY860___TC 61

BT580 T_rTreg_BT580___TC 313

T_rTreg_BT860___BC 1

T_rTreg_BT860___NK 1

T_rTreg_BT860___TC 232

NY580 T_rTreg_NY580___TC 337

T_rTreg_NY860___NK 1

T_rTreg_NY860___TC 187

T_T4em_BT580___MC 1

T_T4em_BT580___NK 2

T_T4em_BT580___TC 327

T_T4em_BT860___NK 1

T_T4em_BT860___TC 258

T_T4em_NY580___NK 4

T_T4em_NY580___TC 250

T_T4em_NY860___NK 1

T_T4em_NY860___TC 131

BT580 T_T4naive_BT580___TC 482

T_T4naive_BT860___NK 1

T_T4naive_BT860___TC 264

NY580 T_T4naive_NY580___TC 291

NY860 T_T4naive_NY860___TC 96

T_T8em_BT580___NK 13

T_T8em_BT580___TC 253

T_T8em_BT860___NK 21

T_T8em_BT860___TC 283

T_T8em_NY580___NK 18

T_T8em_NY580___TC 248

T_T8em_NY860___NK 19

T_T8em_NY860___TC 176

BT580 T_T8naive_BT580___TC 318

BT860 T_T8naive_BT860___TC 486

NY580 T_T8naive_NY580___TC 256

NY860 T_T8naive_NY860___TC 276

T_Tncl_BT580___NK 9

T_Tncl_BT580___TC 192

T_Tncl_BT860___NK 6

T_Tncl_BT860___TC 360

T_Tncl_NY580___NK 7

T_Tncl_NY580___TC 372

T_Tncl_NY860___NK 11

T_Tncl_NY860___TC 474

All (predicted) 1521 155 1680 1518 8309 13183 13183

0.0092

BT860
T_T4naiveT4naive 1134 0.0009

BT580

NK_Tncl

BT860

NY580

T_T4em

NY580

BT860

NY580

NY860

NY860

NK

T8em

T8naive

NY860

NY580

BT860

BT580

BT860

T4em 975

1431 0.0231

1336

0.0689

0.0000

1031

T_T8naive

T_T8em

NY580

NY860

NK_aTreg

8326

BT580

BT860

BT580

BT860

0.1901 1394

NY580

NY860

NY860

NY580

NY860

BT580

T_Tncl

1394NK_cells

T_cells

nonT

rTreg

BT860

BT580

921 0.0011T_aTregaTreg

426 0.4859

1072 0.0028

NK_nonT

NK_T8em

T_nonT

T_rTreg

BT580

BT580

BT860

NY860

BT580

Tncl
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.929873

BC 10085 √ Precision: 0.983778 0.96 0.94762757 0.69926393 0.941354

M14 2612 √ Recall/Sensitivity:0.901274 0.355556 0.99296435 0.78978622 0.956728

NK 8385 √ Specificity: 0.99731 0.999667 0.98848425 0.97502183 0.916732

CD45RA+CD25-T4naive10479 √ F1_Score: 0.94072 0.518919 0.96976638 0.74177356 0.948979

T4 11213 √ Predicted B_cellsDendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1698 0 10 2 174 1884

T8 10209 √ Dendritic_cells 19 96 89 1 65 270

CD45RO+T4mem 10224 √ Monocytes 0 2 2117 0 13 2132

CD4+CD25+Treg 10263 √ NK_cells 2 0 0 665 175 842

M14_d1 425 √ T_cells 7 2 18 283 6854 7164

M14_d2 431 √ All 1726 100 2234 951 7281 12292

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T41247 √

donor2_ IL-10-producing_Foxp3-_T41902 √

nonmalignant_P5_CD3+CD5intSSCint_T44486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292

30298GEO (of R7)

2
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

pbmc1_v2_A_BC___BC 233

pbmc1_v2_A_BC___MC 3

pbmc1_v2_A_BC___NK 1

pbmc1_v2_A_BC___TC 51

pbmc1_v2_B_BC___BC 305

pbmc1_v2_B_BC___MC 2

pbmc1_v2_B_BC___NK 1

pbmc1_v2_B_BC___TC 80

pbmc1_v3_BC___BC 316

pbmc1_v3_BC___TC 30

pbmc2_V2_BC___BC 844

pbmc2_V2_BC___MC 5

pbmc2_V2_BC___TC 13

pbmc1_v2_A_DC___BC 1

pbmc1_v2_A_DC___DC 10

pbmc1_v2_A_DC___MC 34

pbmc1_v2_A_DC___TC 10

pbmc1_v2_B_DC___DC 10

pbmc1_v2_B_DC___MC 11

pbmc1_v2_B_DC___TC 12

pbmc1_v3_DC___DC 13

pbmc1_v3_DC___MC 9

pbmc1_v3_DC___TC 16

pbmc2_V2_DC___BC 1

pbmc2_V2_DC___DC 56

pbmc2_V2_DC___MC 10

pbmc2_V2_DC___TC 9

pbmc1_v2_A_pDC___BC 8

pbmc1_v2_A_pDC___DC 3

pbmc1_v2_A_pDC___MC 10

pbmc1_v2_A_pDC___TC 5

pbmc1_v2_B_pDC___MC 7

pbmc1_v2_B_pDC___TC 5

pbmc2_V2_pDC___BC 9

pbmc2_V2_pDC___DC 4

pbmc2_V2_pDC___MC 8

pbmc2_V2_pDC___NK 1

pbmc2_V2_pDC___TC 8

pbmc1_v2_A_M14___MC 637

pbmc1_v2_A_M14___TC 3

pbmc1_v2_B_M14___MC 378

pbmc1_v2_B_M14___TC 1

v3 pbmc1_v3_M14___MC 354

pbmc2_V2_M14___DC 2

pbmc2_V2_M14___MC 432

pbmc2_V2_M14___TC 2

pbmc1_v2_A_M16___MC 95

pbmc1_v2_A_M16___TC 7

B pbmc1_v2_B_M16___MC 73

v3 pbmc1_v3_M16___MC 98

pbmc2 V2 pbmc2_V2_M16___MC 50

pbmc1_v2_A_NK___BC 1

pbmc1_v2_A_NK___NK 123

pbmc1_v2_A_NK___TC 42

pbmc1_v2_B_NK___NK 175

pbmc1_v2_B_NK___TC 88

pbmc1_v3_NK___NK 157

pbmc1_v3_NK___TC 37

pbmc2_V2_NK___BC 1

pbmc2_V2_NK___NK 210

pbmc2_V2_NK___TC 8

pbmc1_v2_A_T4___BC 1

pbmc1_v2_A_T4___NK 4

pbmc1_v2_A_T4___TC 545

pbmc1_v2_B_T4___DC 1

pbmc1_v2_B_T4___MC 2

pbmc1_v2_B_T4___NK 4

pbmc1_v2_B_T4___TC 901

pbmc1_v3_T4___NK 10

pbmc1_v3_T4___TC 950

pbmc2_V2_T4___BC 3

pbmc2_V2_T4___DC 1

pbmc2_V2_T4___MC 5

pbmc2_V2_T4___NK 2

pbmc2_V2_T4___TC 951

pbmc1_v2_A_T8___MC 7

pbmc1_v2_A_T8___NK 84

pbmc1_v2_A_T8___TC 1083

pbmc1_v2_B_T8___MC 2

pbmc1_v2_B_T8___NK 51

pbmc1_v2_B_T8___TC 901

pbmc1_v3_T8___NK 51

pbmc1_v3_T8___TC 911

pbmc2_V2_T8___BC 3

pbmc2_V2_T8___MC 2

pbmc2_V2_T8___NK 77

pbmc2_V2_T8___TC 612

All (predicted) 1726 100 2234 951 7281 12292 12292

Dendritic_cells

68 0.8971

270

A

B

v2
pbmc1

M14 1809 0.0044

Monocytes

323 0.0217

2132V2pbmc2

A
v2

pbmc1
M16

v3

pbmc1

B

v2

pbmc1

NKNK_cells

T_cells

T4

pbmc1

v2

A

v3

pbmc2 V2

B

A

B

v2

v3

pbmc1

V2

3380 0.0098

7164

v3

pbmc2 V2

T8 3784 0.0732

pbmc2

B

v2

v3

v2pbmc2

BCB_cells

DC 0.5594

v2

A

B

pbmc2 v2

pDC

pbmc1 v2

A

842 0.2102 842

A

pbmc1

B

pbmc2 V2

1884 0.0987 1884

202

A
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.198400899

BC 10085 √ Precision: 0.46587537 0.02873688 1 0.914184

M14 2612 √ Recall/Sensitivity:1.56E-02 0.75803982 0.020751 0.227491

NK 8385 √ Specificity: 0.99761077 0.19188272 1 0.934826

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.03012857 0.05537455 0.040659 0.364322

T4 11213 √ Predicted B_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 157 9906 0 22 10085

T8 10209 √ Monocytes 6 1980 0 626 2612

CD45RO+T4mem 10224 √ NK_cells 1 7484 174 726 8385

CD4+CD25+Treg 10263 √ T_cells 173 49531 0 14637 64341

M14_d1 425 √ All 337 68901 174 16011 85423

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

30298GEO (of R7)

3

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

021-CD19+B___BC 157

021-CD19+B___MC 9906

021-CD19+B___TC 22

003-M14___BC 6

003-M14___MC 1980

003-M14___TC 626

018-CD56+NK___BC 1

018-CD56+NK___MC 7484

018-CD56+NK___NK 174

018-CD56+NK___TC 726

025-CD4+CD45RA+CD25-NaiveT___BC 25

025-CD4+CD45RA+CD25-NaiveT___MC 9253

025-CD4+CD45RA+CD25-NaiveT___TC 1201

026-T4___BC 59

026-T4___MC 9306

026-T4___TC 1848

027-CD8+CD45RA+NaiveCytotoxicT___MC 11073

027-CD8+CD45RA+NaiveCytotoxicT___TC 880

022-T8___BC 1

022-T8___MC 7016

022-T8___TC 3192

023-CD4+CD45RO+MemoryT___MC 6889

023-CD4+CD45RO+MemoryT___TC 3335

024-CD4+CD25+RegulatoryT___BC 88

024-CD4+CD25+RegulatoryT___MC 5994

024-CD4+CD25+RegulatoryT___TC 4181

All (predicted) 337 0 68901 174 16011 85423 85423

CD45RA+T8naive 11953 0.9264

CD45RO+T4mem 10224 0.6738

T_cells 64341

NK_cells NK 8385 0.9792 8385

CD45RA+CD25-T4naive 10479 0.8854

T4 11213 0.8352

CD4+CD25+Treg 10263

T8 10209 0.6873

0.5926

Monocytes 2612 0.2420 2612M14

BCB_cells 10085 0.9844 10085
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.86065087

BC 10085 √ Precision: 0.72616984 0 0.818458 0.105443 0.973685

M14 2612 √ Recall/Sensitivity:0.70380739 0 0.733414 0.996764 0.887077

NK 8385 √ Specificity: 0.98337542 0.999967 0.980109 0.912868 0.889362

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.71481376 0 0.773606 0.190712 0.928366

T4 11213 √ Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1257 1 204 79 245 1786

T8 10209 √ Monocytes 64 0 2421 465 351 3301

CD45RO+T4mem 10224 √ NK_cells 0 0 0 308 1 309

CD4+CD25+Treg 10263 √ T_cells 410 0 333 2069 22090 24902

M14_d1 425 √ All 1731 1 2958 2921 22687 30298

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

T8_methanol_SSC 4753 √

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

30298GEO (of R7)

4

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

GEO_GSM3258348_CD19_control___BC 1249

GEO_GSM3258348_CD19_control___MC 197

GEO_GSM3258348_CD19_control___NK 79

GEO_GSM3258348_CD19_control___TC 235

GEO_GSM3258346_CD19___BC 8

GEO_GSM3258346_CD19___DC 1

GEO_GSM3258346_CD19___MC 7

GEO_GSM3258346_CD19___TC 10

GEO_GSM2773408_M14_d1___MC 420

GEO_GSM2773408_M14_d1___NK 1

GEO_GSM2773408_M14_d1___TC 4

GEO_GSM2773409_M14_d2___BC 3

GEO_GSM2773409_M14_d2___MC 419

GEO_GSM2773409_M14_d2___NK 4

GEO_GSM2773409_M14_d2___TC 5

GEO_GSM3258345_HLA-DR_BC 5

GEO_GSM3258345_HLA-DR_MC 33

GEO_GSM3258345_HLA-DR_NK 3

GEO_GSM3258345_HLA-DR_TC 7

GEO_GSM3258347_HLA-DR_control_BC 56

GEO_GSM3258347_HLA-DR_control_MC 1549

GEO_GSM3258347_HLA-DR_control_NK 457

GEO_GSM3258347_HLA-DR_control_TC 335

GEO_GSM3544603_NK___NK 308

GEO_GSM3544603_NK___TC 1

T4 GEO_20190108_GSM3544603_T4___TC 222 222 0.0000

GEO_20190108_GSM3544603_T8___MC 1

GEO_20190108_GSM3544603_T8___NK 4

GEO_20190108_GSM3544603_T8___TC 305

GEO_20190108_GSM3544603_iNKT___NK 37

GEO_20190108_GSM3544603_iNKT___TC 288

GEO_20190108_GSM3544603_MAIT___NK 20

GEO_20190108_GSM3544603_MAIT___TC 362

GEO_20190108_GSM3544603_Vd1___MC 1

GEO_20190108_GSM3544603_Vd1___NK 128

GEO_20190108_GSM3544603_Vd1___TC 155

GEO_20190108_GSM3544603_Vd2___NK 44

GEO_20190108_GSM3544603_Vd2___TC 160

GEO_20190620_GSM3209407_T4___NK 16

GEO_20190620_GSM3209407_T4___TC 949

GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9

GEO_20190620_GSM3209408_CCR5+CD69-T4___TC 426

GEO_GSM3087629_T8_methanol_SSC_BC 183

GEO_GSM3087629_T8_methanol_SSC_MC 98

GEO_GSM3087629_T8_methanol_SSC_NK 1136

GEO_GSM3087629_T8_methanol_SSC_TC 3336

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_NK 6

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_TC 1241

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_BC 1

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_NK 12

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_TC 1889

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_BC 1

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_MC 22

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_NK 8

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_TC 4455

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_BC 5

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_NK 6

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_TC 3714

GEO_GSM3087628_T8___BC 220

GEO_GSM3087628_T8___MC 211

GEO_GSM3087628_T8___NK 643

GEO_GSM3087628_T8___TC 4588

All (predicted) 1731 1 2958 2921 22687 30298 3.0906 30298

B_cells

CD19_control 1760 0.2903

1786

CD19 26 0.6923

Monocytes

M14_d1 425 0.0118

3301

M14_d2 431 0.0278

HLA-DR 48 0.3125

HLA-DR_control 2397 0.3538

NK_cells NK 309 0.0032 309

T_cells 24902

T8 310 0.0161

iNKT 325 0.1138

MAIT 382 0.0524

Vd1 284 0.4542

Vd2 204 0.2157

T4 965 0.0166

CCR5+CD69-T4 435 0.0207

T8_methanol_SSC 4753 0.2981

donor1_ IL-10-producing_Foxp3-_T4 1247 0.0048

CD8 5662 0.1897

donor2_ IL-10-producing_Foxp3-_T4 1902 0.0068

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 0.0069

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 0.0030
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SplitConfusionMatrix-R8
(Compared to R1 (R1 included ALL groups), R8 removed the 'EC', 'Other Tissue', and 'Dead Cells' groups.)

Train: 10x(Clean)+GEO(of R8)+BroadS2(Clean)

Test: BroadS1

EXP DataSets Subtype SubtypeN TotalCellN Training Testing Accuracy: 0.936509141

BC 10085 √ Precision: 0.99605263 0.61111111 0.97329193 0.77738516 0.9538115

M14 2612 √ Recall/Sensitivity: 0.91204819 0.92957746 0.94340759 0.78909613 0.964809

NK 8385 √ Specificity: 0.9994793 0.99355878 0.99626801 0.97328018 0.9199094

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.95220126 0.73743017 0.95811678 0.78319687 0.9592787

T4 11213 √ Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1514 16 30 30 70 1660

T8 10209 √ Dendritic_cells 0 132 7 0 3 142

CD45RO+T4mem 10224 √ Monocytes 1 67 1567 0 26 1661

CD4+CD25+Treg 10263 √ NK_cells 2 0 2 1100 290 1394

M14_d1 425 √ T_cells 3 1 4 285 8033 8326

M14_d2 431 √ All 1520 216 1610 1415 8422 13183

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

1

25545GEO (of R8)

10x (Clean) 85423

13183BroadS1

12292BroadS2 (Clean)
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

BT580 Bn_aTreg_BT580___BC 4

BT860 Bn_aTreg_BT860___BC 6

NY860 Bn_aTreg_NY860___BC 3

Bn_nonT_BT580___BC 235

Bn_nonT_BT580___DC 1

Bn_nonT_BT580___MC 2

Bn_nonT_BT580___NK 3

Bn_nonT_BT580___TC 6

Bn_nonT_BT860___BC 514

Bn_nonT_BT860___DC 4

Bn_nonT_BT860___MC 6

Bn_nonT_BT860___NK 12

Bn_nonT_BT860___TC 17

Bn_nonT_NY580___BC 143

Bn_nonT_NY580___DC 3

Bn_nonT_NY580___MC 7

Bn_nonT_NY580___NK 1

Bn_nonT_NY580___TC 10

Bn_nonT_NY860___BC 163

Bn_nonT_NY860___DC 3

Bn_nonT_NY860___MC 2

Bn_nonT_NY860___NK 6

Bn_nonT_NY860___TC 16

Bn_T4em BT860 Bn_T4em_BT860___BC 1

Bn_Tncl BT860 Bn_Tncl_BT860___BC 1

BT860 Bm_aTreg_BT860___BC 6

NY580 Bm_aTreg_NY580___BC 1

NY860 Bm_aTreg_NY860___BC 2

Bm_nonT_BT580___BC 85

Bm_nonT_BT580___MC 3

Bm_nonT_BT860___BC 206

Bm_nonT_BT860___DC 2

Bm_nonT_BT860___MC 7

Bm_nonT_BT860___TC 8

Bm_nonT_NY580___BC 59

Bm_nonT_NY580___DC 1

Bm_nonT_NY580___TC 3

Bm_nonT_NY860___BC 85

Bm_nonT_NY860___DC 2

Bm_nonT_NY860___MC 3

Bm_nonT_NY860___NK 8

Bm_nonT_NY860___TC 10

BT860 DC_aTreg_BT860___DC 1

NY580 DC_aTreg_NY580___DC 1

DC_nonT_BT580___DC 50

DC_nonT_BT580___MC 3

DC_nonT_BT580___TC 1

DC_nonT_BT860___DC 18

DC_nonT_BT860___TC 1

DC_nonT_NY580___DC 45

DC_nonT_NY580___MC 1

DC_nonT_NY860___DC 17

DC_nonT_NY860___MC 3

DC_nonT_NY860___TC 1

BT580 M14_aTreg_BT580___MC 1

M14_aTreg_BT860___DC 1

M14_aTreg_BT860___MC 3

NY580 M14_aTreg_NY580___MC 2

NY860 M14_aTreg_NY860___MC 2

M14_nonT_BT580___DC 10

M14_nonT_BT580___MC 226

M14_nonT_BT580___TC 2

M14_nonT_BT860___DC 13

M14_nonT_BT860___MC 319

M14_nonT_BT860___TC 6

M14_nonT_NY580___DC 11

M14_nonT_NY580___MC 327

M14_nonT_NY580___TC 3

M14_nonT_NY860___DC 13

M14_nonT_NY860___MC 314

M14_nonT_NY860___TC 8

M14_rTreg NY580 M14_rTreg_NY580___MC 1

M14_Tncl BT580 M14_Tncl_BT580___MC 1

BT580 M16_aTreg_BT580___MC 4

M16_aTreg_BT860___DC 1

M16_aTreg_BT860___MC 4

M16_aTreg_NY580___DC 1

M16_aTreg_NY580___MC 6

NY860 M16_aTreg_NY860___MC 7

M16_nonT_BT580___DC 7

M16_nonT_BT580___MC 52

M16_nonT_BT860___BC 1

M16_nonT_BT860___DC 4

M16_nonT_BT860___MC 97

M16_nonT_BT860___TC 5

M16_nonT_NY580___DC 3

M16_nonT_NY580___MC 77

M16_nonT_NY580___TC 1

M16_nonT_NY860___DC 3

M16_nonT_NY860___MC 122

M16_nonT_NY860___TC 1

M16_T8em BT580 M16_T8em_BT580___MC 1

M16_T8em NY860 M16_T8em_NY860___MC 1

BT580

NY580

BT860

1169

Bn_aTreg

BT860

Bn 0.0847

BT580

NY860

142 0.0704

491 0.0957

NY860

NY580

NY860

BT580

Bm_nonT

Bm

1660B_cells

BT580

BT860

BT860
M14_aTreg

1263 0.0530M14

142

DC_aTreg

BT860

NY580

NY860

M14_nonT

Bn_nonT

Bm_aTreg

DC_nonT

DCDendritic_cells

NY860

NY580

Monocytes 1661

BT860

NY580

M16_aTreg

BT860

NY580

BT580

M16_nonT

M16 398 0.0678
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BT580 NK_aTreg_BT580___TC 2

NY580 NK_aTreg_NY580___TC 3

NY860 NK_aTreg_NY860___TC 1

NK_nonT_BT580___MC 1

NK_nonT_BT580___NK 232

NK_nonT_BT580___TC 21

NK_nonT_BT860___BC 2

NK_nonT_BT860___NK 359

NK_nonT_BT860___TC 64

NK_nonT_NY580___MC 1

NK_nonT_NY580___NK 162

NK_nonT_NY580___TC 25

NK_nonT_NY860___NK 231

NK_nonT_NY860___TC 33

NK_T4em NY860 NK_T4em_NY860___NK 1

NK_T4naive NY860 NK_T4naive_NY860___TC 1

NK_T8em_BT580___NK 18

NK_T8em_BT580___TC 22

NK_T8em_BT860___NK 37

NK_T8em_BT860___TC 49

NK_T8em_NY580___NK 13

NK_T8em_NY580___TC 5

NK_T8em_NY860___NK 36

NK_T8em_NY860___TC 32

NK_Tncl_BT580___NK 3

NK_Tncl_BT580___TC 7

NK_Tncl_BT860___NK 3

NK_Tncl_BT860___TC 7

NK_Tncl_NY580___NK 1

NK_Tncl_NY580___TC 10

NK_Tncl_NY860___NK 4

NK_Tncl_NY860___TC 8

T_aTreg_BT580___DC 1

T_aTreg_BT580___TC 240

T_aTreg_BT860___NK 1

T_aTreg_BT860___TC 242

NY580 T_aTreg_NY580___TC 222

NY860 T_aTreg_NY860___TC 215

T_nonT_BT580___NK 47

T_nonT_BT580___TC 49

T_nonT_BT860___NK 56

T_nonT_BT860___TC 78

T_nonT_NY580___NK 45

T_nonT_NY580___TC 40

T_nonT_NY860___NK 43

T_nonT_NY860___TC 68

T_rTreg_BT580___MC 1

T_rTreg_BT580___NK 2

T_rTreg_BT580___TC 310

T_rTreg_BT860___BC 1

T_rTreg_BT860___TC 233

NY580 T_rTreg_NY580___TC 337

NY860 T_rTreg_NY860___TC 188

T_T4em_BT580___MC 2

T_T4em_BT580___NK 5

T_T4em_BT580___TC 323

BT860 T_T4em_BT860___TC 259

T_T4em_NY580___NK 1

T_T4em_NY580___TC 253

T_T4em_NY860___NK 1

T_T4em_NY860___TC 131

T_T4naive_BT580___BC 2

T_T4naive_BT580___NK 1

T_T4naive_BT580___TC 479

BT860 T_T4naive_BT860___TC 265

NY580 T_T4naive_NY580___TC 291

NY860 T_T4naive_NY860___TC 96

T_T8em_BT580___NK 12

T_T8em_BT580___TC 254

T_T8em_BT860___NK 19

T_T8em_BT860___TC 285

T_T8em_NY580___NK 11

T_T8em_NY580___TC 255

T_T8em_NY860___NK 13

T_T8em_NY860___TC 182

BT580 T_T8naive_BT580___TC 318

BT860 T_T8naive_BT860___TC 486

NY580 T_T8naive_NY580___TC 256

NY860 T_T8naive_NY860___TC 276

T_Tncl_BT580___MC 1

T_Tncl_BT580___NK 5

T_Tncl_BT580___TC 195

T_Tncl_BT860___NK 6

T_Tncl_BT860___TC 360

T_Tncl_NY580___NK 8

T_Tncl_NY580___TC 371

T_Tncl_NY860___NK 9

T_Tncl_NY860___TC 476

All (predicted) 1520 216 1610 1415 8422 13183 13183

BT580

T_nonT

T_rTreg

NY860

BT860

NY580

NY580

NY860

NK_Tncl

1336

0.0533

0.0000

1031

T_T8naive

T_T8em

NY580

NY860

T8em

T8naive

NY860

NY580

BT860

BT580

BT860

BT580

BT580

BT860

NY580

BT860

BT580

BT860

NY580

NY860

NY860

NK_aTreg

NKNK_cells 1394 0.2109 1394

NK_nonT

NK_T8em

NY580

NY860

BT580

BT580

BT860

T_T4emT4em

nonT

rTreg

BT580

426 0.4484

1072 0.0037

T_cells 8326

T_T4naiveT4naive 1134 0.0026

BT580

1431 0.0203T_TnclTncl

921 0.0022T_aTregaTreg

BT580

BT860

975 0.0092



Page | 259  

 

 

 

 

 

 

 

 

 

EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.913358

BC 10085 √ Precision: 0.964365 0.886792 0.87063228 0.61978221 0.961799

M14 2612 √ Recall/Sensitivity:0.919321 0.174074 0.98170732 0.8111639 0.931323

NK 8385 √ Specificity: 0.993851 0.999501 0.96938976 0.96340611 0.948323

CD45RA+CD25-T4naive10479 √ F1_Score: 0.941304 0.291022 0.92283951 0.7026749 0.946316

T4 11213 √ Predicted B_cellsDendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1732 0 51 0 101 1884

T8 10209 √ Dendritic_cells 8 47 204 0 11 270

CD45RO+T4mem 10224 √ Monocytes 26 3 2093 0 10 2132

CD4+CD25+Treg 10263 √ NK_cells 3 0 13 683 143 842

M14_d1 425 √ T_cells 27 3 43 419 6672 7164

M14_d2 431 √ All 1796 53 2404 1102 6937 12292

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

donor1_ IL-10-producing_Foxp3-_T41247 √

donor2_ IL-10-producing_Foxp3-_T41902 √

nonmalignant_P5_CD3+CD5intSSCint_T44486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

25545GEO (of R8)

2

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

pbmc1_v2_A_BC___BC 239

pbmc1_v2_A_BC___MC 10

pbmc1_v2_A_BC___TC 39

pbmc1_v2_B_BC___BC 350

pbmc1_v2_B_BC___MC 13

pbmc1_v2_B_BC___TC 25

pbmc1_v3_BC___BC 307

pbmc1_v3_BC___MC 15

pbmc1_v3_BC___TC 24

pbmc2_V2_BC___BC 836

pbmc2_V2_BC___MC 13

pbmc2_V2_BC___TC 13

pbmc1_v2_A_DC___DC 6

pbmc1_v2_A_DC___MC 48

pbmc1_v2_A_DC___TC 1

B pbmc1_v2_B_DC___MC 33

pbmc1_v3_DC___DC 2

pbmc1_v3_DC___MC 32

pbmc1_v3_DC___TC 4

pbmc2_V2_DC___DC 39

pbmc2_V2_DC___MC 34

pbmc2_V2_DC___TC 3

pbmc1_v2_A_pDC___BC 3

pbmc1_v2_A_pDC___MC 21

pbmc1_v2_A_pDC___TC 2

B pbmc1_v2_B_pDC___MC 12

pbmc2_V2_pDC___BC 5

pbmc2_V2_pDC___MC 24

pbmc2_V2_pDC___TC 1

pbmc1_v2_A_M14___BC 16

pbmc1_v2_A_M14___DC 2

pbmc1_v2_A_M14___MC 619

pbmc1_v2_A_M14___TC 3

pbmc1_v2_B_M14___BC 1

pbmc1_v2_B_M14___MC 376

pbmc1_v2_B_M14___TC 2

v3 pbmc1_v3_M14___MC 354

pbmc2_V2_M14___BC 6

pbmc2_V2_M14___DC 1

pbmc2_V2_M14___MC 427

pbmc2_V2_M14___TC 2

pbmc1_v2_A_M16___BC 3

pbmc1_v2_A_M16___MC 96

pbmc1_v2_A_M16___TC 3

B pbmc1_v2_B_M16___MC 73

v3 pbmc1_v3_M16___MC 98

pbmc2 V2 pbmc2_V2_M16___MC 50

pbmc1_v2_A_NK___MC 5

pbmc1_v2_A_NK___NK 122

pbmc1_v2_A_NK___TC 39

pbmc1_v2_B_NK___BC 1

pbmc1_v2_B_NK___MC 5

pbmc1_v2_B_NK___NK 180

pbmc1_v2_B_NK___TC 77

pbmc1_v3_NK___MC 3

pbmc1_v3_NK___NK 169

pbmc1_v3_NK___TC 22

pbmc2_V2_NK___BC 2

pbmc2_V2_NK___NK 212

pbmc2_V2_NK___TC 5

pbmc1_v2_A_T4___BC 2

pbmc1_v2_A_T4___MC 3

pbmc1_v2_A_T4___NK 5

pbmc1_v2_A_T4___TC 540

pbmc1_v2_B_T4___BC 1

pbmc1_v2_B_T4___MC 4

pbmc1_v2_B_T4___NK 6

pbmc1_v2_B_T4___TC 897

pbmc1_v3_T4___MC 3

pbmc1_v3_T4___NK 9

pbmc1_v3_T4___TC 948

pbmc2_V2_T4___BC 8

pbmc2_V2_T4___DC 3

pbmc2_V2_T4___MC 5

pbmc2_V2_T4___NK 4

pbmc2_V2_T4___TC 942

pbmc1_v2_A_T8___BC 9

pbmc1_v2_A_T8___MC 18

pbmc1_v2_A_T8___NK 100

pbmc1_v2_A_T8___TC 1047

pbmc1_v2_B_T8___MC 5

pbmc1_v2_B_T8___NK 77

pbmc1_v2_B_T8___TC 872

pbmc1_v3_T8___BC 1

pbmc1_v3_T8___MC 1

pbmc1_v3_T8___NK 96

pbmc1_v3_T8___TC 864

pbmc2_V2_T8___BC 6

pbmc2_V2_T8___MC 4

pbmc2_V2_T8___NK 122

pbmc2_V2_T8___TC 562

All (predicted) 1796 53 2404 1102 6937 12292 12292

68 1.0000

BCB_cells

T8

T_cells

v3

pbmc1 v2

A

pbmc2

M16

NKNK_cells

v2

v3

pbmc1

842 0.1888 842

V2pbmc2

A
v2

pbmc1

1884 0.0807 1884

A
v2

pbmc1

DC 202 0.7673

A

B

v2

v3

pbmc1

v2pbmc2

T4

A

V2pbmc2

pDC

Dendritic_cells 270

A

B

v2
pbmc1

M14 1809 0.0182

Monocytes

323 0.0186

2132

A

pbmc2 V2

B

v2

7164

3380 0.0157

A

B

v2

v3

pbmc1

V2pbmc2

3784 0.1160

B

v2

v3

pbmc1

V2pbmc2
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.127588589

BC 10085 √ Precision: 0.83802817 0 0.031333 0.833333 0.949289

M14 2612 √ Recall/Sensitivity:3.54E-02 0 0.916539 0.000596 1.27E-01

NK 8385 √ Specificity: 0.99908413 0.99989464 0.106278 0.999987 0.979366

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.06792884 0 0.060595 0.001192 0.223344

T4 11213 √ Predicted B_cells Dendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 357 1 9720 0 7 10085

T8 10209 √ Monocytes 25 8 2394 1 184 2612

CD45RO+T4mem 10224 √ NK_cells 24 0 8112 5 244 8385

CD4+CD25+Treg 10263 √ T_cells 20 0 56178 0 8143 64341

M14_d1 425 √ All 426 9 76404 6 8578 85423

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

25545GEO (of R8)

3

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

021-CD19+B___BC 357

021-CD19+B___DC 1

021-CD19+B___MC 9720

021-CD19+B___TC 7

003-M14___BC 25

003-M14___DC 8

003-M14___MC 2394

003-M14___NK 1

003-M14___TC 184

018-CD56+NK___BC 24

018-CD56+NK___MC 8112

018-CD56+NK___NK 5

018-CD56+NK___TC 244

025-CD4+CD45RA+CD25-NaiveT___BC 10

025-CD4+CD45RA+CD25-NaiveT___MC 9730

025-CD4+CD45RA+CD25-NaiveT___TC 739

026-T4___BC 3

026-T4___MC 10210

026-T4___TC 1000

027-CD8+CD45RA+NaiveCytotoxicT___MC 11452

027-CD8+CD45RA+NaiveCytotoxicT___TC 501

022-T8___BC 1

022-T8___MC 8632

022-T8___TC 1576

023-CD4+CD45RO+MemoryT___MC 8309

023-CD4+CD45RO+MemoryT___TC 1915

024-CD4+CD25+RegulatoryT___BC 6

024-CD4+CD25+RegulatoryT___MC 7845

024-CD4+CD25+RegulatoryT___TC 2412

All (predicted) 426 9 76404 6 8578 85423 85423

10085 0.9646 10085BCB_cells

M14

NK

T_cells

T8 10209 0.8456

CD45RA+CD25-T4naive 10479 0.9295

T4 11213 0.9108

CD45RA+T8naive 11953 0.9581

Monocytes

NK_cells

2612

8385

2612

8385

0.0835

0.9994

CD4+CD25+Treg 10263 0.7650

CD45RO+T4mem 10224 0.8127

64341
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.89019378

BC 10085 √ Precision: 0.8120155 0 0.846504 0.172549 0.969149

M14 2612 √ Recall/Sensitivity:0.70380739 0 0.733414 0.996764 0.930766

NK 8385 √ Specificity: 0.98775201 0.999961 0.980264 0.941473 0.889362

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.75404919 0 0.785911 0.294174 0.94957

T4 11213 √ Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1257 1 204 79 245 1786

T8 10209 √ Monocytes 64 0 2421 465 351 3301

CD45RO+T4mem 10224 √ NK_cells 0 0 0 308 1 309

CD4+CD25+Treg 10263 √ T_cells 227 0 235 933 18754 20149

M14_d1 425 √ All 1548 1 2860 1785 19351 25545

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

donor1_ IL-10-producing_Foxp3-_T4 1247 √

donor2_ IL-10-producing_Foxp3-_T4 1902 √

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 √

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 √

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

25545GEO (of R8)

4

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

GEO_GSM3258348_CD19_control___BC 1249

GEO_GSM3258348_CD19_control___MC 197

GEO_GSM3258348_CD19_control___NK 79

GEO_GSM3258348_CD19_control___TC 235

GEO_GSM3258346_CD19___BC 8

GEO_GSM3258346_CD19___DC 1

GEO_GSM3258346_CD19___MC 7

GEO_GSM3258346_CD19___TC 10

GEO_GSM2773408_M14_d1___MC 420

GEO_GSM2773408_M14_d1___NK 1

GEO_GSM2773408_M14_d1___TC 4

GEO_GSM2773409_M14_d2___BC 3

GEO_GSM2773409_M14_d2___MC 419

GEO_GSM2773409_M14_d2___NK 4

GEO_GSM2773409_M14_d2___TC 5

GEO_GSM3258345_HLA-DR_BC 5

GEO_GSM3258345_HLA-DR_MC 33

GEO_GSM3258345_HLA-DR_NK 3

GEO_GSM3258345_HLA-DR_TC 7

GEO_GSM3258347_HLA-DR_control_BC 56

GEO_GSM3258347_HLA-DR_control_MC 1549

GEO_GSM3258347_HLA-DR_control_NK 457

GEO_GSM3258347_HLA-DR_control_TC 335

GEO_GSM3544603_NK___NK 308

GEO_GSM3544603_NK___TC 1

T4 GEO_20190108_GSM3544603_T4___TC 222 222 0.0000

GEO_20190108_GSM3544603_T8___MC 1

GEO_20190108_GSM3544603_T8___NK 4

GEO_20190108_GSM3544603_T8___TC 305

GEO_20190108_GSM3544603_iNKT___NK 37

GEO_20190108_GSM3544603_iNKT___TC 288

GEO_20190108_GSM3544603_MAIT___NK 20

GEO_20190108_GSM3544603_MAIT___TC 362

GEO_20190108_GSM3544603_Vd1___MC 1

GEO_20190108_GSM3544603_Vd1___NK 128

GEO_20190108_GSM3544603_Vd1___TC 155

GEO_20190108_GSM3544603_Vd2___NK 44

GEO_20190108_GSM3544603_Vd2___TC 160

GEO_20190620_GSM3209407_T4___NK 16

GEO_20190620_GSM3209407_T4___TC 949

GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9

GEO_20190620_GSM3209408_CCR5+CD69-T4___TC 426

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_NK 6

GEO_GSM3430548_donor1_ IL-10-producing_Foxp3-_T4_TC 1241

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_BC 1

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_NK 12

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_TC 1889

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_BC 1

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_MC 22

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_NK 8

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_TC 4455

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_BC 5

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_NK 6

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_TC 3714

GEO_GSM3087628_T8___BC 220

GEO_GSM3087628_T8___MC 211

GEO_GSM3087628_T8___NK 643

GEO_GSM3087628_T8___TC 4588

All (predicted) 1548 1 2860 1785 19351 25545 2.7925 25545

0.0068

MAIT 382 0.0524

Vd1 284 0.4542

Vd2 204 0.2157

T4 965 0.0166

CCR5+CD69-T4

B_cells

CD19_control 1760 0.2903

0.0032309NK_cells

T8 310 0.0161

iNKT 325 0.1138

T_cells 20149

nonmalignant_P5_CD3+CD5intSSCint_T4 4486 0.0069

nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 3725 0.0030

CD8 5662 0.1897

435 0.0207

donor1_ IL-10-producing_Foxp3-_T4 1247 0.0048

donor2_ IL-10-producing_Foxp3-_T4 1902

NK

1786

CD19 26 0.6923

Monocytes

M14_d1 425 0.0118

3301

M14_d2 431 0.0278

HLA-DR 48 0.3125

HLA-DR_control 2397 0.3538

309
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SplitConfusionMatrix-R12
(Compared to R1 (R1 included ALL groups), R12 removed the 'EC', 'Other Tissue', 'Dead Cells', and 'Activated Cells' groups.)

Train: 10x(Clean)+GEO(of R12)+BroadS2(Clean)

Test: BroadS1

EXP DataSets Subtype SubtypeN TotalCellN Training Testing Accuracy: 0.938253812

BC 10085 √ Precision: 0.99416721 0.79518072 0.95283019 0.78799392 0.9513118

M14 2612 √ Recall/Sensitivity: 0.92409639 0.92957746 0.97290789 0.74390244 0.9668508

NK 8385 √ Specificity: 0.99921895 0.99739284 0.99305676 0.97633387 0.915174

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.95785201 0.85714286 0.96276437 0.76531365 0.9590184

T4 11213 √ Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1534 24 53 16 33 1660

T8 10209 √ Dendritic_cells 0 132 9 0 1 142

CD45RO+T4mem 10224 √ Monocytes 7 9 1616 0 29 1661

CD4+CD25+Treg 10263 √ NK_cells 2 0 6 1037 349 1394

M14_d1 425 √ T_cells 0 1 12 263 8050 8326

M14_d2 431 √ All 1543 166 1696 1316 8462 13183

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

√

√

√

√

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

1

10x (Clean) 85423

13183BroadS1

12292BroadS2 (Clean)

GEO (of R12) 14185
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

BT580 Bn_aTreg_BT580___BC 4

BT860 Bn_aTreg_BT860___BC 6

Bn_aTreg_NY860___BC 2

Bn_aTreg_NY860___MC 1

Bn_nonT_BT580___BC 235

Bn_nonT_BT580___DC 3

Bn_nonT_BT580___MC 6

Bn_nonT_BT580___NK 1

Bn_nonT_BT580___TC 2

Bn_nonT_BT860___BC 518

Bn_nonT_BT860___DC 7

Bn_nonT_BT860___MC 21

Bn_nonT_BT860___NK 3

Bn_nonT_BT860___TC 4

Bn_nonT_NY580___BC 150

Bn_nonT_NY580___DC 3

Bn_nonT_NY580___MC 3

Bn_nonT_NY580___NK 1

Bn_nonT_NY580___TC 7

Bn_nonT_NY860___BC 168

Bn_nonT_NY860___DC 5

Bn_nonT_NY860___MC 4

Bn_nonT_NY860___NK 6

Bn_nonT_NY860___TC 7

Bn_T4em BT860 Bn_T4em_BT860___BC 1

Bn_Tncl BT860 Bn_Tncl_BT860___BC 1

BT860 Bm_aTreg_BT860___BC 6

NY580 Bm_aTreg_NY580___BC 1

NY860 Bm_aTreg_NY860___BC 2

Bm_nonT_BT580___BC 86

Bm_nonT_BT580___MC 2

Bm_nonT_BT860___BC 209

Bm_nonT_BT860___DC 2

Bm_nonT_BT860___MC 8

Bm_nonT_BT860___TC 4

Bm_nonT_NY580___BC 58

Bm_nonT_NY580___DC 1

Bm_nonT_NY580___MC 1

Bm_nonT_NY580___TC 3

Bm_nonT_NY860___BC 87

Bm_nonT_NY860___DC 3

Bm_nonT_NY860___MC 7

Bm_nonT_NY860___NK 5

Bm_nonT_NY860___TC 6

BT860 DC_aTreg_BT860___DC 1

NY580 DC_aTreg_NY580___DC 1

DC_nonT_BT580___DC 51

DC_nonT_BT580___MC 3

BT860 DC_nonT_BT860___DC 19

DC_nonT_NY580___DC 45

DC_nonT_NY580___MC 1

DC_nonT_NY860___DC 15

DC_nonT_NY860___MC 5

DC_nonT_NY860___TC 1

BT580 M14_aTreg_BT580___MC 1

BT860 M14_aTreg_BT860___MC 4

NY580 M14_aTreg_NY580___MC 2

NY860 M14_aTreg_NY860___MC 2

M14_nonT_BT580___BC 3

M14_nonT_BT580___DC 1

M14_nonT_BT580___MC 231

M14_nonT_BT580___TC 3

M14_nonT_BT860___BC 3

M14_nonT_BT860___DC 5

M14_nonT_BT860___MC 326

M14_nonT_BT860___TC 4

M14_nonT_NY580___MC 337

M14_nonT_NY580___TC 4

M14_nonT_NY860___MC 327

M14_nonT_NY860___TC 8

M14_rTreg NY580 M14_rTreg_NY580___MC 1

M14_Tncl BT580 M14_Tncl_BT580___MC 1

BT580 M16_aTreg_BT580___MC 4

BT860 M16_aTreg_BT860___MC 5

NY580 M16_aTreg_NY580___MC 7

NY860 M16_aTreg_NY860___MC 7

M16_nonT_BT580___DC 2

M16_nonT_BT580___MC 57

M16_nonT_BT860___BC 1

M16_nonT_BT860___DC 1

M16_nonT_BT860___MC 97

M16_nonT_BT860___TC 8

M16_nonT_NY580___MC 79

M16_nonT_NY580___TC 2

NY860 M16_nonT_NY860___MC 126

M16_T8em BT580 M16_T8em_BT580___MC 1

M16_T8em NY860 M16_T8em_NY860___MC 1

DC_aTreg

M14_nonT

Bn_nonT

Bm_aTreg

BT860

142

1660

NY580

NY860

NY860

BT580

142 0.0704

BT580

BT580

BT860

B_cells

BT580

DC_nonT

DCDendritic_cells

NY860

Bn_aTreg

1169 0.0719Bn

NY580
Bm_nonT

Bm 491

NY860

0.0855

BT580

BT860

NY580

BT860

M16_aTreg

NY580

M16_nonT

398 0.0352M16

1661Monocytes

M14_aTreg

M14 1263 0.0245

NY580

NY860
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NK_aTreg_BT580___MC 1

NK_aTreg_BT580___TC 1

NY580 NK_aTreg_NY580___TC 3

NY860 NK_aTreg_NY860___TC 1

NK_nonT_BT580___MC 3

NK_nonT_BT580___NK 216

NK_nonT_BT580___TC 35

NK_nonT_BT860___BC 2

NK_nonT_BT860___NK 337

NK_nonT_BT860___TC 86

NK_nonT_NY580___MC 2

NK_nonT_NY580___NK 160

NK_nonT_NY580___TC 26

NK_nonT_NY860___NK 216

NK_nonT_NY860___TC 48

NK_T4em NY860 NK_T4em_NY860___TC 1

NK_T4naive NY860 NK_T4naive_NY860___TC 1

NK_T8em_BT580___NK 15

NK_T8em_BT580___TC 25

NK_T8em_BT860___NK 37

NK_T8em_BT860___TC 49

NK_T8em_NY580___NK 12

NK_T8em_NY580___TC 6

NK_T8em_NY860___NK 34

NK_T8em_NY860___TC 34

NK_Tncl_BT580___NK 2

NK_Tncl_BT580___TC 8

NK_Tncl_BT860___NK 4

NK_Tncl_BT860___TC 6

NK_Tncl_NY580___NK 1

NK_Tncl_NY580___TC 10

NK_Tncl_NY860___NK 3

NK_Tncl_NY860___TC 9

T_aTreg_BT580___MC 1

T_aTreg_BT580___TC 240

BT860 T_aTreg_BT860___TC 243

NY580 T_aTreg_NY580___TC 222

NY860 T_aTreg_NY860___TC 215

T_nonT_BT580___NK 46

T_nonT_BT580___TC 50

T_nonT_BT860___NK 51

T_nonT_BT860___TC 83

T_nonT_NY580___NK 49

T_nonT_NY580___TC 36

T_nonT_NY860___NK 36

T_nonT_NY860___TC 75

T_rTreg_BT580___MC 3

T_rTreg_BT580___TC 310

T_rTreg_BT860___MC 1

T_rTreg_BT860___TC 233

NY580 T_rTreg_NY580___TC 337

NY860 T_rTreg_NY860___TC 188

T_T4em_BT580___MC 1

T_T4em_BT580___TC 329

T_T4em_BT860___NK 3

T_T4em_BT860___TC 256

NY580 T_T4em_NY580___TC 254

NY860 T_T4em_NY860___TC 132

T_T4naive_BT580___DC 1

T_T4naive_BT580___MC 1

T_T4naive_BT580___TC 480

T_T4naive_BT860___MC 1

T_T4naive_BT860___TC 264

T_T4naive_NY580___NK 1

T_T4naive_NY580___TC 290

NY860 T_T4naive_NY860___TC 96

T_T8em_BT580___MC 1

T_T8em_BT580___NK 11

T_T8em_BT580___TC 254

T_T8em_BT860___NK 16

T_T8em_BT860___TC 288

T_T8em_NY580___NK 11

T_T8em_NY580___TC 255

T_T8em_NY860___NK 13

T_T8em_NY860___TC 182

BT580 T_T8naive_BT580___TC 318

BT860 T_T8naive_BT860___TC 486

NY580 T_T8naive_NY580___TC 256

NY860 T_T8naive_NY860___TC 276

T_Tncl_BT580___MC 2

T_Tncl_BT580___NK 8

T_Tncl_BT580___TC 191

T_Tncl_BT860___MC 1

T_Tncl_BT860___NK 6

T_Tncl_BT860___TC 359

T_Tncl_NY580___NK 7

T_Tncl_NY580___TC 372

T_Tncl_NY860___NK 5

T_Tncl_NY860___TC 480

All (predicted) 1543 166 1696 1316 8462 13183 13183

aTreg

T_cells 8326

BT580

BT860

nonT

NK_nonT

NK_T8em

T_aTreg

NY580

BT860

BT580

BT580

BT860

NY580

426 0.4272

921 0.0011

T_nonT

NY580

NY860

BT860

BT580

BT860

NY580

NY860

NY860

NY580

NY860

BT580

BT580

NK_Tncl

BT860

BT580

NK_aTreg

NKNK_cells 1394 0.2561 1394

BT580

NY860

BT580

1072 0.0037T_rTregrTreg

BT580

BT860 975 0.0041T_T4emT4em

BT860
T_TnclTncl 1431 0.0203

BT860

NY580

T_T4naiveT4naive 1134 0.0035

BT580

1031 0.0504T_T8emT8em

1336 0.0000T_T8naive

NY580

NY860

T8naive
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.898226

BC 10085 √ Precision: 0.968421 0.5 0.86755519 0.5498008 0.954872

M14 2612 √ Recall/Sensitivity:0.927813 0.011111 0.97701689 0.81947743 0.909687

NK 8385 √ Specificity: 0.994523 0.99975 0.96870079 0.95065502 0.939938

CD45RA+CD25-T4naive10479 √ F1_Score: 0.947682 0.021739 0.91903816 0.65808298 0.931732

T4 11213 √ Predicted B_cellsDendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1748 0 111 15 10 1884

T8 10209 √ Dendritic_cells 4 3 120 2 141 270

CD45RO+T4mem 10224 √ Monocytes 31 0 2083 0 18 2132

CD4+CD25+Treg 10263 √ NK_cells 4 0 9 690 139 842

M14_d1 425 √ T_cells 18 3 78 548 6517 7164

M14_d2 431 √ All 1805 6 2401 1255 6825 12292

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

√

√

√

√

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

GEO (of R12) 14185

2

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

pbmc1_v2_A_BC___BC 239

pbmc1_v2_A_BC___MC 39

pbmc1_v2_A_BC___NK 6

pbmc1_v2_A_BC___TC 4

pbmc1_v2_B_BC___BC 351

pbmc1_v2_B_BC___MC 31

pbmc1_v2_B_BC___NK 4

pbmc1_v2_B_BC___TC 2

pbmc1_v3_BC___BC 323

pbmc1_v3_BC___MC 19

pbmc1_v3_BC___NK 3

pbmc1_v3_BC___TC 1

pbmc2_V2_BC___BC 835

pbmc2_V2_BC___MC 22

pbmc2_V2_BC___NK 2

pbmc2_V2_BC___TC 3

pbmc1_v2_A_DC___MC 32

pbmc1_v2_A_DC___TC 23

pbmc1_v2_B_DC___MC 12

pbmc1_v2_B_DC___TC 21

pbmc1_v3_DC___MC 11

pbmc1_v3_DC___NK 2

pbmc1_v3_DC___TC 25

pbmc2_V2_DC___DC 3

pbmc2_V2_DC___MC 22

pbmc2_V2_DC___TC 51

pbmc1_v2_A_pDC___BC 1

pbmc1_v2_A_pDC___MC 19

pbmc1_v2_A_pDC___TC 6

pbmc1_v2_B_pDC___MC 7

pbmc1_v2_B_pDC___TC 5

pbmc2_V2_pDC___BC 3

pbmc2_V2_pDC___MC 17

pbmc2_V2_pDC___TC 10

pbmc1_v2_A_M14___BC 19

pbmc1_v2_A_M14___MC 616

pbmc1_v2_A_M14___TC 5

pbmc1_v2_B_M14___BC 5

pbmc1_v2_B_M14___MC 372

pbmc1_v2_B_M14___TC 2

pbmc1_v3_M14___MC 353

pbmc1_v3_M14___TC 1

pbmc2_V2_M14___BC 5

pbmc2_V2_M14___MC 429

pbmc2_V2_M14___TC 2

pbmc1_v2_A_M16___BC 2

pbmc1_v2_A_M16___MC 93

pbmc1_v2_A_M16___TC 7

B pbmc1_v2_B_M16___MC 73

pbmc1_v3_M16___MC 97

pbmc1_v3_M16___TC 1

pbmc2 V2 pbmc2_V2_M16___MC 50

pbmc1_v2_A_NK___BC 1

pbmc1_v2_A_NK___MC 3

pbmc1_v2_A_NK___NK 128

pbmc1_v2_A_NK___TC 34

pbmc1_v2_B_NK___BC 1

pbmc1_v2_B_NK___MC 3

pbmc1_v2_B_NK___NK 189

pbmc1_v2_B_NK___TC 70

pbmc1_v3_NK___BC 1

pbmc1_v3_NK___MC 2

pbmc1_v3_NK___NK 175

pbmc1_v3_NK___TC 16

pbmc2_V2_NK___BC 1

pbmc2_V2_NK___MC 1

pbmc2_V2_NK___NK 198

pbmc2_V2_NK___TC 19

pbmc1_v2_A_T4___BC 2

pbmc1_v2_A_T4___MC 4

pbmc1_v2_A_T4___NK 5

pbmc1_v2_A_T4___TC 539

pbmc1_v2_B_T4___BC 1

pbmc1_v2_B_T4___MC 8

pbmc1_v2_B_T4___NK 10

pbmc1_v2_B_T4___TC 889

pbmc1_v3_T4___MC 4

pbmc1_v3_T4___NK 15

pbmc1_v3_T4___TC 941

pbmc2_V2_T4___BC 3

pbmc2_V2_T4___DC 3

pbmc2_V2_T4___MC 8

pbmc2_V2_T4___NK 3

pbmc2_V2_T4___TC 945

pbmc1_v2_A_T8___BC 8

pbmc1_v2_A_T8___MC 22

pbmc1_v2_A_T8___NK 174

pbmc1_v2_A_T8___TC 970

pbmc1_v2_B_T8___BC 1

pbmc1_v2_B_T8___MC 11

pbmc1_v2_B_T8___NK 110

pbmc1_v2_B_T8___TC 832

pbmc1_v3_T8___BC 1

pbmc1_v3_T8___MC 10

pbmc1_v3_T8___NK 151

pbmc1_v3_T8___TC 800

pbmc2_V2_T8___BC 2

pbmc2_V2_T8___MC 11

pbmc2_V2_T8___NK 80

pbmc2_V2_T8___TC 601

All (predicted) 1805 6 2401 1255 6825 12292 12292

B

BCB_cells

M14

DC

pbmc1

v2

202 0.9851

A

pDC

Dendritic_cells

pbmc2 V2

v2pbmc2

pbmc2

A

B

v3

v2

pbmc1

pbmc2 V2

V2

B

v2

pbmc1

T8

T_cells

3784 0.1535

T4

pbmc1

v2

A

3380 0.0195

B

v3

pbmc2 V2

A

v3

7164

A

B

v2

v3

pbmc1

v2pbmc2

1884 0.0722 1884

B

A

v3

B

v2pbmc1

68 1.0000

270

A

NK_cells 842 0.1805 842

1809 0.0216

A
v2

v3

pbmc1
M16 323 0.0310

NK

Monocytes

pbmc1

2132

v2

v3

V2pbmc2
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.102080236

BC 10085 √ Precision: 0.64285714 0 0.032306 0.992411 0.968488

M14 2612 √ Recall/Sensitivity:7.23E-02 0 0.973201 0.14037 6.64E-02

NK 8385 √ Specificity: 0.99462423 0.99990635 0.080533 0.999883 0.993407

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.12995811 0 0.062537 0.245951 0.124273

T4 11213 √ Predicted B_cells Dendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 729 0 9354 0 2 10085

T8 10209 √ Monocytes 6 6 2542 3 55 2612

CD45RO+T4mem 10224 √ NK_cells 1 0 7125 1177 82 8385

CD4+CD25+Treg 10263 √ T_cells 398 2 59663 6 4272 64341

M14_d1 425 √ All 1134 8 78684 1186 4411 85423

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

√

√

√

√

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

14185GEO (of R12)

3

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

021-CD19+B___BC 729

021-CD19+B___MC 9354

021-CD19+B___TC 2

003-M14___BC 6

003-M14___DC 6

003-M14___MC 2542

003-M14___NK 3

003-M14___TC 55

018-CD56+NK___BC 1

018-CD56+NK___MC 7125

018-CD56+NK___NK 1177

018-CD56+NK___TC 82

025-CD4+CD45RA+CD25-NaiveT___BC 27

025-CD4+CD45RA+CD25-NaiveT___MC 10152

025-CD4+CD45RA+CD25-NaiveT___TC 300

026-T4___BC 97

026-T4___DC 2

026-T4___MC 10642

026-T4___TC 472

027-CD8+CD45RA+NaiveCytotoxicT___BC 2

027-CD8+CD45RA+NaiveCytotoxicT___MC 11707

027-CD8+CD45RA+NaiveCytotoxicT___NK 1

027-CD8+CD45RA+NaiveCytotoxicT___TC 243

022-T8___BC 2

022-T8___MC 9357

022-T8___NK 3

022-T8___TC 847

023-CD4+CD45RO+MemoryT___BC 7

023-CD4+CD45RO+MemoryT___MC 9182

023-CD4+CD45RO+MemoryT___NK 2

023-CD4+CD45RO+MemoryT___TC 1033

024-CD4+CD25+RegulatoryT___BC 263

024-CD4+CD25+RegulatoryT___MC 8623

024-CD4+CD25+RegulatoryT___TC 1377

All (predicted) 1134 8 78684 1186 4411 85423 85423

Monocytes M14 2612

NK_cells NK 8385

CD45RO+T4mem 10224

CD4+CD25+Treg 10263

T8 10209

11213T4

CD45RA+T8naive 11953

CD45RA+CD25-T4naive 10479

T_cells

BCB_cells 10085 0.9277 10085

0.0268 2612

0.8596

64341

0.8658

0.9170

0.8990

0.9579

0.9797

8385

0.9714
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.80655622

BC 10085 √ Precision: 0.81570409 0 0.853066 0.175699 0.925857

M14 2612 √ Recall/Sensitivity:0.70380739 0 0.733414 0.996764 0.848219

NK 8385 √ Specificity: 0.97709493 0.99993 0.961687 0.895863 0.889362

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.75563571 0 0.788728 0.298739 0.885339

T4 11213 √ Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1257 1 204 79 245 1786

T8 10209 √ Monocytes 64 0 2421 465 351 3301

CD45RO+T4mem 10224 √ NK_cells 0 0 0 308 1 309

CD4+CD25+Treg 10263 √ T_cells 220 0 213 901 7455 8789

M14_d1 425 √ All 1541 1 2838 1753 8052 14185

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

√

√

√

√

√

√

√

HLA-DR 48 √

HLA-DR_control 2397 √

CD19 26 √

CD19_control 1760 √

CD8 5662 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

14185GEO (of R12)

4

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

GEO_GSM3258348_CD19_control___BC 1249

GEO_GSM3258348_CD19_control___MC 197

GEO_GSM3258348_CD19_control___NK 79

GEO_GSM3258348_CD19_control___TC 235

GEO_GSM3258346_CD19___BC 8

GEO_GSM3258346_CD19___DC 1

GEO_GSM3258346_CD19___MC 7

GEO_GSM3258346_CD19___TC 10

GEO_GSM2773408_M14_d1___MC 420

GEO_GSM2773408_M14_d1___NK 1

GEO_GSM2773408_M14_d1___TC 4

GEO_GSM2773409_M14_d2___BC 3

GEO_GSM2773409_M14_d2___MC 419

GEO_GSM2773409_M14_d2___NK 4

GEO_GSM2773409_M14_d2___TC 5

GEO_GSM3258345_HLA-DR_BC 5

GEO_GSM3258345_HLA-DR_MC 33

GEO_GSM3258345_HLA-DR_NK 3

GEO_GSM3258345_HLA-DR_TC 7

GEO_GSM3258347_HLA-DR_control_BC 56

GEO_GSM3258347_HLA-DR_control_MC 1549

GEO_GSM3258347_HLA-DR_control_NK 457

GEO_GSM3258347_HLA-DR_control_TC 335

GEO_GSM3544603_NK___NK 308

GEO_GSM3544603_NK___TC 1

T4 GEO_20190108_GSM3544603_T4___TC 222 222 0.0000

GEO_20190108_GSM3544603_T8___MC 1

GEO_20190108_GSM3544603_T8___NK 4

GEO_20190108_GSM3544603_T8___TC 305

GEO_20190108_GSM3544603_iNKT___NK 37

GEO_20190108_GSM3544603_iNKT___TC 288

GEO_20190108_GSM3544603_MAIT___NK 20

GEO_20190108_GSM3544603_MAIT___TC 362

GEO_20190108_GSM3544603_Vd1___MC 1

GEO_20190108_GSM3544603_Vd1___NK 128

GEO_20190108_GSM3544603_Vd1___TC 155

GEO_20190108_GSM3544603_Vd2___NK 44

GEO_20190108_GSM3544603_Vd2___TC 160

GEO_20190620_GSM3209407_T4___NK 16

GEO_20190620_GSM3209407_T4___TC 949

GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9

GEO_20190620_GSM3209408_CCR5+CD69-T4___TC 426

GEO_GSM3087628_T8___BC 220

GEO_GSM3087628_T8___MC 211

GEO_GSM3087628_T8___NK 643

GEO_GSM3087628_T8___TC 4588

All (predicted) 1541 1 2838 1753 8052 14185 2.7710 14185

CD8 5662 0.1897

T_cells 8789

0.0207

NK_cells 309

T8 310 0.0161

iNKT 325 0.1138

MAIT 382 0.0524

Vd1 284 0.4542

Vd2 204 0.2157

T4 965 0.0166

CCR5+CD69-T4 435

Monocytes

M14_d1 425 0.0118

3301

M14_d2 431 0.0278

HLA-DR 48 0.3125

HLA-DR_control 2397 0.3538

B_cells

CD19_control 1760 0.2903

1786

CD19 26

NK 309 0.0032

0.6923
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SplitConfusionMatrix-R17-clean
(R17 solely included clean data sets.)

Train: 10x(Clean)+GEO(Clean)+BroadS2(Clean)

Test: BroadS1

EXP DataSets Subtype SubtypeN TotalCellN Training Testing Accuracy: 0.94614276

BC 10085 √ Precision: 0.99806076 0.81437126 0.99323493 0.79407407 0.9544331

M14 2612 √ Recall/Sensitivity: 0.93012048 0.95774648 0.97230584 0.76901004 0.9735768

NK 8385 √ Specificity: 0.99973965 0.99762288 0.9990453 0.9764187 0.9203212

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.96289367 0.8802589 0.98265896 0.78134111 0.9639099

T4 11213 √ Predicted B_cells Dendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1544 20 5 60 31 1660

T8 10209 √ Dendritic_cells 0 136 5 0 1 142

CD45RO+T4mem 10224 √ Monocytes 1 9 1615 0 36 1661

CD4+CD25+Treg 10263 √ NK_cells 2 0 1 1072 319 1394

M14_d1 425 √ T_cells 0 2 0 218 8106 8326

M14_d2 431 √ All 1547 167 1626 1350 8493 13183

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

GEO (Clean, R17) 4292

1

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

BT580 Bn_aTreg_BT580___BC 4

BT860 Bn_aTreg_BT860___BC 6

NY860 Bn_aTreg_NY860___BC 3

Bn_nonT_BT580___BC 237

Bn_nonT_BT580___DC 1

Bn_nonT_BT580___NK 4

Bn_nonT_BT580___TC 5

Bn_nonT_BT860___BC 519

Bn_nonT_BT860___DC 6

Bn_nonT_BT860___NK 19

Bn_nonT_BT860___TC 9

Bn_nonT_NY580___BC 153

Bn_nonT_NY580___DC 3

Bn_nonT_NY580___NK 5

Bn_nonT_NY580___TC 3

Bn_nonT_NY860___BC 171

Bn_nonT_NY860___DC 3

Bn_nonT_NY860___MC 2

Bn_nonT_NY860___NK 13

Bn_nonT_NY860___TC 1

Bn_T4em BT860 Bn_T4em_BT860___BC 1

Bn_Tncl BT860 Bn_Tncl_BT860___BC 1

BT860 Bm_aTreg_BT860___BC 6

NY580 Bm_aTreg_NY580___BC 1

NY860 Bm_aTreg_NY860___BC 2

Bm_nonT_BT580___BC 85

Bm_nonT_BT580___NK 2

Bm_nonT_BT580___TC 1

Bm_nonT_BT860___BC 207

Bm_nonT_BT860___DC 4

Bm_nonT_BT860___MC 1

Bm_nonT_BT860___NK 4

Bm_nonT_BT860___TC 7

Bm_nonT_NY580___BC 59

Bm_nonT_NY580___DC 1

Bm_nonT_NY580___NK 1

Bm_nonT_NY580___TC 2

Bm_nonT_NY860___BC 89

Bm_nonT_NY860___DC 2

Bm_nonT_NY860___MC 2

Bm_nonT_NY860___NK 12

Bm_nonT_NY860___TC 3

BT860 DC_aTreg_BT860___DC 1

NY580 DC_aTreg_NY580___DC 1

DC_nonT_BT580___DC 51

DC_nonT_BT580___MC 2

DC_nonT_BT580___TC 1

BT860 DC_nonT_BT860___DC 19

NY580 DC_nonT_NY580___DC 46

DC_nonT_NY860___DC 18

DC_nonT_NY860___MC 3

BT580 M14_aTreg_BT580___MC 1

BT860 M14_aTreg_BT860___MC 4

NY580 M14_aTreg_NY580___MC 2

NY860 M14_aTreg_NY860___MC 2

M14_nonT_BT580___DC 2

M14_nonT_BT580___MC 230

M14_nonT_BT580___TC 6

M14_nonT_BT860___BC 1

M14_nonT_BT860___DC 4

M14_nonT_BT860___MC 326

M14_nonT_BT860___TC 7

M14_nonT_NY580___DC 1

M14_nonT_NY580___MC 335

M14_nonT_NY580___TC 5

M14_nonT_NY860___MC 327

M14_nonT_NY860___TC 8

M14_rTreg NY580 M14_rTreg_NY580___MC 1

M14_Tncl BT580 M14_Tncl_BT580___MC 1

BT580 M16_aTreg_BT580___MC 4

BT860 M16_aTreg_BT860___MC 5

NY580 M16_aTreg_NY580___MC 7

NY860 M16_aTreg_NY860___MC 7

M16_nonT_BT580___DC 1

M16_nonT_BT580___MC 58

M16_nonT_BT860___DC 1

M16_nonT_BT860___MC 99

M16_nonT_BT860___TC 7

M16_nonT_NY580___MC 79

M16_nonT_NY580___TC 2

M16_nonT_NY860___MC 125

M16_nonT_NY860___TC 1

M16_T8em BT580 M16_T8em_BT580___MC 1

M16_T8em NY860 M16_T8em_NY860___MC 1

0.0633

0.0855

0.0423

Bm

M16

M16_aTreg

Bm_aTreg

DC_aTreg

1661

398

DC

NY580

BT860

NY580

NY860

M16_nonT

BT580

M14_aTreg

NY860

BT580

DC_nonT

NY580

BT580

M14_nonT

M14

NY860

BT860

Monocytes

Bn

B_cells

1263 0.0269

0.0302
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BT580 NK_aTreg_BT580___TC 2

NY580 NK_aTreg_NY580___TC 3

NY860 NK_aTreg_NY860___TC 1

NK_nonT_BT580___NK 230

NK_nonT_BT580___TC 24

NK_nonT_BT860___BC 2

NK_nonT_BT860___NK 344

NK_nonT_BT860___TC 79

NK_nonT_NY580___MC 1

NK_nonT_NY580___NK 166

NK_nonT_NY580___TC 21

NK_nonT_NY860___NK 235

NK_nonT_NY860___TC 29

NK_T4em NY860 NK_T4em_NY860___NK 1

NK_T4naive NY860 NK_T4naive_NY860___TC 1

NK_T8em_BT580___NK 11

NK_T8em_BT580___TC 29

NK_T8em_BT860___NK 26

NK_T8em_BT860___TC 60

NK_T8em_NY580___NK 11

NK_T8em_NY580___TC 7

NK_T8em_NY860___NK 38

NK_T8em_NY860___TC 30

NK_Tncl_BT580___NK 2

NK_Tncl_BT580___TC 8

NK_Tncl_BT860___NK 3

NK_Tncl_BT860___TC 7

NK_Tncl_NY580___NK 1

NK_Tncl_NY580___TC 10

NK_Tncl_NY860___NK 4

NK_Tncl_NY860___TC 8

T_aTreg_BT580___DC 1

T_aTreg_BT580___TC 240

BT860 T_aTreg_BT860___TC 243

NY580 T_aTreg_NY580___TC 222

NY860 T_aTreg_NY860___TC 215

T_nonT_BT580___NK 42

T_nonT_BT580___TC 54

T_nonT_BT860___NK 47

T_nonT_BT860___TC 87

T_nonT_NY580___NK 46

T_nonT_NY580___TC 39

T_nonT_NY860___NK 45

T_nonT_NY860___TC 66

BT580 T_rTreg_BT580___TC 313

BT860 T_rTreg_BT860___TC 234

NY580 T_rTreg_NY580___TC 337

NY860 T_rTreg_NY860___TC 188

BT580 T_T4em_BT580___TC 330

BT860 T_T4em_BT860___TC 259

NY580 T_T4em_NY580___TC 254

NY860 T_T4em_NY860___TC 132

T_T4naive_BT580___DC 1

T_T4naive_BT580___TC 481

BT860 T_T4naive_BT860___TC 265

NY580 T_T4naive_NY580___TC 291

NY860 T_T4naive_NY860___TC 96

T_T8em_BT580___NK 6

T_T8em_BT580___TC 260

T_T8em_BT860___NK 9

T_T8em_BT860___TC 295

T_T8em_NY580___NK 8

T_T8em_NY580___TC 258

T_T8em_NY860___NK 6

T_T8em_NY860___TC 189

BT580 T_T8naive_BT580___TC 318

BT860 T_T8naive_BT860___TC 486

NY580 T_T8naive_NY580___TC 256

NY860 T_T8naive_NY860___TC 276

BT580 T_Tncl_BT580___TC 201

T_Tncl_BT860___NK 1

T_Tncl_BT860___TC 365

T_Tncl_NY580___NK 4

T_Tncl_NY580___TC 375

T_Tncl_NY860___NK 4

T_Tncl_NY860___TC 481

All (predicted) 1547 167 1626 1350 8493 13183 13183

0.0011

0.4225

0.0000

975

1134

1031

1336

1431

0.0000

0.0009

0.0281
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0.0063

13940.23101394
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T_rTregrTreg
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.917345

BC 10085 √ Precision: 0.930983 0 0.92384682 0.55555556 0.988289

M14 2612 √ Recall/Sensitivity:0.995223 0 0.99577861 0.9263658 0.907035

NK 8385 √ Specificity: 0.986645 0.999917 0.98277559 0.94550218 0.984984

CD45RA+CD25-T4naive10479 √ F1_Score: 0.962032 0 0.95846501 0.69456812 0.94592

T4 11213 √ Predicted B_cellsDendritic_cells Monocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 1875 0 6 0 3 1884

T8 10209 √ Dendritic_cells 103 0 152 0 15 270

CD45RO+T4mem 10224 √ Monocytes 6 0 2123 0 3 2132

CD4+CD25+Treg 10263 √ NK_cells 6 0 0 780 56 842

M14_d1 425 √ T_cells 24 1 17 624 6498 7164

M14_d2 431 √ All 2014 1 2298 1404 6575 12292

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

4292GEO (Clean, R17)

2

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

pbmc1_v2_A_BC___BC 286

pbmc1_v2_A_BC___MC 1

pbmc1_v2_A_BC___TC 1

pbmc1_v2_B_BC___BC 385

pbmc1_v2_B_BC___MC 3

pbmc1_v3_BC___BC 345

pbmc1_v3_BC___MC 1

pbmc2_V2_BC___BC 859

pbmc2_V2_BC___MC 1

pbmc2_V2_BC___TC 2

pbmc1_v2_A_DC___BC 6

pbmc1_v2_A_DC___MC 47

pbmc1_v2_A_DC___TC 2

pbmc1_v2_B_DC___BC 2

pbmc1_v2_B_DC___MC 29

pbmc1_v2_B_DC___TC 2

pbmc1_v3_DC___BC 8

pbmc1_v3_DC___MC 24

pbmc1_v3_DC___TC 6

pbmc2_V2_DC___BC 25

pbmc2_V2_DC___MC 50

pbmc2_V2_DC___TC 1

pbmc1_v2_A_pDC___BC 25

pbmc1_v2_A_pDC___MC 1

pbmc1_v2_B_pDC___BC 9

pbmc1_v2_B_pDC___TC 3

pbmc2_V2_pDC___BC 28

pbmc2_V2_pDC___MC 1

pbmc2_V2_pDC___TC 1

pbmc1_v2_A_M14___BC 2

pbmc1_v2_A_M14___MC 636

pbmc1_v2_A_M14___TC 2

pbmc1_v2_B_M14___BC 1

pbmc1_v2_B_M14___MC 378

v3 pbmc1_v3_M14___MC 354

pbmc2_V2_M14___BC 2

pbmc2_V2_M14___MC 434

pbmc1_v2_A_M16___BC 1

pbmc1_v2_A_M16___MC 100

pbmc1_v2_A_M16___TC 1

B pbmc1_v2_B_M16___MC 73

v3 pbmc1_v3_M16___MC 98

pbmc2 V2 pbmc2_V2_M16___MC 50

pbmc1_v2_A_NK___BC 2

pbmc1_v2_A_NK___NK 156

pbmc1_v2_A_NK___TC 8

pbmc1_v2_B_NK___NK 220

pbmc1_v2_B_NK___TC 43

pbmc1_v3_NK___BC 3

pbmc1_v3_NK___NK 187

pbmc1_v3_NK___TC 4

pbmc2_V2_NK___BC 1

pbmc2_V2_NK___NK 217

pbmc2_V2_NK___TC 1

pbmc1_v2_A_T4___BC 4

pbmc1_v2_A_T4___MC 2

pbmc1_v2_A_T4___NK 12

pbmc1_v2_A_T4___TC 532

pbmc1_v2_B_T4___MC 4

pbmc1_v2_B_T4___NK 12

pbmc1_v2_B_T4___TC 892

pbmc1_v3_T4___BC 2

pbmc1_v3_T4___MC 1

pbmc1_v3_T4___NK 18

pbmc1_v3_T4___TC 939

pbmc2_V2_T4___BC 3

pbmc2_V2_T4___DC 1

pbmc2_V2_T4___MC 4

pbmc2_V2_T4___NK 8

pbmc2_V2_T4___TC 946

pbmc1_v2_A_T8___BC 12

pbmc1_v2_A_T8___MC 6

pbmc1_v2_A_T8___NK 193

pbmc1_v2_A_T8___TC 963

pbmc1_v2_B_T8___BC 1

pbmc1_v2_B_T8___NK 110

pbmc1_v2_B_T8___TC 843

pbmc1_v3_T8___NK 152

pbmc1_v3_T8___TC 810

pbmc2_V2_T8___BC 2

pbmc2_V2_T8___NK 119

pbmc2_V2_T8___TC 573

All (predicted) 2014 1 2298 1404 6575 12292 12292

202 1.0000

68 1.0000

1809 0.0039

323 0.0062

B
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.98292

BC 10085 √ Precision: 0.976932 0 0.84933 0.985147 0.992145

M14 2612 √ Recall/Sensitivity:9.62E-01 0 0.897779 0.925462 9.97E-01

NK 8385 √ Specificity: 0.99696 0.997787 0.994977 0.998481 0.975904

CD45RA+CD25-T4naive 10479 √ F1_Score: 0.969218 0 0.872883 0.954372 0.994667

T4 11213 √ Predicted B_cellsDendritic_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ B_cells 9698 28 356 1 2 10085

T8 10209 √ Monocytes 202 19 2345 3 43 2612

CD45RO+T4mem 10224 √ NK_cells 0 135 27 7760 463 8385

CD4+CD25+Treg 10263 √ T_cells 27 7 33 113 64161 64341

M14_d1 425 √ All 9927 189 2761 7877 64669 85423

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

4292GEO (Clean, R17)

3

BroadS2 (Clean) 12292

10x (Clean) 85423

BroadS1 13183
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeERAll (true)

021-CD19+B___BC 9698

021-CD19+B___DC 28

021-CD19+B___MC 356

021-CD19+B___NK 1

021-CD19+B___TC 2

003-M14___BC 202

003-M14___DC 19

003-M14___MC 2345

003-M14___NK 3

003-M14___TC 43

018-CD56+NK___DC 135

018-CD56+NK___MC 27

018-CD56+NK___NK 7760

018-CD56+NK___TC 463

025-CD4+CD45RA+CD25-NaiveT___BC 7

025-CD4+CD45RA+CD25-NaiveT___DC 6

025-CD4+CD45RA+CD25-NaiveT___MC 15

025-CD4+CD45RA+CD25-NaiveT___NK 16

025-CD4+CD45RA+CD25-NaiveT___TC 10435

026-T4___BC 9

026-T4___DC 1

026-T4___MC 5

026-T4___NK 9

026-T4___TC 11189

027-CD8+CD45RA+NaiveCytotoxicT___BC 5

027-CD8+CD45RA+NaiveCytotoxicT___MC 4

027-CD8+CD45RA+NaiveCytotoxicT___NK 2

027-CD8+CD45RA+NaiveCytotoxicT___TC 11942

022-T8___MC 7

022-T8___NK 74

022-T8___TC 10128

023-CD4+CD45RO+MemoryT___BC 1

023-CD4+CD45RO+MemoryT___MC 2

023-CD4+CD45RO+MemoryT___TC 10221

024-CD4+CD25+RegulatoryT___BC 5

024-CD4+CD25+RegulatoryT___NK 12

024-CD4+CD25+RegulatoryT___TC 10246

All (predicted) 9927 189 2761 7877 64669 85423 85423

CD45RO+T4mem

CD4+CD25+Treg

10209

10224

10263

Monocytes

NK_cells

2612

8385

1008510085

2612

8385

B_cells 0.0384

0.1022

0.0745

10479

11213

11953
T_cells 64341

0.0042

0.0021

0.0009

0.0079

0.0003

0.0017

BC

M14

NK

CD45RA+CD25-T4naive

T4

CD45RA+T8naive
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EXP DataSets Subtype SubtypeN TotalCellNTraining Testing Accuracy: 0.93522833

BC 10085 √ Precision: 0 0.997622 0.539405 0.99652416

M14 2612 √ Recall/Sensitivity: 0 0.98014 0.996764 0.91685321

NK 8385 √ Specificity: 0.99930103 0.999418 0.933969 0.99141631

CD45RA+CD25-T4naive 10479 √ F1_Score: 0 0.988804 0.7 0.95502998

T4 11213 √ Predicted B_cellsMonocytes NK_cells T_cells All

CD45RA+T8naive 11953 √ Monocytes 3 839 5 9 856

T8 10209 √ NK_cells 0 0 308 1 309

CD45RO+T4mem 10224 √ T_cells 0 2 258 2867 3127

CD4+CD25+Treg 10263 √ All 3 841 571 2877 4292

M14_d1 425 √

M14_d2 431 √

NK 309 √

T4 222 √

T8 310 √

iNKT 325 √

MAIT 382 √

Vd1 284 √

Vd2 204 √

T4 965 √

CCR5+CD69-T4 435 √

Bn 1169 √

Bm 491 √

DC 142 √

M14 1263 √

M16 398 √

NK 1394 √

aTreg 921 √

nonT 426 √

rTreg 1072 √

T4em 975 √

T4naive 1134 √

T8em 1031 √

T8naive 1336 √

Tncl 1431 √

BC 1884 √

DC 202 √

pDC 68 √

M14 1809 √

M16 323 √

NK 842 √

T4 3380 √

T8 3784 √

4292GEO (Clean, R17)

4

10x (Clean) 85423

BroadS1 13183

BroadS2 (Clean) 12292
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)

GEO_GSM2773408_M14_d1___MC 420

GEO_GSM2773408_M14_d1___NK 1

GEO_GSM2773408_M14_d1___TC 4

GEO_GSM2773409_M14_d2___BC 3

GEO_GSM2773409_M14_d2___MC 419

GEO_GSM2773409_M14_d2___NK 4

GEO_GSM2773409_M14_d2___TC 5

GEO_20190108_GSM3544603_NK___NK 308

GEO_20190108_GSM3544603_NK___TC 1

T4 GEO_20190108_GSM3544603_T4___TC 222 222 0.0000

GEO_20190108_GSM3544603_T8___MC 1

GEO_20190108_GSM3544603_T8___NK 4

GEO_20190108_GSM3544603_T8___TC 305

GEO_20190108_GSM3544603_iNKT___NK 37

GEO_20190108_GSM3544603_iNKT___TC 288

GEO_20190108_GSM3544603_MAIT___NK 20

GEO_20190108_GSM3544603_MAIT___TC 362

GEO_20190108_GSM3544603_Vd1___MC 1

GEO_20190108_GSM3544603_Vd1___NK 128

GEO_20190108_GSM3544603_Vd1___TC 155

GEO_20190108_GSM3544603_Vd2___NK 44

GEO_20190108_GSM3544603_Vd2___TC 160

GEO_20190620_GSM3209407_T4___NK 16

GEO_20190620_GSM3209407_T4___TC 949

GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9

GEO_20190620_GSM3209408_CCR5+CD69-T4___TC 426

All (predicted) 3 0 841 571 2877 4292 4292

0.0032

0.0161

0.1138

0.0524

0.4542

0.2157

0.0166

0.0207

NK
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309
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3127T_cells
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Appendix 9 E-R Graph of This Project 
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Appendix 10 Visualization of SCT Data Distribution 
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Appendix 11 Posters During This Project 
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Appendix 12 Wet Lab Background Information – Upstream Workflow 

and Analysis for SCT 
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THE END 
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