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Abstract—User-Item (U-I) matrix has been used as the domi-
nant data infrastructure of Collaborative Filtering (CF). To
reduce space consumption in runtime and storage, caused
by data sparsity and growing need to accommodate side
information in CF design, one needs to go beyond the U-
I Matrix. In this paper, we took a case study of Succinct
Representations in Collaborative Filtering, rather than using
a U-I Matrix. Our key insight is to introduce Succinct Data
Structures as a new infrastructure of CF. Towards this, we
implemented a User-based K-Nearest-Neighbor CF prototype
via Wavelet Tree, by first designing a Accessible Compressed
Documents (ACD) to compress U-I data in Wavelet Tree, which
is efficient in both storage and runtime. Then, we showed
that ACD can be applied to develop an efficient intersection
algorithm without decompression, by taking advantage of
ACD’s characteristics. We evaluated our design on 1,000 cores
of Tianhe-II supercomputer, with one of the largest public
data set ml-20m. The results showed that our prototype could
achieve 3.7 minutes on average to deliver the results.

1. Introduction

We argue that Collaborative Filtering systems demand a
more efficient infrastructure, since maintaining U-I Matrix
is no longer as valuable as it used to be. For decades, U-
I Matrix has been used as the dominant infrastructure in
Collaborative Filtering (CF) [1], [2]. However, there are
two major issues, which motivated us to rethink this very
fundamental design.

First, due to the data sparsity problem, it is inevitable
that too much costs were caused to maintain U-I Matrix in
runtime, because users are very unlikely to rate all items
in their collections. Data sparsity could lead more serious
space efficiency problem, as the size of data grow larger. For
instance, in one of the largest public data set from Movielens
(i.e. ml-20m), U-I Matrix would be maintained with 138,489
rows (i.e. users) and 27,278 columns (i.e. items), which is
quite significant. And it would become much more serious
in commercialized services.

Second, collaborative filtering systems start to use more
and more data, rather than just User-Item data in the matrix.
For example, side information of Users and/or of Items

provide promising information which goes beyond the U-
I Matrix [3]. The ever-increasing demand for personal-
ized recommendations and, to utilize the promising new
information provided by side information, introduce more
complexities in the implementation of CF. Furthermore, to
satisfy performance needs in online services, storing and
maintaining all those data could be too expensive.

Unlike U-I Matrix with its associated databases, data
which are presented in document format is less constraint
by its internal structure, and can contain far more rich infor-
mation with less space consumption. More importantly, doc-
uments could be easily compressed and meanwhile support
fast queries, like Succinct Data Structures. As one of them,
Wavelet Tree stores strings in a highly compressed space and
efficiently support fast-query [4], [5]. Moreover, such kinds
of techniques have already been utilized to develop general-
purpose data systems. For instance, a high-performance data
store Succinct has been proposed to enable data queries on
compressed data using Skewed Wavelet Tree.

Although previous work have demonstrated that build-
ing CF systems based on Succinct Data Structures is a
promising direction to go beyond the U-I Matrix, there
are no existing work to successfully apply it together with
the document analyzing technique in CF, which could be
summarized into two outstanding challenges. First, there is
no existing method to organize collaborative filtering-related
data into sequences to enable the use of runtime technique
like Wavelet Tree. Second, beyond queries, there is a lack
of CF-based strategy to support such applications without
decompression, which required significant costs to do so.

To address these issues, we first designed a Accessible
Compressed Documents (ACD), and then took advantage
of ACD’s characteristics to develop a User-based K-Nearest-
Neighborhood (KNN) CF system. More specifically, this pa-
per makes two contributions to the existing literature. First,
the proposed ACD is proved able to substantially improve
space efficiency for data storage and, while using Wavelet
Tree, significant space savings in runtime, with support of
fast information retrieval. Second, we showed that ACD
can be used to implement a User-based KNN CF directly
on compressed data, by utilizing inverted indexes and their
ascending order. We evaluated our design on 1,000 cores of
Tianhe-II supercomputer, with one of the largest public data
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set ml-20m. The results showed that our prototype could
achieve 3.7 minutes per user on average. It outperformed
than User-based KNN in Apache Mahout (which required
5.1 minutes per user on average) with significant space
savings.

2. Background

In this section, we provided several background infor-
mation around Succinct Data Structures and Collaborative
Filtering Systems. We first describe the growing trends of
CF systems. Then we introduced Wavelet Tree in details.
Finally, we provided some example data systems, which
utilized Succinct Representations/Structures for significant
performance benefits.

2.1. Collaborative Filtering Systems

Collaborative Filtering has utilized an elegant and proven
infrastructure, U-I Matrix for long [1], [2]. However, since
data sparsity problem is inevitable with the U-I Matrix (i.e.
users are very unlikely to be able to rate all items in a
collection), more space waste could be caused as the size
of data grow larger, which further brought significant per-
formance challenges. This is the major concern to motivate
our design. Also side information becomes more and more
important, which has motivated our design as well. Side
information of Users and/or of Items (e.g. genres of Movies,
ages of users and so on) provides promising information
which goes beyond the U-I Matrix [3]. Many algorithms
have been proposed to generate recommendations using side
information [6], [7], [8]. The increasing importance of the
side information in generating recommendations make such
high cost to maintain U-I Matrix in runtime less valuable.

2.2. Succinct Data Structures

Succinct Data Structures represent a set of data struc-
tures, which uses an amount of space that is close to
the information-theoretic lower bound (i.e. the maximum
ratios of compression), meanwhile allows for fast-query
operations. As one of Succinct Data Structures, Wavelet
Tree is a highly compressed data structure with supports
high-efficient queries without decompression [4], [5]. Also,
Brisaboa et al. encodes text into Wavelet Tree called Re-
shaping to fasten queries [9]. Except these benefits, we
chose Wavelet Tree as the core idea to develop our design
because it now allowed parallel constructions and opera-
tions, which significantly enhanced its extendibility [10]. In
addition, a variant of Wavelet Tree (i.e. Wavelet Trie) allows
update operations without decompression, which showed its
promising potentials in online services as well [5].

2.3. Wavelet Tree

Wavelet Tree is a kind of Succinct Data Structures to
store strings in compressed space, which was introduced to

represent compressed suffix arrays. The tree is defined by
recursively partitioning the alphabet into pairs of subsets;
the leaves correspond to individual symbols of the alphabet,
and at each node a bitvector stores whether a symbol of
the string belongs to one subset or the other. As shown in
Figure 1, an example of Wavelet Tree has been given.

We theoretically examined the benefits of Wavelet Tree.
Let Σ be a finite alphabet with σ = [Σ]. By using succinct
dictionaries in the nodes, a string s ∈ Σ∗ can be stored in
nH0(s)+O(|s|log σ), where H0(s) is the order-0 empirical
entropy of s. If the tree is balanced, the operations access,
rankq and selectq can be supported in O(log σ) time.
lookupq can be combined with those operations, so that its
time complexity is proportional to the height of the tree.

Figure 1. An example of Wavelet Tree.

2.4. Wavelet Tree Applications

The usages of Wavelet Tree could be found in many
disciplines, because its related operations are only sensitive
to how many types of characters in text (i.e the size of
Succinct Dictionary), rather than full-text length. Grossi et
al. are one of the first ones who apply Wavelet Tree tech-
nique to achieve high-performance full-text search [9], [11].
This is the most well-known usage of Wavelet Tree, which
was covered by earlier survey from Navarro et al. as well
[12]. And Claude et al. show that Wavelet Tree-based design
for graph compressions is competitive with previous ones
in web [13]. Also, Arroyuelo et al. has extended Inverted
Positional Indexes functionality into Document Retrieval
using Wavelet Tree [14].

2.5. Data Systems with Succinct Compression

Applying Succinct Compression is a growing new per-
spective to develop high-performance techniques for general
purposes. Benefiting from Succinct Compression directly
(i.e. fast queries and significant space savings meanwhile),
data management systems are developed such as Succinct
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and Surf [15], [16]. Beyond queries, studies on how to ana-
lyze without decompression also drew attentions. Text Anal-
ysis Directly on Compressed Data has been proposed, along
with Zwift programming framework [17], [18]. We believed
collaborative filtering systems demand similar techniques, to
utilize computing resources more efficiently, which further
unleash the designs of CF from performance constraints.

3. Succinct Representations in CF

In this section, we introduce key design choices for Suc-
cinct Representations in Collaborative Filtering. We first in-
troduce our Accessible Compressed Documents data model,
which could store large volumes of data and meanwhile
support queries while compressed in Wavelet Tree. And
then, to effectively obtain the intersection between users
(i.e. necessary resources for similarity computations, item
selections and rating predictions), we propose an efficient
algorithm design to obtain the intersection.

3.1. Accessible Compressed Documents

In this section, we introduce our data model, Accessible
Compressed Documents (ACD), in details. In the data store
Succinct, to form Skewed Wavelet Tree in runtime, different
symbols have been used as terminators to accurately locate
required information, which has largely inspired our design
of the ACD. Different symbols are used to make distinc-
tions between data, which ensures runtime queries could
locate them correctly. For example, different data category
is separated by the dots, and data records within the same
data category are distinguished by symbols other than it.

In ACD, data is firstly divided by categories, compres-
sion happened inside each category by simply forming a
sequence. There are three major differences between U-I
Matrix and ACD. First, ACD could store greater variety
of data than U-I matrix without increasing dimensionality
of the data set. Second, unlike U-I matrix, ACD stores
different data categories in a compressed format with dif-
ferent data categories being split by certain symbols. Third,
data records from different categories can be retrieved by
different symbols in different layers, which means that the
matching between different data categories could be one-
to-one, multiple-to-one, one-to-multiple or even multiple-
to-multiple. Figure 2 demonstrates a ACD example, which
consists of three categories (User, Item and Rating) and how
they are matched.

Figure 3 demonstrates an actual ACD example, which
are the format used in our implementations. However, in
order to implement an efficient intersection algorithm be-
tween two item lists, we sorted our item lists increasingly
based on item IDs, which would be illustrated in details
next.

3.2. Efficient Intersection Computations

Maintaining the above document with Wavelet Tree
ensured fast access towards related information, now the

Figure 2. High-level Abstraction of Accessible Compressed Documents
(User Item). In this figure, users items could be located according to the
number of commas before it and retrieve corresponding users item list, so
as ratings. For example, the ”one-comma” right before the first number 3 in
line two of the Items column separates the data of the user 2 from the user 3.
Data from the side information for each user-item can be easily augmented
to the sequence for each user-item accordingly in the Item Column of ACD.

Figure 3. An Actual ACD Document Example based on the Figure 2.

problem lies on how to obtain the intersection is what we
needed. We utilized the order of Inverted Index in the item
lists: we first initialize two pointers, in the corresponding
item lists. Since all items in each item list are sorted in
ascending order, the pointer, which points to the bigger item
ID is set as the reference pointer. We fixed the reference
pointer, which points to an index which is bigger than the
number associated with the other pointer, the algorithm then
move the other pointer forward until it reaches an index
which is larger than the index associated with the previous
reference pointer and update this pointer as the reference
pointer. If the two pointers represent the same ID number,
their corresponding ratings will be retrieved for computation
and move any one of the two pointers forward, which
ensures the algorithm can carry on until one of the two
pointers reaches the end of its own list.

Figure 4 presents a working example of our intersection
algorithm implemented using two item lists. This algorithm
improves the optimal time complexity from O(nm) (i.e. with-
out ascending order) to O(min(n,m)) theoretically, where n
and m represent total numbers of items in different lists
respectively.

4. Implementation Details

In this section, we illustrate implementation details while
developing. We first describe our implementations to gener-
ate ACD fast. Then we explained how similarity values and
rating prediction has been supported in our prototype.

4.1. ACD Generation

We generate our ACD demo from a item-ratings log file
by applying a sort-and-then-compress method, which effec-
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Figure 4. An example to illustrate how our intersection algorithm functions.
The operations are directly operated on some parts of compressed document
in Wavelet Tree (i.e. Item Lists).

tively speed up the data compression. Normally, gathering
same-key logs and compressing via double-checking is quite
straightforward but inefficient. Its time complexity is O(n2),
where n represents the sum of the rating records.

To reduce the time consumption, we sort all ratings
based on the identifiers (i.e. User ID, Item ID) in an ascend-
ing order by binary tree sorting method. The compression
process starts right after the sorting is completed. Time
complexity has been significantly reduced to O(nlog2n).
This is a significant reduction in time complexity given that
we are processing a large data set with millions of ratings.
Our practice of the two methods shows that the former
method would take about one hour to form the ACD, but
the latter one only take about one minute. Items in our ACD
are sorted in an ascending order.

4.2. Similarity Metric

During our implementation, Pearson Correlation Co-
efficient, which is the most common similarity metric in
Recommender Systems, has been selected as the metric
to evaluate similarity values between users, as shown in
Equation (1).

R(x, y) =
N

∑
xiyi −

∑
xi

∑
yi√

N
∑
x2i − (

∑
xi)2

√
N

∑
y2i − (

∑
yi)2

(1)
Two thing needs to be highlighted: 1) in Collabora-

tive Filtering systems, Pearson Correlation Coefficients are
absolute to represent the similarity values. 2) In Equation
(1), only those items, which are co-rated by two users,
participated in the calculations.

4.3. Rating Prediction

To support rating prediction, a conventional method in
User-based Collaborative Filtering has been selected, as

shown in Equation 2.

Pa,i = r̄a +

∑
u∈U (ru,i − r̄u)∑

u∈U |wa,u|
(2)

In Equation (2), r stands for the average rating from the
corresponding user, and w stands for the Pearson Correlation
Coefficient between corresponding users.

5. Experimental Study

In this section, we demonstrate details about our ex-
perimental study. We first introduce how we set up this
experiment. Then we provide details around the experi-
mental methodology. Next, we present the details during
our experimental procedure. Finally, we show experimental
results, which showed the benefits of our approach.

5.1. Experimental Setup

Data Set. We chose one of the largest open-source data
set, ml-20m data set from Movielens, which contained 20
million ratings from 27,278 movies and 138489 users [19].
After data pre-processing, we observed that, there are only
138,483 who have co-rated items with others, which means
they have the intersection with others to be retrieved. We
ignored the rest of users since they are not capable to be
provided recommendation results through this approach.

System Configuration. We utilized 100 computing
nodes1 of Tianhe-II Supercomputer to conduct our exper-
iments [20]. The reason why We used a supercomputer
is that, with lightweight tests, we found that it would be
too long to finish all users in a reasonable time limit. For
example, assuming 5 minutes for a user, there are 600,000
minutes (i.e. around 2 years) for ml-20m data set to finish
all users’ computations on a single core.

Benchmark System. We benchmarked our design with
one of the state-of-the-art, open-source recommender frame-
work Apache Mahout [21]. And the User-based KNN CF
from Apache Mahout library was used to compare.

5.2. Methodology

Job2 parallelism was used to speed up the overall
progress of our experiment. First, all users were randomly
allocated into one thousand groups and each group contains
around 138 users. Then, each batch3 contains ten groups of
users which were randomly selected.

We submitted our batches of jobs to one hundred com-
puting nodes. Batches are submitted to different cores and
processed simultaneously. System Monitor records their start
and end time for further analysis.

1. Each node consisted of 10 cores (i.e. Intel Xeon E5-2680V2 CPU),
64GB memory.

2. Each job represents one of our workloads, more specifically, a User-
based KNN CF for one user.

3. Each batch consists of a number of jobs.
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Since formatting U-I Data into documents and then
compress them via Wavelet Tree, the space consumption has
been reduced significantly.4 During this experimental study,
we focused on the time consumption of our design, since our
major concern is whether such method can deliver results
in a reasonable time.

5.3. Procedure

The procedure was divided into five periods, but this
divisions are not done intentionally. We have further con-
firmed that such failures could be caused by load unbalance.
Since operating system scheduler tends to keep workload
balanced in different cores, distributing those jobs with
different resource requirements lead to different levels of
progress, and further switched the remaining ones among
different cores [22]. We have eliminated time consumption
of context switches in our final measurement.

We presented only the completion percentages of the
first four periods here because the last one period only in-
volves the computations of twelve users. As Figure 5 shown,
the completion rate of the first two period are around 80%.
The first two period combined complete the computation
of users’ recommendation between 97% of all users. The
incomplete similarity computations in the third period, were
largely due to the ’outlier users’ namely those ”movie enthu-
siasms”5. Low-performance in the third period is because
of workload gap in different cores have grown significantly
large, compared with previous two periods, which happens
when multiple ”movie enthusiasms” are stored in a node
and distributed into different jobs. Jobs in the fourth and
fifth period mainly suffers from the similarity computation
of either ”super-enthusiasm”6 or contains multiple ”movie
enthusiasms”5 which is usually around ten to twelve of such
users.

Figure 5. Details about our Large-scale Experiment Process

4. We have provided theoretical analysis in Section 2.3 and 4.1, with
partial experimental results reported.

5. those users who rated around hundreds of movies
6. those users who rated almost a thousand movies

TABLE 1. DETAILS ABOUT TIME CONSUMPTION IN PROCEDURE

# of Finished Jobs Minutes Minutes per Users
107875 389132 3.60725
26593 98572 3.70669
2076 12217 5.88487
1927 17583 9.12455
12 134 11.16667

5.4. Results

Details of the time consumption and completed sim-
ilarities computations between different numbers of users
for different periods is presented in Table 1. As the results
shown, our ACD-based implementations is able to effec-
tively dealing with 97% of all users below four minutes
on average. However, starting from third period, average
computation time per user increased to between six and
eleven minutes as the multiple ”movie enthusiasms” and
the ”super-enthusiasm”6 enters in the computations. As the
last three periods only account for less than 3% of total
users, therefore, these computation time of our method is
just a very small fraction of the total ones.

We also have repeated the same procedure with our
benchmark system. The result showed that Apache Mahout
has a better scalability in this case and provided results in
5.1 minutes per user on average. Our prototype has slightly
outperformed than it, with significant space savings.

6. Discussions

In this section, we discussed some limitations and pos-
sible extensions of the presented promising methods. There
are three outstanding issues that we believe it’s worthy to
explore further.

Extensions for other space-efficient designs. So far, we
only explored the design of a simple intersection algorithm.
However, there are many other existing applications of
Wavelet Tree (e.g Graph) [23], which can be used similarly
in Recommender System Pre-calculations.

Wavelet Tree construction and operations in parallel.
Existing work already demonstrated that the construction
and operations of Wavelet Tree can be paralleled [10].
We believed it would bring more performance benefits to
explore how to develop such effective methods in parallel.

Update-able Succinct Data Structure. The major bot-
tleneck of embedding such technique into online services is
that, it can’t be updated once compressed. However, Wavelet
Trie, a variant of Wavelet Tree with similar characteristics
but capability to be updated, has been proposed [5]. This
demonstrates its promising future for online services.

7. Conclusions

In this paper, we introduced our vision to introduce
Succinct Data Structures into Collaborative Filtering Sys-
tems as a new perspective of infrastructure. By applying a
customized data model and an efficient algorithm design,

5



we adapted Wavelet Tree into User-based KNN CF and
implemented a prototype. Through 1,000 cores of Tianhe-
II supercomputer, we have evaluated our design and the
results demonstrated it’s slightly faster than the state-of-the-
art benchmark system, with significant space savings.
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