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Abstract  

Recurrent smoke haze episodes that occur in Southeast Asia (SEA) are of much 15 

concern because of their environmental and health impacts. These haze episodes are 16 

mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne 17 

particulate matter (PM) samples  were collected in the Southwest (SW) coast of 18 

Singapore from 16 August to 9 November in 2009 to assess the impact of smoke haze 19 

episodes on the air quality due to the long-range transport of biomass and peat 20 

burning emissions., The physical and chemical characteristics of PM were 21 

investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 22 

mass concentrations of ≥ 35 μg m-3 were considered as smoke-haze events. Using this 23 

criterion, out of the total 82 sampling days, 9 smoke-haze events were identified. The 24 

origin of air masses during smoke haze episodes was studied on the basis of 25 

HYPSLIT backward air trajectory analysis for 4 days. In terms of the physical 26 

properties of PM,  higher particle surface area concentrations (PSAC) and particle 27 

gravimetric mass concentrations (PGMC) were observed during the smoke-haze 28 

period, but there was no consistent pattern  for particle number concentrations (PNC) 29 

during the haze period as compared to the non-haze period except that there was a 30 

significant increase at about 08:00, which could be attributed to the entrainment of 31 

PM from aloft after the break-down of the nocturnal inversion layer. As for the 32 

chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl-, 33 

NO3-, nss-SO42-, Na+, NH4+, and nss-K+) measured in this study, NO3-, nss-SO42-, and 34 

NH4+ showed a significant increase in their concentrations during the smoke-haze 35 

period together with nss-K+. These observations suggest that the increased 36 

atmospheric loading of PM with higher surface area and increased concentrations of 37 

optically active secondary inorganic aerosols (NH4)2SO4 or NH4HSO4 and NH4NO3) 38 

resulted in the atmospheric visibility reduction in SEA due to the advection of 39 

biomass and peat burning emissions.  40 

 41 
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Introduction 43 

Atmospheric haze (reduced visibility),  caused by increased loading of aerosols, has a 44 

strong impact on the radiative balance of the Earth by direct reflection and absorption 45 

of incoming solar radiation or by indirect reflection due to cloud formation  (IPCC 46 

2007; Jacobson 2004; Pandis and Seinfeld 1998). It is known that the haze 47 

phenomenon is caused by either natural sources such as volcanic eruptions and 48 

naturally ignited fires, or anthropogenic sources such as fossil fuel related combustion, 49 

uncontrolled biomass burning, biofuel burning, land use changes for agriculture or 50 

developments, or a combination of both  (He et al. 2010; Jacobson 2004). The 51 

chemical composition of haze aerosols depends largely on the fuel type, combustion 52 

phase (flaming vs. smoldering), duration and intensity of combustion, and prevailing 53 

meteorological conditions (Reid et al. 2005). Generally, haze aerosols contain both 54 

primary particulates emitted directly into the atmosphere and secondary particulates 55 

formed from gaseous precursors emitted, the relative proportion of which would 56 

change over time and distance. Although the general residence time of ambient fine 57 

aerosols is usually > 5 days, at about 1 to 2 weeks with age, it is still much shorter 58 

than that of greenhouse gases. Nevertheless, the average transport distance over which 59 

aerosols are transported is estimated to be ≥ 1000 km, leading to potentially large 60 

regions that can be affected by the influence of haze when there is extensive biomass 61 

burning over a wide area (Brook et al. 2007). 62 

 Smoke haze episodes occur in Southeast Asia (SEA) annually due to recurrent 63 

slash and burn agricultural activities, but with different intensities and impacts from 64 

year to year depending on weather conditions.  As SEA’s air quality is influenced by 65 

local particle emissions heavily, the SEA haze becomes a complex regional air 66 

pollution problem, due to the intermixing of haze particles with fossil fuel-derived 67 

particles, with the following impacts. The physical, chemical and optical properties of 68 

the SEA haze can affect the ecosystems, human health, climate change and water 69 

budget in the affected regions (Ramanathan et al. 2005; Sundarambal et al. 2010).  70 

The reduction of atmospheric visibility can vary from  20% to 90% depending on the 71 

intensity of haze episodes and the characteristics of aerosols contained in them  72 

(Wang 2002). Severe smoke-haze episodes can also indirectly affect the efficiency of 73 

vegetative photosynthesis. When water insoluble aerosols deposited on leaves are not 74 

washed off by precipitation, they could lead to a reduction of as much as 35% 75 
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photosynthesis with lower crop yields, lesser CO2 removal and eventual increase in 76 

greenhouse effects (Bergin et al. 2001; Tang 1996). In terms of regional climate 77 

change, with the high emission of light absorbing aerosol particulates into the 78 

atmosphere, greenhouse effects are expected to increase due to the concurrent 79 

increase of greenhouse gases emitted, even when the aerosol’s short-term cooling 80 

effects are considered in the radiative budget (Jacobson 2004).  The massive 81 

concurrent emissions of CO2 from biomass burning together with aerosols have been 82 

linked to the prolonged duration of the regional La Nina effects (unusually cold and 83 

wet weather conditions in SEA) (Van der Werf 2008).  The increased smoke particle 84 

concentration associated with smoke-haze episodes could also affect cloud cover and 85 

the cloud chemistry (Geresdi et al. 2006; Reid et al. 2005). Strong associations 86 

between increased aerosol concentrations and health effects have been observed 87 

during the regional smoke-haze episodes over the years. On average, a nearly six fold  88 

increase in emergency visits for acute asthma exacerbation were observed for every 89 

20 µg m-3 increase of the total suspended particles (TSP) from 78 µg m-3 (Chew et al. 90 

1999). 91 

Dry weather conditions in SEA over the months of June to October 2009, 92 

exacerbated by the El Niño Southern Oscillation (ENSO), increased the likelihood of 93 

massive uncontrolled burning due to prolonged droughts (Gnanaseelan and Vaid 2010; 94 

Aiken 2004). The sampling site was influenced by the southwest (SW) winds from 95 

August to October. In view of a range of environmental and health impacts associated 96 

with smoke-haze periods, it is important to characterize the physical and chemical 97 

properties of haze and non-haze aerosols in SEA so that appropriate environmental 98 

policies and practical mitigation strategies can be developed to protect sensitive 99 

ecosystems and human health. Therefore, a field sampling campaign was conducted in 100 

the Southwest (SW) coast of Singapore from 16 August to 9 November in 2009. This 101 

study aimed at investigating both physical and chemical properties of haze aerosols in 102 

relation to those of background aerosols. In addition, backward trajectory analysis was 103 

carried out to assess the influence of air masses of different origins on the aerosol 104 

physical and chemical properties as well. 105 

 106 
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Methods 107 

Sample Collection 108 

Particulate sampling was carried out from 16 August 2009 to 9 November 2009, 109 

beginning at 09:00 (UTC+8 hrs) till the following day. The sampling site (1° 18’ N, 110 

103° 46’ E) is located at an altitude of 67 m above sea level at the roof of block E2 in 111 

the National University of Singapore (NUS). Singapore (1° 18’ N, 103° 50’ E) is 112 

situated at the tip of Peninsula Malaysia and within the regional influences of SEA 113 

smoke-haze with a total area of 693 km2. The sampling site is considered to be an 114 

urban background location where the local air quality is influenced largely by 115 

vehicular traffic on the major expressway (Ayer Rajah Expressway) and industrial 116 

emissions from petroleum, petrochemical, and specialty chemical industries located 117 

on Jurong Island, 5 to 10 km on the southwest of this site.  The sampling site is also 118 

influenced by the long-range transport of smoke-haze impacted air masses from 119 

Sumatra, Indonesia (Balasubramanian et al. 2003; Balasubramanian et al. 1999).  120 

PM2.5 were collected by 2 Mini-Vol Portable Samplers (MPSs) (AirMetrics, US) 121 

running in parallel with Teflon membrane filters at the flow rate of 6 Lmin-1 for 24-122 

hrs. The filter sample collection was performed periodically in every 1-in-6 days with 123 

additional sample collections performed when smoke-haze episodes were observed. 124 

Before and after the sampling, all the filters were equilibrated under the conditions 125 

with 22 ± 1°C with controlled relative humidity (RH) of 35% for 24 hours right 126 

before they were weighed with a MC5 microbalance (Sartorius AG) accurate to 1μg.  127 

Meanwhile, subsets of both filters were stored and analyzed as laboratory blanks.  128 

Physical Measurements of Atmospheric Aerosols 129 

The particle number concentration and size distribution were measured by a real-time 130 

Fast Mobility Particle Sizer (FMPS, TSI-3091d, TSI.) with a mobility diameter range 131 

of 5.6 to 560 nm, which is able to scan the number concentration of a poly-disperse, 132 

heterogeneous aerosol particle system for the nuclei and accumulation (sub-micron) 133 

mode based upon electrical-based measurements for particle counting. Data were 134 

recorded every second throughout the sampling period. TSI Dust Track™ II Aerosol 135 

Monitor was utilized to measure the real-time mass concentration of PM2.5 136 

atmospheric particles by photometric measurements based on the Mie scattering 137 

theory. The Dust Track device was calibrated with reference to the gravimetric data 138 
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obtained from the MPS operated in parallel for  a duration of 30-days using Teflon 139 

membrane filters. Twice daily auto zero checks were performed with filtered 140 

atmospheric air to reduce background noise influences. The Dust Track device was 141 

operated at a flow rate of 3.0 L min-1, and the recorded data were analyzed at 5-min 142 

averages. The accuracy of the Dust Track measurements was improved by eliminating 143 

positive artefacts of photometric measurements due to water vapor (Jakubczyk et al. 144 

2005; Ter-Avetisyan et al. 2003). With a reasonable correlation of 0.446 and R2 of 145 

0.82, the collected data from the Dust Track device was classified and analyzed for 146 

both smoke-haze and non-haze periods.  147 

Chemical Analysis of Atmospheric Aerosols  148 

Three-quarters of the Telfon filter was extracted by ultra-sonication (Elmasonic, S 149 

60H) with 12 ml of ultra-pure deionized water and the extract was filtered through 150 

Target® 30 mm syringe filters with 0.45 µm Teflon membrane.. After this step, the 151 

extracts were processed for the Ion Chromatography(IC) analysis. All filter samples 152 

extracted and the ones remaining after chemical analysis were stored in individual 153 

vials at 4°C for future analysis. In this study, six inorganic ions from the aerosol 154 

extracts: Cl-, NO3-, SO42-, Na+, NH4+ and K+ were quantified by the Ion 155 

Chromatography (Dionex ICS-2000) and the detection is based on the concept of 156 

conductivity detection of either anions or cations by suppression, separated over 157 

individual retention times.      158 

Air Mass Backward Trajectory Analysis 159 

The latest, updated Hybrid Single-Particle Lagrangian Integrated Trajectory 160 

(HYSPLIT) model (Version 4.9) (Draxler 2013; Rolph 2013), developed by the 161 

National Oceanic and Atmospheric Administration (NOAA), was used to compute 162 

backward trajectories for air samples collected in this study. Meteorological data were 163 

obtained from National Centers for Environmental Prediction (NCEP) Global Data 164 

Assimilation System (GDAS, global, 2006-present). Kinematic 3D trajectories were 165 

used as they are reported to provide an accurate description of the history of air 166 

masses in comparison with all of the other approaches (isentropic, isobaric) (Stohl 167 

1998; Stohl and Seibert 1998). Backward air trajectories, beginning at 09:00, were 168 

generated at every 6-hrs intervals during each sampling event for 96 h back in time 169 

with 500 m-agl ending level. This atmospheric level is very frequently used (Erel et al. 170 



 
 

7

2007; Lee et al. 2006) and ensures that the trajectory starts in the atmospheric 171 

boundary layer (ABL) (Dvorska et al. 2009). In addition, cluster analysis was 172 

conducted by using HYSPLIT model (version 4.9) as well to classify the trajectory 173 

groups of similar length and curvature for monsoon and pre-monsoon seasons. 174 

Quality Control 175 

Inconsistency in MPS measurements was verified by concurrent sampling of multiple 176 

MPSs and the comparison of the collected aerosol masses. A range of about ± 5 to 10% 177 

mass difference can be considered acceptable between MPS collections. During the 178 

entire sampling period, the filters were placed in individual polystyrene petri dishes, 179 

and handled with stainless-steel forceps, housed under an air-conditioned environment 180 

set at an average 22°C in the laboratory. After post-gravimetric analysis, filters were 181 

stored at -15°C until extraction and chemical analysis so as to prevent contamination 182 

and degradation. Quality control for the IC analysis was performed by running a 183 

series of calibration standards in step-up concentrations. An intermediate analysis of 184 

the median calibration standard was performed after analysis of every 24 samples to 185 

ensure stability and consistency of the IC accuracy. Duplicates were also performed to 186 

ensure the reproducibility of the samples of interest. Initial calibration and quality 187 

checks on FMPS were undertaken regularly. These procedures would eliminate 188 

interference from the instruments and give more reliable results.  189 

Results and discussion 190 

Segmentation of Clear Background Days and smoke-haze Events 191 

From the analysis of the meteorological parameters acquired from the automated 192 

weather station deployed at the sampling site, it became clear that there was very little 193 

variation in pressure, air temperature, relative humidity and rainfall during the 194 

sampling period. These climate conditions with little variations throughout the year 195 

are quite typical in tropical countries such as Singapore (Betha et al. 2013). 196 

 Out of the 82 sampling days for the daily average Dust Track-corrected 197 

gravimetric mass concentration, 9 days were identified as hazy days when the 24-hr 198 

average PM2.5 mass concentration was ≥ 35 µg m-3. Otherwise, the remaining 73 days 199 

were considered to be clear days. This criterion was selected based on the analysis of 200 

smoke haze events reported in our previous reports (Balasubramanian et al. 2003; See 201 
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et al. 2006). The same criterion was also used for identification of smoke haze events 202 

in other countries. For example, Hu et al. (2008) reported the occurrence of smoke 203 

haze events in  Atlanta, GA, caused by prescribed forest fires,  when the  24-hr 204 

average PM2.5 mass concentration  exceeded the National Ambient Air Quality 205 

Standard (NAAQS) of 35 µg m-3 (Hu et al. 2008). Smoke haze events were also 206 

identified in Malaysia using the same criterion as used in this study (Radzi bin Abas et 207 

al. 2004).   Figure 1 shows the classification of smoke events in this study. A general 208 

pattern of variations in 24-hr average PM2.5 mass concentrations observed during pre-209 

haze, smoke-haze, and post-haze periods can be noticed. The pre-haze period lasted 210 

from 16 August 2009 to 11 September 2009 while the smoke-haze episodes occurred 211 

predominantly from mid-September to early October (12 September 2009 till 3 212 

October 2009) followed by the post-haze period  from early October to early 213 

November (4 October 2009 till 9 November 2009). In this study, pre- and post-haze 214 

periods are considered to be non-haze periods. 215 

Air Mass Backward Trajectory Analysis 216 

The smoke-haze air mass origins were identified based on back trajectory analysis at 217 

the elevation of 500 m-agl over 96-hrs (4-days). Representative trajectories are 218 

displayed in Figure 2 for the pre-haze, smoke-haze and post-haze periods.  219 

As can be seen from Figure 2(a) and (d), there were only a few hotspots present 220 

over the SEA region. Aerosols during the pre-haze period at Singapore might have 221 

been influenced by those hotspots occurring in Indonesia as most air masses 222 

originated from marine sources and passed through Java Sea before arriving at 223 

Singapore.  Figures 2(b) and (e), show a number of  hotspots (biomass and peat-land 224 

fires)  located in Sumatra and the southern part of Indonesia and a cluster of back 225 

trajectories representing the transport of biomass burning-impacted    air masses  over 226 

the two regions (Sumatra and southern part of Indonesia) before reaching Singapore, 227 

respectively.  As can be seen from Figure 2(c), there were no visible hotspots in 228 

Sumatra or Kalimantan while Figure 2(f) shows that the air masses originated from 229 

partly terrestrial and partly oceanic sources during the post-haze period. Thus, the 230 

satellite images and the back trajectory analysis indicated that the smoke-haze 231 

episodes that occurred in Singapore from September to October 2009 were due to 232 

biomass burning in Indonesia and the subsequent long-range transport of fire 233 

emissions.   234 
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Comparison of Physical Properties of Aerosols between Non-haze and Haze Periods 235 

Differences in the physical properties of aerosols between non-haze and haze affected 236 

days were investigated by comparing the diurnal particle number concentrations 237 

(PNC), particle surface area concentrations (PSAC), and particle gravimetric mass 238 

concentrations (PGMC) as shown in Figure 3.  Figures 3(a) and (b) show the 239 

normalized concentrations of measured particle number (dN/dlogDp) and estimated 240 

surface area (dS/dlogDp) concentrations during sampling days. As can be seen from 241 

Figure 3(a), the average diurnal  PNC was 3.31×105 cm-3  for clear days and 3.50×105 242 

cm-3 for hazy days . For non-hazy days,   four distinctive peaks were observed. For 243 

smoke-haze days, the most significant peak was the one observed at 0800 hrs with the 244 

highest PNC being 8.14×105 ± 1.29×106 cm-3 (mean ± SD) and also with the largest 245 

standard error due to the most severe smoke-haze episode that occurred on the 27th 246 

September 2009 with the maximum PNC of 3.73×106 cm-3 and with the 24-hr mean 247 

of 5.37×105 cm-3.  248 

Interestingly, smoke-haze affected days had a higher PNC than that of non-hazy 249 

days before 10:0.0 However, the PNC declined after 10:00 and became even lower 250 

than that on non-hazy days.   The decline in the PNC appears to be associated with the 251 

pronounced vertical mixing of air in the presence of sunlight during day i.e. improved 252 

advection and dispersion of haze particles. In addition, the removal of aerosol 253 

particles by sedimentation or scavenging from the atmosphere is also possible (Reid et 254 

al. 2005).  For non- hazy and hazy days, the influence of local traffic and industrial 255 

primary emissions is expected to be basically the same, but the significantly increased 256 

atmospheric loading of pre-existing particles in smoke haze period can suppress the 257 

occurrence of nucleation during the day by removing precursor gases through 258 

adsorption (Betha et al. 2013). When relatively lower PNC was present during non-259 

haze period, the formation of new particles via nucleation process became favourable. 260 

The competing pathways involved in the formation of new particles and the removal 261 

of “aged” pre-existing particles apart from changes in atmospheric dynamics in the 262 

presence of the haze layer may eventually lead to the higher number concentration of 263 

particles during the daytime  in the non-haze period compared to the smoke haze 264 

period.  We have recently reported that new particle formation (NPF) mainly occurred 265 

in the afternoon (Betha et al. 2013), which may partly explain the observation of a 266 

sustained high number concentration from 12:00 till 18:00   during the non-smoke 267 
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haze period in this study.  A rapid increase in PNC observed from 15:00 to 16:00 with 268 

most of the particles with diameters less than 25 nm, as shown in Figure 4, supports 269 

the hypothesis about the occurrence of NPF events in the tropical atmosphere (Betha 270 

et al. 2013).  271 

During both non-haze and haze periods, the slight general increase of PNC in the 272 

early morning hours and in the late night hours during the non-smoke haze period can 273 

be attributed to the nocturnal inversion layer that formed to decrease the mixing 274 

height, thus, increasing the ground-level PNC due to poor dispersion of ambient air. 275 

The mixing height generally increases as the day progresses with an increase in 276 

temperature. The larger fluctuations in the PNC in the early morning hours between 277 

02:00 and 05:00 can potentially be due to changes in the strength of biomass burning 278 

emissions from the hotspots in Indonesia and/or in the long distance transboundary 279 

transport of primary aerosol particles. The distinct peak observed at 08:00 during the 280 

smoke-haze period appears to be influenced by the entrainment of haze particles from 281 

aloft (downward transport of haze particles from above the mixing height) when the 282 

nocturnal inversion layer breaks down after the sunrise (i.e. fumigation).  283 

 Figures 3(b) and (c) show distinctly higher daily mean PSAC and PGMC during 284 

the smoke-haze period. The mean PSAC measured was 4.75×109 nm² cm-3 during the 285 

non-haze period and 6.39×109 nm² cm-3 during the smoke-haze period. The mean 286 

PGMC measured was 12.43 µg m-3 during the non-haze period and 57.46 µg m-3 287 

during the smoke-haze period. However, with the measurement of PNC by the FMPS 288 

being in the range of 5.6 to 560nm, the PSAC measurements were only made in the 289 

ultra-fine and sub-micron range. The PSAC peaks observed at 08:00, 12:00 and 17:00 290 

during the non-hazy period, and also the peaks  observed at 08:00 and 19:00 hours 291 

during the smoke-haze period can potentially be associated with the diurnal emission 292 

variations of local rush hour traffic emissions in the case of the non-haze period and a 293 

mix of local particulate emissions and transboundary aerosol particles on hazy days. 294 

These diurnal patterns were commonly reported in previous studies of the urban 295 

atmosphere (e.g. Granada, Spain) by Lyamani et al. (2008).      296 

A statistical summary of   PNC and PSAC measured during the non-haze (the pre- 297 

and post-haze periods) and the haze periods is given in Table 1 for different particle 298 

size ranges, namely the key nuclei mode from 0 to 50 nm, the ultrafine particle mode 299 

from 51 to 100 nm, and part of the submicron, accumulation particle mode from 101 300 

to 560 nm. As can be seen from the table the mean PNC measured during the haze 301 
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period was significantly higher than that during the non-haze period in the particle 302 

size range of 51-100 nm, while the mean PSAC calculated for hazy days is smaller 303 

than that for non-hazy days in the particle size range of 0-100 nm, but almost twice 304 

higher than that in the range of 101-560 nm for non-hazy days.   This observation 305 

suggests that the aerosol particles in the size range of 101-560 nm absorbed and/or 306 

scattered the incoming sunlight efficiently because of the higher surface area and thus 307 

contributed to atmospheric visibility reduction i.e. haze 308 

Comparison of Chemical Properties of Aerosols between Non-haze and Haze Periods 309 

Chemical characteristics of aerosols measured between non-haze and haze periods 310 

were compared and are summarized in Table 2. The proportion of the particulate-311 

bound inorganic water-soluble ions: Cl-, NO3-, nss-SO42-, Na+, NH4+ and nss-K+ was 312 

observed to be quite similar between pre- and post-haze periods. The major 313 

contributors to the particulate mass over the non-haze period were mainly Cl-, nss-314 

SO42-, and Na+. A high proportion of Cl- and Na+ may potentially be derived in the 315 

form of sea salt from the open sea which is only 800 to 1000 m away from the 316 

sampling site. The presence of a high proportion of nss-SO42- in the background air 317 

during the clear  days suggests that it could be produced the atmospheric pathways 318 

involving the oxidation of  SO2 emitted from fossil fuel burning. This production 319 

pathway is conceivable since the sampling site is located in an urban area whose air 320 

quality is influenced by local traffic and industrial emissions. The non-sea salt sulfate 321 

(nss-SO42-) was calculated as follows (Balasubramanian et al. 2003).  322 

 323  nss − SOସଶି = [SOସଶି] − [Naା] × 0.2516       (1) 324 

During the smoke-haze period,  high mass concentrations of nss-SO42-, NO3-, and 325 

NH4+ were observed,  suggesting that these secondary inorganic aerosols were 326 

produced in the atmosphere under favourable conditions due to emissions of precursor 327 

gases from biomass burning in Indonesia (Behera et al, 2013).  These places are 328 

probable locations where the peat rich grounds would provide fertile soil for future 329 

agricultural land use and motivated the recurring slash-and-burn agricultural practices 330 

in SEA. These findings are consistent with our previous observations during smoke-331 

haze periods (Balasubramanian et al. 1999; He and Balasubramanian 2008). 332 

Indonesian peat bogs, located in Sumatra where most hotspots were identified in this 333 
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study, continue to smolder under several meters of land surface, especially during dry 334 

spells (Gras et al. 1999; Langmann and Graf 2003), releasing chemically reactive 335 

trace gases such as  SO2, NOx and NH3 into the atmosphere. SO2 and NOx are then 336 

oxidized in the atmosphere and form (NH4)2SO4 or NH4HSO4 and NH4NO3 in the 337 

presence of NH3 under thermodynamically favourable conditions (Behera and 338 

Balasubramanian, 2014). Moreover, the oxidation products, H2SO4 and HNO3 vapors,  339 

can also bind themselves to pre-existing primary aerosols forming internally mixed 340 

smoke plumes, leading  to an increase in particle size and mass concentration (See et 341 

al. 2006).               342 

An increase in the inorganic water-soluble nss-K+ was also observed during the 343 

smoke haze period. Being a chemical tracer for biomass (wood) and peat burning, the 344 

increase in the concentration of nss-K+ further provide support in favour of the 345 

influences of biomass burning on the chemical composition of smoke-haze impacted 346 

aerosol particles  (Currie et al. 1994). The nss-K+ concentration was calculated from 347 

the Equation (2) below (Balasubramanian et al. 2003), and it was about 81.7 % of the 348 

total inorganic water-soluble K+ concentration.  349 

    350  nss − Kା = [Kା] − [Naା] × 0.037       (2) 351 

Significant increments in the concentration of certain particulate-bound chemical 352 

components were observed during the smoke-haze period compared to that during the 353 

pre-haze period: NO3- (50 %), nss-SO42- (74 %), Na+ (41 %), K+ (20%) and NH4+ (3 354 

fold increase). A similar increase in their concentrations was observed based on the 355 

data obtained during the post-haze period, with the exception of K+. The Cl- 356 

concentration was observed to be relatively stable throughout the sampling period as 357 

it is mainly derived from the nearby marine sources. Thus, the enhancement in the 358 

concentrations of secondary inorganic aerosols (NH4)2SO4 or NH4HSO4 and NH4NO3) 359 

appears to be associated with the long-range transboundary transport of biomass and 360 

peat burning emissions from Sumatra to Singapore. Apart from the HYSPLIT back 361 

trajectory analysis, the increase in K+, as a biomass burning tracer, from pre-haze to 362 

smoke-haze periods can further support the above hypothesis.  363 
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Conclusions  364 

In this study, smoke-haze episodes, caused by biomass and peat burning in Indonesia 365 

(Sumatra), were observed predominantly during the SW monsoon which lasted from 366 

12 September 2009 to 3 October 2009. While comparing the physical characteristics 367 

of ambient aerosol particles between smoke-haze and non-haze periods, higher PSAC 368 

and PGMC were observed along with possible particle growth (aerosol aging). 369 

However, the diurnal trends in PNC showed a different pattern compared to those of 370 

PSAC and PGMC. The new particle formation phenomenon which was significant 371 

during the afternoons on non-haze days was suppressed during the smoke-haze 372 

affected period. The mean   PNC trends was observed to peak at 07:00 to 09:00 and 373 

17:00 to 19:00 due to local emissions from rush hour traffic during both smoke-haze 374 

and non-haze periods. However, a significant peak was observed in the background 375 

air in the absence of smoke haze at about 15:00 to 16:00 which could be attributed to 376 

NPF. Generally, the overall mean PNC, PSAC and PGMC measured during the 377 

smoke-haze period were higher than those during the non-hazy period. Among the 6 378 

key particulate-bound inorganic ions investigated in this study, nss-SO42- and NH4+ 379 

were observed to have the largest increase in their concentrations during the smoke 380 

haze period compared to their measurements during the non-haze period. K+, a well-381 

known chemical tracer of biomass and peat burning, was observed to have increased 382 

in its concentration during the smoke-haze period compared to the pre-haze period.  383 

This observation together with the back trajectory analysis suggests that the long-384 

range transport of biomass and peat burning emissions from Indonesia to Singapore 385 

affects both the physical and chemical characteristics of aerosol particles at downwind 386 

sites. In addition, the increase in surface area of aerosols in the range of 101-560 nm 387 

together with the increase in the concentration of radiatively active secondary 388 

inorganic aerosols (NH4)2SO4 or NH4HSO4 and NH4NO3) is indicative of the 389 

contribution of these particles to atmospheric visibility reduction during the smoke 390 

haze period. With the repeated occurrence of smoke haze episodes in SEA, there is a 391 

possibility of inducing climate change on a regional scale, which in turn could affect   392 

the hydrological cycle and thus the water budget. 393 
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Figure Captions 529 

 530 

Figure 1 Daily mean Dust Track-corrected gravimetric mass concentrations measured 531 

over the entire sampling period with the identification of smoke-haze events in 2009 532 

 533 

Figure 2 Hotspot maps in SEA and representative 96-hrs (4-days) back trajectories of 534 

air masses for the sampling period from August to November in Singapore. 535 

Representative Hotspots maps during (a) the pre-haze period; (b) the smoke-haze 536 

period; and (c) the post-haze period; backward trajectory clusters during (d) the pre-537 

haze period; (e) the smoke-haze period; and (f) the post-haze period; (Regional 538 

hotspots maps were obtained from MODIS FIRMS Web Fire Mapper) 539 

 540 

Figure 3 Diurnal comparisons of hourly mean values for the (a) particle number 541 

concentration (PNC), (b) particle surface area concentration (PSAC), and (c) particle 542 

gravimetric mass concentration (PGMC) during clear (background air) and smoke-543 

haze affected days at the sampling site   544 
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Table 1: Statistical parameters of particle number and surface area concentrations 545 

measured during non-haze and haze affected days at the sampling site   546 

  547 
Diameter 
(nm) 

0 – 50 nm  51 – 100 nm 101 – 560 nm 0 – 560 nm 

 dN/dlogDp (#/cm³) 

Non-haze haze Non-haze haze Non-haze Haze Non-haze haze 
Mean 1.76E+05 1.89E+05 1.23E+05 9.81E+04 2.87E+04 5.11E+04 3.27E+05 3.38E+05
Median 1.73E+05 1.68E+05 1.29E+05 9.58E+04 2.93E+04 5.23E+04 3.26E+05 3.34E+05
SD 4.24E+04 7.86E+04 2.10E+04 2.24E+04 3.28E+03 7.71E+03 6.13E+04 9.29E+04
Min 1.29E+05 9.62E+04 9.06E+04 6.21E+04 2.30E+04 4.05E+04 2.48E+05 2.18E+05
Max 2.65E+05 3.59E+05 1.52E+05 1.37E+05 3.33E+04 6.14E+04 4.43E+05 5.37E+05 
 dS/dlogDp (nm²/cm³) 

Non-haze haze Non-haze haze Non-haze Haze Non-haze haze 
Mean 5.64E+08 5.08E+08 1.85E+09 1.57E+09 2.32E+09 4.30E+09 4.73E+09 6.38E+09
Median 5.60E+08 5.05E+08 1.93E+09 1.54E+09 2.37E+09 4.43E+09 4.94E+09 6.31E+09
SD 1.12E+08 1.87E+08 3.08E+08 3.22E+08 2.63E+08 8.46E+08 4.89E+08 5.99E+08
Min 4.34E+08 2.76E+08 1.35E+09 1.04E+09 1.94E+09 2.89E+09 3.74E+09 5.38E+09
Max 7.63E+08 9.14E+08 2.26E+09 2.12E+09 2.79E+09 5.42E+09 5.28E+09 7.37E+09 

* SD (Standard deviation) over the 24-hrs diurnal sampling period  548 
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Table 2: Summary of temporal variations of mean mass concentrations of inorganic 549 

water-soluble ions measured over the entire sampling period (pre-haze, smoke-haze, 550 

post-haze periods) 551 

 *SD: standard deviation  552 

 Anions (µg m-3) Cations (µg m-3) 

 Cl- NO3
- SO4

2- nss- SO4
2- Na+ NH4

+ K+ nss- K+ 

Pre- Haze Mean 2.97 0.54  2.85 2.42  1.72  0.15  0.48  0.42 

SD* 0.55  0.09  − 0.87  0.70  0.08  0.09  − 

Smoke- 
Haze 

Mean 2.50  0.81  4.93 4.20 2.92  0.50  0.60  0.49 

SD 0.61  0.44  − 1.56 0.75  0.41  0.32  − 

Post- Haze Mean 2.65  0.43  2.60 2.27  1.33  0.16  0.28  0.23 

SD 0.48  0.20  − 1.23  0.84  0.27  0.07  − 
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 553 

 554 

Figure 1 Daily mean Dust Track-corrected gravimetric mass concentrations measured 555 

over the entire sampling period with the identification of smoke-haze events in 2009 556 

  557 
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 558 

 559 

 560 

 561 

Figure 2 Hotspot maps in SEA and representative 96-hrs (4-days) back trajectories of 562 

air masses for the sampling period from August to November in Singapore. 563 

Representative Hotspots maps during (a) the pre-haze period; (b) the smoke-haze 564 

period; and (c) the post-haze period; backward trajectory clusters during (d) the pre-565 

haze period; (e) the smoke-haze period; and (f) the post-haze period; (Regional 566 

hotspots maps were obtained from MODIS FIRMS Web Fire Mapper) 567 

  568 
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 569 

 570 
 571 

 572 
 573 

 574 
 575 

Figure 3 Diurnal comparisons of hourly mean values for the (a) particle number 576 

concentration (PNC), (b) particle surface area concentration (PSAC), and (c) particle 577 

gravimetric mass concentration (PGMC) during clear (background air) and smoke-578 

haze affected days at the sampling site 579 


