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ABSTRACT 
We propose a variation of the standard genetic algorithm that 
incorporates social interaction between the individuals in the 
population. Our goal is to understand the evolutionary role of 
social systems and its possible application as a non-genetic new 
step in evolutionary algorithms. In biological populations, i.e. 
animals, even human beings and microorganisms, social 
interactions often affect the fitness of individuals. It is 
conceivable that the perturbation of the fitness via social 
interactions is an evolutionary strategy to avoid trapping into 
local optimum, thus avoiding a fast convergence of the 
population.  We model the social interactions according to Game 
Theory. The population is, therefore, composed by cooperator and 
defector individuals whose interactions produce payoffs 
according to well known game models (prisoner’s dilemma, 
chicken game, and others). Our results on Knapsack problems 
show, for some game models, a significant performance 
improvement as compared to a standard genetic algorithm.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic methods 

General Terms 
Algorithms, Design. 

Keywords 
Genetic algorithms, social interaction, game theory, knapsack 
problems. 

1. INTRODUCTION 
Genetic Algorithms (GAs) are designed to search for near-optimal 
solutions in search spaces with multiple local optima. The GA 
population endows the algorithm with noise-resistant properties. 
According to [1], when the fitness values are modified by the 

addition of a noise term N(0, 2σ ), the algorithm’s  performance 
decreases in proportion to the value ofσ . To the best of our 
knowledge, any study so far has addressed the issue of how to 
improve the performance of  GAs or other evolutionary methods 
based on a ‘perturbation’ of the fitness values.  
 
This paper proposes a new approach inspired by the behavior of 
individuals in social systems. Using the well-known knapsack 
problem, we show how the inclusion of ‘social interactions’ into 
the GA cycle, significantly improves the algorithm’s 
performance. Our approach is loosely related to co-evolutionary 
approaches in that the fitness of an individual depends on its 
relationship to other members of the population [2, 3]. However, 
it differs from them in that the social interaction is not the main 
mechanism for calculating the fitness of co-evolving (competing 
or cooperating) species. Instead, in our approach the social 
interaction is an additional step that slightly alters the individuals’ 
genetic fitness values. 
It is worth pointing out that we are not interested in competing 
with state-of-the-art heuristic approaches for the Knapsack 
problem [4, 5]. Our interest lies instead in exploring how social 
interactions modeled via Game Theory (GT) could improve the 
GA performance. We aim to understand the evolutionary role of 
social systems and its possible application as a non-genetic new 
step in evolutionary algorithms. The main inspiration for our 
approach is the following observation:  in biological populations, 
i.e. animals, even human beings and microorganisms, social 
interactions often affect the fitness of individuals [6]. It is 
conceivable that the perturbation of the fitness via social 
interactions is an evolutionary strategy to avoid trapping into 
local optimum, thus avoiding a fast convergence of the 
population. In artificial neural networks, for example, the 
perturbation of some critical elements of the network during 
training is a common practice that improves its efficiency for 
pattern recognition [7]. We hypothesize that a population evolves 
better solutions when the fitness of the standard genetic cycle is 
affected by the social interaction between the members of the 
population. Our approach is inspired by the social life of 
microorganisms such as the social amoebas (M. xanthus and D. 
discoideum) [8, 9, 10] and viruses (φ 6) [11, 12, 13]. These social 
microorganisms, in response to specific environmental signals 
(starvation, reproduction, etc.), organize into social systems with 
two kinds of individuals: cooperators and defectors. Cooperators 
perform a group beneficial function whereas defectors are ‘social 
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parasites’ or cheaters that fail to perform a group beneficial 
function. They instead reap the benefits of belonging to a group.  
Usually, in Nature cheaters are genetic mutants or individuals 
including selfish genes. 
Based on above considerations we developed a GA with a 
population composed by cooperators and defectors individuals.  
In this approach the fitness function includes two terms: 

fi = f(x) + Δ  f(x)    (1) 
The first term, f(x), term is the standard chromosome fitness 

calculated by the objective function, whereas the second term, Δ  
f(x), is the fitness given by the social interaction between 

chromosomes. The Δ  f(x) value is obtained applying a Game 
Theory model. Thus, it is the value given by the payoff matrix 
that summarizes the combination of strategies (cooperator, 
defector) during pair-wise interactions. We selected several games 
from general GT (see http://www.gametheory.net/), and GT 
applied to Microbiology [8, 13], namely: (i) prisoner’s dilemma, 
(ii) chicken game, (iii) mixed polymorphism, (iv) friend or foe, 
(v) facultative defection (vi) battle of sexes, and (vii) stag hunt. 
All these games are: (a) 2x2, (b) symmetric and (c) non-zero sum 
games.  
We are interested in identifying the game model that confers a 
population better performance than a standard GA. We conducted 
extensive experiments on three Knapsack instances (with single 
and multiple sacks). Our results show, for some game models, a 
significant improvement of the optimized solutions as compared 
to those obtained by a standard GA. 
The next section outlines the proposed GA with social 
interactions. Thereafter, Section 3 describes in detail the 
simulation experiments conducted on both the single and 
multidimensional Knapsack problem. Section 4 shows our 
simulations results, Section 5 discusses the results, whilst section 
6 summarizes and concludes our findings. 

2. A GENETIC ALGORITHM WITH 
SOCIAL INTERACTIONS BETWEEN 
INDIVIDUALS 
This section describes the proposed GA including a social 
interaction step. 

2.1 A GAGT algorithm 
The outline of the algorithm is the following: 
   /*  GAGT Algorithm */ 
             WHILE not stop condition DO 
                   Social interaction. 
                   Evaluation  fi. 
                   Selection (or reproduction) of a new generation. 
                  Crossover.  
                  Mutation. 
             END DO 

2.2 Social interaction between individuals 
Our approach assumes a mixed population composed by 
cooperators and defectors. Chromosome interactions are pair-

wise, they interact equally likely with each other. The interactions 
are modeled according to GT. The GA is hybridized with the GT 
model as follows. Let i be a chromosome, its fitness value, fi,, is 
given by two terms:  

 

fi  = GAβ  max

( )f x
f

 + GTβ max

( )f x
f

Δ
Δ

    (2) 

 
where f(x) is the ‘genetic term’ or fitness value calculated with the 
problem objective function,  and ( )f xΔ  is a ‘social term’, which 
corresponds to the resulting payoff after the social interactions 
between chromosomes. In the above expression, both fitness 
terms are normalized. The normalization terms are the maximum 

fitness of the population at any given generation maxf and the 

maximum payoff in the payoff matrix maxfΔ .  Note how the 
fitness value fi is a weighted sum of fitness values. In 
particular, GAβ  and GTβ  are the weights modeling the relevance 
of the genetic and social events, respectively.  
 
As already mentioned, we assume a mixed population composed 
by two kinds of chromosomes: cooperators and defectors. The 
cooperators correspond to the usual GA chromosomes, whose 
fitness is calculated in conformity with regular practice in genetic 
algorithms. However, defector chromosomes exhibit a distinctive 
feature: they are able to cheat (‘act dishonestly’) when the fitness 
value is calculated. A defector will increase ‘dishonestly’ its 
fitness value compared with a cooperator. It is important to note 
that even when fitness is modified it does not involve a change in 
the chromosome gene values. 
Let us consider a social interaction between two chromosomes 
selected at random. The combination of strategies (C=cooperator, 
D=defector) during a pair-wise interaction is summarized by the 
following payoff matrix: 
 

1

2

C D
C k k s
D k s s c

−
+ −

    (3) 

 
which shows the payoff for the row player. In the matrix, k is the 
reward and k-s1 the sucker’s payoff that will be included in the 
fitness function of a cooperative chromosome. Likewise, in a 
cheater chromosome the following values, k+s2 or temptation to 
cheat, and k-c or punishment, will be also included in the fitness 
function. Considering the above payoff matrix we have four 
possible cases: 
(a) A cooperative chromosome i meets with another cooperative 
chromosome, then the fitness value for the cooperative 
chromosome i is calculated with ( )f xΔ = k. 

(b) A cooperative chromosome i meets with a cheater 
chromosome, then the fitness value for the cooperative 
chromosome i is calculated with ( )f xΔ = k-s1. 



(c) A cheater chromosome i meets with a cooperating 
chromosome, then the fitness value for the cheater chromosome i 
is calculated with ( )f xΔ = k+s2. 

(d) A cheater chromosome i meets with another cheater 
chromosome, then the fitness value for the cheater chromosome i 
is calculated with ( )f xΔ = k-c.  

We conducted several simulation experiments with different 
social interaction models: prisoner’s dilemma (PD), chicken game 
(CG), mixed polymorphism (MP), friend or foe (FOF), facultative 
defection (FD), battle of sexes (BS) and stag hunt (SH). The 
payoff matrix (3) could be replaced by this other equivalent 
matrix: 

C D
C R S
D T P

    (4) 

 
being R, S, T and P the reward, sucker’s payoff, temptation to 
cheat, and punishment, respectively. In agreement with GT for 
each one of the social interaction models the payoffs will be equal 
to:  
PD: T>R>P>S or k+s2>k>k-c>k-s1 with C<S1 
CG: T>R>S>P or k+s2 > k > k-s1> k-c with c>s1 
MP: T>R>S>P=0 or k+s2>k>k-s1>k=c with k=c>s1 
FOF: T>R>P=S=0 or k+s2>k> (k=c) = (k=s1) with k=c=s1 
FD: T>R=P>S or k+s2>(k=k-c)>k-s1 
BS: R>P>T=S=0 or k>k-c>(k+s2)=(k-s1)=0 
SH: R>T>=P>S or k>k+s2>=k+s2>k-s1 

2.3 Genetic operators 
The remaining steps of our algorithm closely resemble those of a 
standard GA. Specifically we used binary tournament selection, 
two-point recombination with a rate of 0.75, and the standard bit 
mutation with a rate of 1/L, where L  is the length of the 
chromosome (in this case the number of items in the underlying  
Knapsack instance). 
 

3. SIMULATION EXPERIMENTS 
 

3.1  Single 0/1 Knapsack problem 
Let i be a chromosome and assume we have j objects to be packed 
in a single sack. Each item has a value vj and weight wj. With  W 
being the maximum weight that we can carry in the knapsack. We 
used the well-known 0-1-knapsack problem, restricting the 
number of each object xj to 0 or 1. The aim is to maximize j j

j
v x∑  

subjected to j j
j

w x W≤∑ . We consider the chromosomes encoded 

as binary strings: a value of 1 indicates that an object is placed in 
the knapsack, whilst a value of 0 indicates that the object is left 
behind. The population is composed by two kinds of 
chromosomes: cooperative and cheater chromosomes. As we 
mentioned before, the difference between them lies is the way 
both genetic and social fitness are calculated. A cheater 

chromosome i will increases the value vj of an object j in an 
amount equal to jvΔ , or alternatively decreases its weight value 

wj to jwΔ . The fitness of both types of chromosomes will be 
calculated as follows. The fitness g(x) for a cooperative 
chromosome is given by the usual expressions: 
 

   

,

( )
,

j j j j
j j

j j j j
j j

w x W v x

g x
w x W W w x

⎧ ≤
⎪
⎪= ⎨
⎪ > −⎪
⎩

∑ ∑

∑ ∑
    (5)  

 
whereas for a cheater chromosome the fitness is given by: 
 

, ( )

( )
, ( )

j j j j j
j j

j j j j j
j j

w x W v v x

g x
w x W W w w x

⎧ ≤ + Δ
⎪
⎪= ⎨
⎪ > − − Δ⎪
⎩

∑ ∑

∑ ∑
    (6) 

 

such that 100jv τΔ =  and  100jw τΔ =   being τ  the ‘cheating 

degree’ (i.e. 10, 20, …, 100).  
 
Once two chromosomes are selected at random, a social 
interaction takes place between them. Three are the possible 
chromosome-chromosome interactions: 

• Cooperative-cooperative:  
 

max max

max max

,

,

j j
j

j j GA GT
j

i

j j
j

j j GA GT
j

v x
kw x W

f f
f

W w x
kw x W

f f

β β

β β

⎧
⎪ ≤ +⎪ Δ⎪⎪= ⎨
⎪ −⎪
⎪ > +

Δ⎪⎩

∑
∑

∑
∑

    (7) 

 

• Cooperative-cheater:  
 
     Cooperative:  

1
max max

1
max max

,

,

j j
j

j j GA GT
j

i

j j
j

j j GA GT
j

v x
k sw x W

f f
f

W w x
k sw x W

f f

β β

β β

⎧
−⎪ ≤ +⎪ Δ⎪⎪= ⎨

⎪ −⎪ −⎪ > +
Δ⎪⎩

∑
∑

∑
∑

   (8) 

 
 



 
Cheater:  

2
max max

2
max max

( )
,

( )
,

j j j
j

j j GA GT
j

i

j j j
j

j j GA GT
j

v v x
k sw x W

f f
f

W w w x
k sw x W

f f

β β

β β

⎧ + Δ
+⎪ ≤ +⎪ Δ⎪⎪= ⎨

⎪ − − Δ⎪ +⎪ > +
Δ⎪⎩

∑
∑

∑
∑

    (9) 

 

• Cheater-cheater: 
 

max max

max max

( )
,

( )
,

j j j
j

j j GA GT
j

i

j j j
j

j j GA GT
j

v v x
k cw x W

f f
f

W w w x
k cw x W

f f

β β

β β

⎧ + Δ
−⎪ ≤ +⎪ Δ⎪⎪= ⎨

⎪ − − Δ⎪ −⎪ > +
Δ⎪⎩

∑
∑

∑
∑

(10) 

 
In the simulation experiments the conditions are given by (1) the 
optimization problem, i.e. knapsack problem, (2) the game theory 
parameters (k, s1, s2 and c values of the payoff matrices should be 
scaled with the optimization problem) and (3) the genetic 
algorithm parameters (described in section 4).  
 
Game model parameters, k, s1, s2 and c values in the payoff 
matrices, were set up according to the values shown in Table 1. 
 

Table 1.- Game models.  Payoff matrix parameters * 

 
* Payoffs estimation from:   

(1) see virus φ 6 [11, 12]. (2) see social amoeba M. xanthus [9, 10]. (3) 
Values were estimated based on (1). (4) see social amoeba D. 
discoideum [10]. (5) Usual values were normalized to 1.  

 
In addition, we studied the relationship between the cheating 
degree τ  and the number of feasible solutions obtained (YNS). 
The experiments were conducted with the PD model, GAβ =0.8, 

GTβ =0.2, and the following cheating degrees 10, 15, 20, 25, 30, 
40 and 50.  

3.2 Multidimensional Knapsack Problem 
 
A multidimensional version of the problem consists of m 
knapsacks of weights W1, W2, …, Wm and j objects with values v1, 
v2, …, vj

.  The objective is to find a solution that guarantees that 
no knapsack is overfilled jm j m

j
w x W≤∑ and that yields maximum 

value jm j
j

v x∑ . The fitness g(x) for a cooperative chromosome is 

given by the usual expressions: 

,

( )
, 0

jm j m jm j
j j

jm j m
j

w x W v x

g x
w x W

⎧ ≤
⎪
⎪= ⎨
⎪ >⎪
⎩

∑ ∑

∑
    (11) 

 
discarding infeasible solutions. Thus, for those solutions that 
violates the constraints the fitness is 0. In the case of a cheater 
chromosome the fitness is given by: 

 

, ( )

( )
, ( )

jm j m jm jm j
j j

jm j m m jm jm j
j j

w x W v v x

g x
w x W W w w x

⎧ ≤ + Δ
⎪
⎪= ⎨
⎪ > − − Δ⎪
⎩

∑ ∑

∑ ∑
    (12) 

 

4. RESULTS 
 

We conducted experiments on 3 benchmark instances of the 
Knapsack problem, as described in Table 2. 

 

Table 2.- Knapsack problem instances 

Instance 
name 
 

No. of 
items 

No. of 
sacks 

Best 
known  

Source 

SK250 250 1 Na [14] 

MK250 250 5 59312 [4] 

MKSento1 60 30 7772 [15] 

 

The genetic algorithm parameters: N (population size), G (number 
of generations), α  (cheater rate), pc (crossover rate), pm 
(mutation rate), and τ  (cheating degree), were set as follows:  N 
=500, G=1000, α =0.1. In order to facilitate the search for 
improved solutions, the experiments were conducted with a high 
value of the cheating degree τ =50, (single knapsack) and τ =60 
(multiple knapsack). The crossover rate pc and mutation rate per 
bit pm were 0.75 and 1.0/L (where L is the chromosome length) 
respectively. A control experiment was carried out with a 
standard genetic algorithm. The number of replicas (algorithm 
runs) was set to 100 for each game model. For the standard GA, a 

 PD 
(1) 

CG 
(2) 

MP 
(1) 

FOF 
(3) 

FD 
(4) 

BS 
(5) 

SH 
(5) 

K 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

S1 0.4 0.5 0.5 1.0 0.3 1.0 0.7 

S2 1.0 9.0 0.5 0.5 0.3 -1.0 -0.2 

c 0.2 0.17 1.0 1.0 0.0 0.3 1.0 



larger number of replicas was conducted, specifically, 100 x the 
number of game models explored.  We consider an ‘experiment’, 
a set of runs according to the description above, including the 
standard GA and the seven game models studied. 
 

Our results support that the inclusion of ‘social interactions’ 
modeled via Game Theory into the GA cycle improves the 
algorithm’s performance.  Figure 1 illustrates the best feasible 
solutions obtained for the single knapsack problem. For each 
solution, the plot show the knapsack weight (Y axis), and the 
knapsack value or fitness (X axis). We observe that the standard 
GA shows worse performance (left side, Figure 1) than those 
solutions obtained with the GA including social interactions (right 
side, Figure 1).  It is important to note that whereas PD, FOF and 
FD promote cheating, BS and SH promote cooperation. CG and 
MP promote a mix of cheaters and cooperators (polymorphic 
populations). With CG the population evolves to a soft 
polymorphism, whilst with MP the population will exhibit a 
strong polymorphism (about 50%-50% of cheaters-cooperators).  

Figure 2 shows a perfect linear regression (Table 3) between the 
cheating degree τ  and the number of feasible solutions (YNS). We 
also found a perfect linear regression (Tables 4-5) between the 
cheating degree τ  and the mean fitness of feasible solutions 
( NSf , Figure 3). A similar linear relationship is observed between 

τ   and the maximum fitness value of feasible solutions ( max
NSf , 

Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Single Knapsack problem. Best solutions founds 
with the standard GA  (left) and the GA with social 
interactions (right). 
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Figure 2. Linear regression between the cheating degree τ  
and the number of feasible solutions (YNS). 
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Figure 3. Linear regression between the cheating degree τ  
and the mean fitness of non-spurious solutions ( NSf ). 
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Figure 4. Linear regression between the cheating degree τ  
and the maximum fitness value of non-spurious solutions 
( max

NSf ). 
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Table 3.- Regression ANOVA (YNS = 52.2395 - 1.17725 τ ) 

 

Total (Corr.)  2027.43        6 
Correlation coefficient = -0.903002 
R-square = 81.5412  
 

Table 4.- Regression ANOVA ( NSf = 10115.6 + 3.0 τ ) 

Total (Corr.)  10997.6       6 
Correlation coefficient = 0.988022 
R-square = 97.6188  

 

Table 5.-  Regression ANOVA ( max
NSf = 10197.0 + 1.44263τ ) 

Total (Corr.)  3222.66        6 
Correlation coefficient = 0.877695 
R-square = 77.0348 
 

Regarding the Multiple Knapsack instances, for Sento1 we 
obtained, in two different experiments with τ =50, a total of 10 
solutions significantly better than those obtained with the standard 
GA. For the increased cheating degree toτ =60, 6 solutions were 
significantly better than those obtained in the control experiment.  
In the three experiments carried out with this instance the best 
results were obtained with FOF, FD and PD.  The CG game failed 
to produce better results than those obtained in the control 
experiments. In the two experiments conducted under τ =50, the 
best solution 7719 was found with the FOF and FD models. A 
Mann-Whitney (Wilcoxon)’s test (with a p-value equal to zero) 
show that the differences among medians were statistically 
significant at the 95.0% confidence level. In consequence, the GA 
with social interactions performs better than the standard GA 
regardless of the game model used. In the experiment withτ =60 
the Mann-Whitney (Wilcoxon) test, with a p-value 0.013, show 
that there are statistically significant differences among the 
medians at the 95.0% confidence level. Once again, we conclude 
that our approach improves the algorithm’s performance. 

Regarding the multiple knapsack instance MK250, the social GA 
produced good results in only two of the three experiments. In 
these two experiments a total of 8 significant best, as compared to 
the best result in the control experiment, were obtained. The best 
results were obtained with the FD game model, being the best 
obtained solution value 56481. The Mann-Whitney (Wilcoxon) 
test (with a p-value 0.001) show that there are statistically 
significant differences among the medians at the 95.0% 
confidence level. 
In order to strengthen or support our results we performed some 
experiments replacing the social interactions (payoff matrix 
values) by uniform or Gaussian noise (stochastic matrix). The 
experiments were conducted with PD model, GAβ =0.8, GTβ =0.2, 
and SK100 [14]. Figure 5 demonstrates how solutions obtained in 
presence of noise are well below of those obtained including 
social interactions into the GA cycle. 

5. DISCUSSION 
Our interpretation of the dynamic behavior of a genetic algorithm 
with social interactions is as follows. Initially, cooperators and 
only a few cheater chromosomes compose the population, starting 
out the evolution of such mixed-population. After many 
generations, a solution with high fitness is reached by a cheater 
chromosome. At this stage most solutions, cooperators and 
cheaters, are non feasible (spurious) solutions (e.g. knapsacks 
with high j j

j
v x∑  but j j

j
w x W>∑ ) being the population on the 

verge of extinction. Only a few cheater chromosomes are 
optimized feasible solutions, showing a significant improvement 
compared with a simple GA. When solving a optimization 
problem, the interest lies in finding particularly good solutions, 
and the final fate of population is meaningless [16]. It is important 
to note that our approach promotes cheaters whereas the usual 
approach in Game Theory or in   Evolutionary   Game Theory 
promotes cooperation. For instance, some mechanisms have been 
suggested to promote cooperation such as chaotic variations of 
appropriate amplitude [17], kin selection [18], tit-for-tat strategy 
[19], etc.  
    
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Single Knapsack problem with uniform or Gaussian 
noise. Above the threshold line (4295) are the solutions obtained 
with social interactions (PD model). 

Source SS DF MSS F-rate P-
Value 

Model 1653.19    1 1653.19 22.09 0.0053 

Residual 374.24 5 74.8479   

Source SS DF MSS F-rate P-
Value 

Model 10735.7 1 10735.7 204.97 0.0000 

Residual 251.88 5 52.376   

Source SS DF MSS F-rate P-
Value 

Model 2482.57 1 2482.57 16.77 0.0094 

Residual 740.089 5 148.018   
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In our social GA, however, cheaters ‘promote themselves’ by 
having an eventual reproductive (fitness) advantage. In 
consequence, no additional mechanism is needed to promote 
cheating. We propose that modeling cheating through a genetic 
algorithm with social interactions could be a novel approach for 
problem solving.  
 

6. SUMMARY AND CONCLUSIONS 
We have proposed a variation of the standard GA that includes 
social interactions between the members of the population. The 
social interaction is modeled according to Game theory, and a 
number of well known game models in the theoretical biology 
literature were studied.  We found that the proposed social 
interaction step improves the problem solving capabilities of the 
standard genetic cycle. Therefore, we suggest that modeling 
cheating through a genetic algorithm with social interactions could 
be a novel approach for problem solving.   
Our future work will include a larger number of instances and 
additional combinatorial problems. Moreover, the implementation 
of the proposed technique in the context of Genetic Programming is 
currently under study. 
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