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ABSOLUTE CONTINUITY IN PARTIAL
DIFFERENTIAL EQUATIONS

Abstract

In this note we study a function which frequently appears in partial differen-
tial equations. We prove that this function is absolutely continuous, hence it can
be written as a definite integral. As a result we obtain some estimates regarding
solutions of the Hamilton-Jacobi systems.

1 Introduction

Let H be a differential operator of order m € N and let f € LP(D) be a positive
function, where p € (1, 00) and D is a smooth bounded domain in R". Consider the
equation:

Hu)=f, inD (1)

A function u € WP(D)NC(D) is called a strong solution of (1) provided that H(u) =
f almost everywhere (a.e.) in D. We assume the operator H satisfies the following
condition:

Foranyu e W"(D)andy e R: Hu)=0a.e.inE, ={xeD|ux)=y} P
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For a measurable function 2 : D — R, the distribution function of %, denoted
Ap(@), is defined as follows:

M@ ={xeD|h(x)>a}|=|{h>a}|, (YaeR)

where | - | denotes the n-dimensional Lebesgue measure. Clearly Ay, is decreasing, and
if & is continuous, then A, will be strictly decreasing. Moreover, in case the graph
of & has no significant flat sections (i.e. Yy € R : [{h =y}| = 0) then A;, will be
continuous. The decreasing rearrangement of 4, denoted /#*(s), is defined as follows:

B 10,| D[] » R
h*(s) = infla | (@) < s)

Note that when 4 is continuous and its graph has no significant flat sections then:
Adpoh™(s)=s and K" o Au(a) = a.

We also need to recall some background from rearrangements of functions. Given
go : D CR" — R, the rearrangement class generated by gy, denoted R(go), is the set
of functions g : D — R such that A,(@) = Ag,(a), for every real a. In case go € L”(D)
then R(go) € LP(D), and Vg € R(go) : ligll, = llgoll,- The weak closure of R(go)
in LP(D) is denoted as R(go) which, unlike R(go), enjoys some nice properties and
characterizations that are stated in the following lemma. For the proof and further
reading see [3, 4, 5, 9]:

Lemma 1. Let gg € L?(D) be a non-negative function, and R(go) be the rearrange-
ment class generated by go. Then:

(1) R(go) is convex, and weakly compact in L¥ (D).

(2) R(go) = co(R(go)), the closed convex hull of R(go).

(3) The following characterization stands:

R(go)={g|VS€(0,IDI):

s s |D| |D|
f g@dt < f gy dt, and f g dt = f gg(z)dt}
0 0 0 0

The set of measure-preserving maps from D onto [0,|D]|] is a non-empty set
(e.g. see [12, Chapter 11]) which will be denoted by M(D,[0,|D|[]). By a result
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attributed to Ryff [13], given g : D — R, there exists ¢ € M(D,[0,|D|]) such that
g = g" o ¢ almost everywhere in D.

‘We now introduce the function that is the main drive behind writing this note. To
this end, we assume u € W™?(D)NC(D) is a strong solution of (1). We are interested
in the function £ : [0, | D[] — R defined by:

£(s) = f F)dx. @)
{u=>u*(s)}

Thanks to property (P) on page 1, and of course the fact that f is positive, the level
sets {u = y} must have zero measure, hence ¢ is well-defined. This function is fre-
quently referred to in partial differential equations, particularly when one is interested
in comparing the solution of a boundary value problem to that of a symmetrized
problem, the latter being readily solved. There are many references in this regard,
e.g. [2, 6, 14], to mention a few. In this note we prove that £ is absolutely con-
tinuous, hence it can be represented by a definite integral of the form fos F(r)dr.
Then, we will prove that the integrand F composed with any measure-preserving
map ¢ € M(D, [0,]D]]) belongs to R(f). Using these two results we point out a
couple of applications.

Throughout this paper we use some standard notations. For example, W"?(D)
and W™(D) denote the usual Sobolev spaces. The space L”(D) comprises functions
whose p-th powers are integrable, and the norm in this space is defined by |[|f]|, =

1 —
( fD |£1P dx) /p. Moreover, C(D) and C(D) denote the spaces of continuous functions

over D and its closure D, respectively, and the corresponding norm is denoted by
|| - llo- The arrow “—” indicates strong convergence, whilst “—” indicates weak
convergence in spaces under discussion.

2 Main results

Our first main result is the following:
Theorem 2. The function &, as defined in (2), is absolutely continuous on [0,| D [].

Proor. Let € > 0, and consider a finite sequence {(«;,5;) | 1 < i < N} of non-
overlapping subintervals of [0, | D[] such that Zf\; \(Bi — @;) < 6, where ¢ is a positive
number to be determined later. By setting #(«@;) = u*(;) and #(5;) = u*(5;) we will
have:

N

N
INGOREEDY
i=1

i=1

f J(x) dx =ff(X) dx, 3)
{1(Bi)<u<t(a;)} E
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where E = Ufi dx s w'(B) < u(x) < u*(ay)}). By applying the Holder inequality we
obtain:

1
ff(x) dx < |E| || fll, 4)
E
where Il] + é = 1. Note that |E| = ¥ | (8; — ;). This, along with (3) and (4), will give
q
the desired result, provided that ¢ < (W) . O

Corollary 3. The function &, as defined in (2), satisfies:

£(s) = fo P, 5)

for some integrable function F.

Proor. By Theorem 2, ¢ is absolutely continuous. Hence we can apply Corollary 14
in [12], together with the fact that £(0) = 0, to deduce

&(s) = fo §'(1)dr,

almost everywhere in [0,| D|]. So by setting F(s) = &'(s), we get the desired result.
m}

‘We now state our second main result:

Theorem 4. Let F be the function in Corollary 3 and ¢ € M(D,[0,|D|]). Then
Fo¢ e R(f).

Proor. Note that Ar.g(@) = Ap(@), for every @ € R. Thus, (F o ¢)*(s) = F*(s), for
almost every s € [0,| D|]. Hence, in view of item (3) of Lemma 1, it suffices to prove:

@ p7 Fds= [ fr(s)ds.

Gi) [ Fnde< [ fr@dr, Vse (D).

Proving (i) is straightforward as

DI D]
f F*(t)dt=f F(ndt=&(D))
0 0

D]
=f fdx:f fdxszdxzf @ dt,
{u>1(|D|)) {u0) D 0

where we have used Corollary 3.
To prove (ii), we consider the following steps:



ABSOLUTE CONTINUITY IN PARTIAL DIFFERENTIAL Equarions 5

Step 1. Let U be an open subset of (0,| D). Then, we can write U = U2, (A;, By),
where (A;, B;) are mutually disjoint. Hence,

© B o B; Ai
F(r)d F(r)dr = F(r)dr — F(r)d
L (ndr ; L [ (dr ,Z;( j(; (r)dr f(; () ‘r)
fdx— f f dx) = f fdx
; (j{;>f(3i)] {uz1(Ap)} ; {e(Bi)<u<t(Ap}

| U{#(B))<u<t(A) |
f fdx < f [ (s)ds
Utt(Bi)<u<t(Ap)} 0

2.(Bi—A;) | U|
f fr(s)ds = fr(s)ds.
0

0

Step 2. Let V be a measurable subset of (0,| D), and € > 0. By Theorem 3.6 in [15],
there exists an open set G containing V such that |G \ V| < e. Whence

G|
fF(t)dtSfF(t)dtS fr(s)ds
4% G 0

v Gl
= f(s)ds+ [ (s)ds (6)
0 v
v
< | [ ) ds +1If1l,(Gl = V)9,

where we have used Step 1, and Holder’s inequality. Since |G| — |V| = |G\
V| < €, from (6) we infer

|V
f F(tydi < £ (s)ds + €| fl,. 7
% 0

Since € is arbitrary, (7) implies
VI
f F(t)dt < () ds.
v 0

Step 3. We recall the following maximization from [1]:

{w]
sup fF(t) dt = f F*(s)ds.
{wc[0,|D]]:|wl=y} Yw 0
Now, fix s € (0,]| D), and apply Step 3 to obtain

sup f F(ydt = f F*(t)dt. (8)
{wel0,|DlI:|wl=s}) Jo 0



6 A. FARJUDIAN AND B. EMAMIZADEH

On the other hand, from Step 2, we have:

|w]
f Fodi< [ s ©)
w 0

fs F*(H)dt < fsf*(t)dt,
0 0

as desired. |

From (8) and (9) we deduce

Corollary 5. Suppose the hypotheses of Theorem 4 hold. Then, there exists a se-
quence of functions {F,} such that F,(s) = f*(s) and F, = F in L?(0,| D).

Proor. By Ryff’s result, f = f* o ¢, for some ¢ € M(D, [0, |D|[]). From Theorem 4,
we infer F o ¢ € R(f). So, there exists a sequence {f,,} € R(f) such that f;, = Fo¢
in LP(D). Therefore, f, o ¢" — Fin LP(0,| DJ). Clearly, Afo4-1(a@) = Af(a), so
(f, 0 ¢~ 1)*(s) = f*(s). This completes the proof. O

3 Applications

In this section we will present a couple of applications of the results of the previous
section. Throughout we will assume the extra condition f € C(D). Let us consider
the following Hamilton-Jacobi system:
|Vul = f(x), inD (10)
u=20 on dD.

Lemma 6. The system (10) has a strong positive solution u € W (D).

Proor. From [10] we know that the system (10) has a strong solution u € W'>(D).
Replacing u by |u| € W'*°(D) if necessary, taking into account that | V(|u|)| = | Vu|,
we can assume u is non-negative. On the other hand, since f is positive, we can apply
Lemma 7.7 in [7], to ensure that the level sets {u = y} have zero measure. Thus, u is
essentially positive, as desired. O

Remark 1. For f and u as in Lemma 6, the function:
&(s) = f(x)dx, (where s = 4,(1)),
{u>t}

is well defined. As a result, the function F from Corollary 3 is also well defined.
Moreover, the conclusions of Theorem 2 and Theorem 4 hold.
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Our first application is as follows:

Theorem 7. Let u € W"°(D) be a strong positive solution of the Hamilton-Jacobi
system (10) and let v be the unique solution of the following system:

11
Z:O, on BB, ( )

{ IVZ| = F(w,lxI"), in B
in which:

o Bis the ball centred at the origin with radius (| D | Jw)'", and w, indicates the
volume of the unit n-dimensional ball.

o The function F is as in Corollary 3, which is well defined by Remark 1.

Also, let ub(x) = u*(wy| x|"), which in the literature is referred to as the Schwarz
symmetrization of u. Then, u*(x) < v(x), for x € B.

Proor. The proof is a consequence of Corollary 3, along the same lines as in the
proof of Lemma 2.2 in [6]. m|

Example 1. Choosing f(x) = 1 in Theorem 7 yields F(#) = 1. Thus, the conclusion
of Theorem 7 states:

uﬁ(x)SV(x):R—lxl, X € B,

where R = (| D|/w,)"". This estimate can be obtained directly as follows:

/lu(t)zf dxzf | Vu|dx
{u>1} {u>t}
{leallco {leellco
=f (f dH”")dT:f P({u > 7)) dr,
t {u=t} t

where we have used the co-area formula (e. g. see [11]). Here, P(E) stands for the
perimeter of E in the sense of De Giorgi. By differentiating (12), and applying the
classical Isoperimetric Inequality (e. g. see [8]), we derive:

12)

() =-P{u>1}) < —nwj/l,i_’l’(t).

Thus, we obtain:

1< —L. 13)

11
nwy A, " (1)
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Integrating (13) from O to ¢ leads to:

1 ! X 1 A, (1)
1< — 1 f ”(T) dr = — f &
In 1-1 1/n 1-1
nw, 0 /lu n (T) nwy, |D| 8§ n

1

wm

(14)

1/n
(DI = 4/"@0) = R - (L@) '

n

By letting ¢ = u*(w,|x|") in (14), and recalling A, (" (w,| x|")) = w,| x|*, we obtain
uf(x) < R —| x| for x € B, as expected.

The second application is stated in the following Theorem:

Theorem 8. Let u be as in Theorem 7. Then
llulloo < CIDI"|| fllco-

Proor. The proof is a consequence of Corollary 5, along the same lines as in the
proof of Corollary 2.1 in [6]. O
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