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Abstract. Thermal comfort is a critical determinant of human health, productivity,
and well-being in indoor environments. While numerous studies have utilised
electroencephalography (EEG) to explore human physiological responses to varying
thermal conditions, comprehensive analyses that synthesise the effectiveness of
various machine learning (ML) approaches for interpreting EEG data remain limited.
To address this gap, this study compares various EEG feature sets and ML algorithms
using a single EEG dataset. The dataset consists of EEG signals collected from 40
participants exposed to two distinct thermal conditions: a baseline comfortable state
and an overheating state induced by wearing heavy clothing. To this end, our objective
is to investigate the most pertinent EEG signal features, such as mean power density,
power spectral densities, and so on, and evaluate the performance of popular machine
learning models for predicting thermal comfort. We examine classifiers including
Support Vector Machines (SVM), Random Forests (RF), and various neural network
configurations, comparing their efficacy in analysing EEG data. The results indicate
that the LDA classifier demonstrates high accuracy when using mean power density
features in each 1 Hz frequency range. The SVM classifier, utilizing power density
ratios of EEG frequency bands, exhibits robustness in recall and F1 scores.
Additionally, the CNN classifier effectively captures complex patterns in the EEG data,
showcasing the potential of deep learning methods. These findings contribute to the
optimization of indoor environmental controls and advance the field of environmental
engineering by providing insights into the neurophysiological impacts of thermal

conditions.

Keywords: Thermal comfort, Electroencephalography (EEG), Machine learning,

Neurophysiological responses, Indoor environment

1. Introduction

Morden lifestyles have significantly increased the time people spend indoors, estimated to account
for more than 90% [1]. This tendency has led researchers to increasingly focus on indoor

environmental quality parameters, with thermal comfort emerging as a key factor [2-

4]. Thermal
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comfort reflects individuals’ psychological satisfaction with their thermal environment [5,6], and is
often assessed using indexes such as predicted mean vote (PMV) [7], standard effective temperature
(SET) [8], universal thermal climate index (UTCI) [9] and so on. Despite their widespread use, these
indexes often fail to accommodate individual preferences, as they operate as “one-size-fits-all”
models [10]. This limitation has led to growing interest in using physiological data, such as
electroencephalogram (EEG) signals, to develop personalised thermal comfort models. Especially in
this recent decade, machine learning (ML) techniques have been under fast development and shown
promise in analysing complex physiological data. Many existing studies have explored ML methods
for classifying and predicting occupants’ states in indoor environments.

Recently, a number of studies have explored the use of EEG signals in thermal comfort research.
Shan et al. [11] investigated the correlations between EEG signals and subjective perceptions,
revealing that frontal asymmetrical EEG activity effectively correlates with subjective assessments
and task performance under varying thermal conditions. This also suggests that EEG can serve as a
more objective metric than traditional questionnaire-based methods. Additionally, Shan et al. [12]
lately employed machine learning techniques to classify occupants' real-time thermal comfort states
using passive EEG measurements. The findings indicated that classifiers, particularly LDA, achieved
high classification accuracy. Ren et al. [4] contributed to this area by measuring physiological
parameters (i.e. EEG and skin temperature) to develop predictive models for thermal comfort using
various machine-learning algorithms. Their study emphasised the importance of a comprehensive
dataset, which improved predictive accuracy significantly when multiple physiological signals were
combined. Maruyama's investigation [13] into the pleasantness of wind through EEG signals further
underscores that physiological measurements can provide insights into thermal comfort and help
enhance indoor environmental quality. Studies by Zhan et. al. [10] and Wu et. al. [14] have
demonstrated the efficacy of using EEG to assess individual thermal comfort under different ambient
temperatures and environments. Their research indicates that machine learning models, particularly
the random forest (RF) algorithm, can accurately predict thermal comfort states based on EEG
features, and reinforce the viability of EEG in practical applications for improving indoor climate
control systems. Finally, Lee et al. [15] proposed an EEG-based circumplex model of affect, which
highlights the potential for identifying individual differences in thermal comfort and emotional states.
This growing body of work suggests that EEG can be instrumental in real-time monitoring and
adaptation of thermal comfort conditions.

Despite these advances, a lack of comparative analysis across algorithms and features persists,
leaving readers unclear about the most effective approaches for EEG-based thermal comfort
prediction. This study addresses this gap by evaluating the performance of various machine learning
algorithms and EEG feature sets using a common dataset. The dataset consists of EEG recordings from
40 participants exposed to two thermal conditions. By comparing model performance across four
evaluation metrics, this research aims to identify the most effective combinations of features and
algorithms, providing valuable insights for future applications in personalised thermal comfort and
building management.
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2. Methodology

This study begins by conducting a comprehensive literature review to identify existing research on
EEG-based thermal comfort prediction. Articles were sourced from various databases, focusing on
the machine learning algorithms and EEG features employed in these studies. We have collected EEG
data on campus from 40 participants under controlled thermal conditions, including baseline comfort
and overheating induced by heavy clothing. This dataset was used to reproduce and adapt
methodologies identified in the literature. We applied a ten-fold cross-validation technique to ensure
reliability. Four performance metrics were used to assess model accuracy and reliability.

2.1 Previous methodologies

To identify relevant studies, we conducted a systematic search across two databases: Google Scholar
and Web of Science. Using the keywords (“EEG” OR “electroencephalogram”) AND (“thermal
environment” OR “thermal comfort”) AND (“ML’ OR “machine learning”), we retrieved articles
published within the past ten years. Based on the titles, abstracts and content, we conducted a
preliminary scan of the search results to identify machine learning studies on classifying thermal
comfort states with physiological data. A screening of the literature follows to exclude studies that
could not be replicated or validated in our experiments. After applying these criteria, five key research
articles were identified, as summarized in table 1.

Table 1. Qualified methodologies on using ML to classify and predict EEG data under thermal comfort and
discomfort states.

Algorithm Used Feature(s) Reference

LDA [16] The mean power density in each 1 Hz frequency Shan et.al. [11,12]
range and three different sets of power density and Wu et. al. [14]
ratio feature

Naive Bayes (NB) [17] The mean power density in each 1 Hz frequency Shan et. al. [12]
range

K Nearest Neighbours (KNN) The mean power density in each 1 Hz frequency Shan et.al. [12]

[18] range

7 different KNNs [18] Delta wave and theta wave of O2 channel; beta Pratama etal [19]

wave of FC5 channel
SVM [20] Three different sets of power density ratio feature Wu et. al. [14]

RF [21] Delta, theta, alpha and beta waves obtained by

Butterworth bandpass filter [22] Ren et. al. [23]

Back Propagation Neural Delta, theta, alpha and beta waves obtained by Ren et.al. [23]
Network (BPNN) [24] Butterworth bandpass filter [22]
Convolutional Neural Network Delta, theta, alpha and beta waves obtained by Ren et.al. [23]
(CNN) [25] Butterworth bandpass filter [22]
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2.2 EEG data

We utilised an EEG dataset collected from an experiment involving 40 university students. The
experiment was conducted in a classroom with controlled indoor environmental conditions. The air
conditioning system maintained a consistent temperature of 26°C (20.5°C) and relative humidity of
around 50% (*5%), which are widely recognized as conditions that typically produce neutral thermal
comfort for lightly clothed individuals. Participants initially wore clothing they deemed comfortable
and remained in this condition for 30 minutes. Afterward, participants put on a heavy garment
designed to deliberately induce thermal discomfort and remained in this condition for an additional
30 minutes. EEG data was collected continuously during both thermal conditions, by using the EPOC
X (EPOC+, Emotiv Inc., USA), a portable wireless EEG device equipped with 14 electrodes (F3, F4, FC5,
FCé6, F7, F8, T7, T8, P8, 01, 02, AF3, AF4). The electrodes follow the international 10-20 system for
placement, as depicted in figure 1.
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Figure 1. EPOC X electrodes mapping.

The EEG signal data collected from the experiments requires preprocessing to minimise
interference and improve the accuracy of the final results. We used the EEGLAB toolbox in MATLAB
2023a for this purpose [26]. The preprocessing steps include:

1. Importing the raw data into EEGLAB and assigning each electrode its channel based on the
international 10-20 system.

2. Filtering out data with frequencies lower than 0.5 Hz, higher than 30 Hz, and at 50 Hz.

3. Selecting multiple one-minute segments of stable and high-quality EEG signals from each 30-
minute EEG file.

4. Applying the ICA algorithm to identify and remove eye movement and electrocardiogram (ECG)
interference.

After preprocessing, we obtained 536 sets of EEG signal in total, with 238 sets of comfort data
and discomfort data each.

2.3 Selection of EEG features and algorithms

This study employed five feature extraction methods for processing EEG signals, as summarised in
table 1. Equation (1) calculates the first features-the mean power density in each 1 Hz frequency
range, where P(f) is the average power density at frequency; f, X(f, t) is the Fourier transform of the
signal at time t, and T is the total duration.
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The second feature is power spectral density (PSD) of delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-
13 Hz), and beta (13-30 Hz) bands. These four bands were isolated by butterworth bandpass filter
[22]. Wu et. al. [14], utilised equation (2) to calculate PSD values. Then unit total sum normalisation
(UTSN) is applied to standardise the values and normalise results of delta (0.5-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), and beta (13-30 Hz) bands.

w

e = —— [ 10log(P@)P)do @
1
w

Where P(w) is the Fourier transform of the length of the EEG epochs. w, and w, are the upper
and the lower frequency bounds of a specific band.

Previous research has indicated the power density ratios between low-frequency and high
frequency are more sensitive for assessing human states [27,28]. Therefore, they obtained three sets
of features:
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Where the ()T represents the transformation of vectors.

Pratama et al. [19] used the last feature extraction method, which calculates PSD values of delta
and theta frequency ribbons in the 02 channel and beta frequency ribbons in the FC5 channel,
respectively, by using the welch function in MATLAB. The features are then normalised to reduce the
number of outliers. Various machine learning algorithms are employed by these five studies in tablel,
covering linear models, ensemble learning, and even deep learning models. Specifically, they include
LDA [16], SVM [20], NB [17], different KNN [18], RF [21], BPNN [24] and CNN [25].

2.4 Validation and evaluation methods

This study employs 10-fold cross-validation, a widely-used method, to assess the model’s accuracy.
The original dataset was randomly divided into 10 non-overlapping subsets, or folds. In each
iteration, one-fold is selected as the test set, while the remaining nine folds are used as the training
set. The model was trained on the training data and validated on the test data, repeating the process
10 times to ensure each fold was used as the test set once. The average performance across all folds
was calculated to provide a reliable estimate of model performance. Four evaluation metrics, accuracy
[29], precision [29], recall [29], and F1-score [29], were used to measure the model’s classification
performance.
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3. Results

Subjective questionnaires revealed two distinct thermal states. In the baseline state, the mean
thermal sensation was -0.2, indicating a neutral condition. In the overheating state, the score
increased to 1.24, corresponding to the “warm” to “hot” range on the PMV scale. The results of
comparative analysis of EEG signal classification methods under 2 thermal comfort states are
presented in figures 2-5.

Figure 2 illustrates the classification outcomes when the classifiers are trained on the feature of
mean power density in each 1 Hz frequency range. The LDA classifier, as depicted in plot (a),
demonstrated a median accuracy of 76.25% with a range from 83.40% to 74.10%. The NB classifier,
shown plot (b), exhibited median accuracy of 77.56%, with a broader range indicating higher
variability. The KNN classifier, presented in plot (c), showed a median accuracy of 76.56%, with
precision, and F1 score distributions that suggest a balance between these metrics.
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Figure 2. Four metrics in box plot for LDA, NB and KNN classifiers trained by feature - mean power
density in each 1 Hz frequency range.

Figure 3 extends the analysis to classifiers trained on features derived from Delta, theta, alpha,
and beta waves. The BPNN classifier; as shown in plot (a), achieved a median accuracy of 60.27%. The
CNN classifier, displayed plot (b), showed a median accuracy of 77.90%, highlighting its ability to
capture complex patterns within the EEG data. The RF classifier, presented in plot (c), achieved a
median accuracy of 78.20%.
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Figure 3. BPNN, CNN and RF classifiers are trained using feature - Delta, theta, alpha and beta
waves, and their accuracy and performance are evaluated through 10-fold cross-validation.

In figure 4, box plot (a) and box plot (b) demonstrate the 4 metrics of LDA and SVM classifiers
with 3 features. As for LDA classifier, it achieved a median accuracy of 85.05% by using the second
feature. It also performed relatively better in other three metrics with the smallest boxes,
representing integrated data. SVM classifier achieved the highest median of accuracy, precision, recall
and F1 score by using the second feature.
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Figure 4. LDA classifier and SVM classifier are trained using 3 feature sets (i.e. explained in equation
3,4 and 5). In the legend, e1, e2 and e3 represents the 1st, 2nd and 314 feature sets.

Figure 5 provides a detailed comparison of the KNN classifier with different distance metrics.
The six variants—fine-KNN in plot (a), medium-KNN in plot (b), cubic-KNN in plot (c), cosine-KNN in
plot (d), coarse-KNN in plot (e), and weighted-KNN in plot (f)—are trained using specific EEG channel
features. The box plots reveal that the fine-KNN variant, as shown in the first plot of the first row,
achieved a high median accuracy.
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Figure 5. 6 KNN classifiers are trained using feature-Delta wave and theta wave of 02 channel;
beta wave of FC5 channel. The first row of plots from left to right are fine-KNN, medium-KNN and
cubic-KNN. The second row are cosine-KNN, coarse-KNN and weighted-KNN.

In summary, the results indicate that the choice of classifier and feature set significantly
influences the predication performance of thermal comfort states. In the reproduction results, the
LDA classifier using feature-mean power density in each 1 Hz frequency range, is in line with
expectations and the conclusions of the authors, and its performance is the best among the LDA, NB
and KNN classifiers. Although the RF classifier using PSD values of delta, theta, alpha and beta waves
as features performs best in terms of accuracy and precision, it sacrifices the recall value. When LDA

e = e = T
and SVM classifiers use three different features, the performance of feature—(f—i,f—i,%,%) is better.
(04 o B B
Finally, when reproducing multiple KNN variants using the same feature, weighted KNN performs
best.

4. Discussion and conclusion

This study compares methodologies integrating machine learning techniques with EEG signal
analysis to classify and predict thermal comfort states. Using features such as mean power density
and power density ratios, several classifiers were evaluated, including LDA, SVM, CNN, and KNN
variants. The results indicate that feature selection significantly impacts model performance. The
LDA classifier, utilising mean power density in each 1 Hz frequency range, achieved a mean accuracy
of 77.06%, demonstrating high accuracy in minimising false predictions. The SVM classifier, which
used power density ratios of the delta, theta, alpha, and beta waves, attained a recall of 83.80%,
excelling in identifying thermally comfortable states. The balance between precision and recall, as
reflected in the SVM’s favourable F1 score, highlights its overall robustness.

Additionally, the CNN classifier demonstrated the potential of deep learning methods, yielding
high F1 scores and effectively capturing complex patterns in EEG data. Consistent with previous
studies, these findings align with prior studies by Shan et al. [12] and Wu et al. [14], corroborating
the efficacy of EEG signals for thermal comfort prediction. Future research should explore more
extensive datasets, diverse populations, and additional environmental conditions to validate these
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findings further. In conclusion, this study contributes to optimising indoor environmental controls by
systematically comparing machine learning methods and EEG features for thermal comfort
prediction. The integration of neurophysiological data with machine learning presents a promising
approach for creating adaptive and personalised indoor environments, paving the way for more
effective and efficient environmental controls.
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